Tema seminar \# 5 (BE1)
 Teoremele generatoarelor echivalente. Teorema transferului maxim de putere

George Marian Vasilescu

3 Noi. 2016

Exercițiul 1. Pentru circuitul din figură se cunosc $R_{1}=1 \Omega, R_{2}=3 \Omega$, $R_{3}=3 \Omega, R_{4}=3 \Omega, E_{1}=26 \mathrm{~V}, E_{2}=30 \mathrm{~V}, I_{g 5}=2 \mathrm{~A}$. Cerințele:
a) Determinați generatorul echivalent de curent între bornele A și B,
b) Determinați valoarea R astfel încât pe la bornele A și B să se transfere o putere maximă $P_{\max }$; calculați $P_{\max }$.

Exercițiul 2. Pentru circuitul din figură se cunosc $R_{1}=2 \Omega, R_{2}=2 \Omega$, $R_{3}=1 \Omega, R_{4}=3 \Omega, E_{1}=14 V, I_{g 5}=6 \mathrm{~A}$. Cerințele:
a) Determinați generatorul echivalent de tensiune între bornele A și B,
b) Determinați rezistența R a unui rezistor conectat la bornele A și B astfel încât acesta să absoarbă o putere maximă $P_{\max }$. Calculați $P_{\max }$. Cât este randamentul în acest caz? Cum puteți mări randamentul, menținând-ul pe R constant?

Exercițiul 3. Pentru circuitul din figură se cunosc: $R_{2}=2 \Omega, R_{3}=2 \Omega$, $R_{4}=17 \Omega, R_{5}=9 \Omega, E_{2}=48 V, I_{g 1}=2 I_{5}$.
a) Determinați generatorul echivalent de tensiune între bornele A și B,
b) Calculatii curentul ce se stabileste prin rezistorul de rezistență R_{6}, in cazul în care $R_{6}=2 \Omega$. Ce putere absoarbe rezistorul în acest caz? Care este randamentul?

Exercițiul 4. Pentru circuitul din figură se cunosc $R_{1}=1 \Omega, R_{2}=2 \Omega$, $R_{3}=5 \Omega, R_{4}=1 \Omega, I_{g_{5}}=18 \mathrm{~A}$. Determinați generatorul echivalent de curent între bornele A și B.

Soluții și indicii

Soluția 1.

Dacă alegeți corespunzător nodul de referință, puteți obține repede curentul de scurtcircuit folosind MPN. $R_{e}=3 \Omega, I_{g_{e}}=4 A, P_{\max }=12 \mathrm{~W}$.

Soluția 2.

$R_{e}=2 \Omega, E_{e}=-10 \mathrm{~V}, P_{\max }=12,5 \mathrm{~W}$. Tensiunea E_{e} este negativă. O puteți lăsa așa (nu e obligatoriu să „inversați săgeata"), și puteți lucra cu valoarea negativă în restul calculelor.

Soluția 3.

Nu uitați: sursele comandate nu se pasivizează! Pentru aflarea $R_{A B_{0}}$ aplicăm, la poarta A-B, un „test de tensiune" (și calculăm curentul) sau un "test de curent" (s,i calculăm tensiunea). $I_{6}=8 \mathrm{~A}$.

