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Abstract - In the present work a numerical 3D-calcu-
lation method for the simulation of the electromagnetic
(EM) field for different applications of high-frequency
induction heating is developed. The calculation program
uses the boundary element method (BEM) and runs on
an efficient personal computer (PC). The set-up to be
considered is divided into groups of bodies with specific
material properties which allow the formulation of sim-
plified conditional equations for the electric vector poten-
tial at the surfaces of the set-up components. Finally,
some examples of numerically calculated high-frequency
current distributions indicate the efficiency of the pro-
gram developed.

I. GENERAL CONSIDERATIONS

The use of induction heating at high frequency for
industrial purposes allows the workpiece to be heated
without contact. The distribution of the heat sources in
the workpiece should be controlled to get the tempera-
ture distribution desired. Because of the highly com-
plicated structure of the electromagnetic field, this
requires mathematical modelling of the induction hea-
ting process. The complicated geometry of industrial
set-ups, in most cases 3D, leads to very high demand
on computing resources. Nevertheless, considering the
specific properties of high-frequency currents, it is
possible to use an effective method for the calculation
based on the BEM. By this way, many important pro-
blems can be solved using only an efficient PC.

When the range of frequency f between 10 kHz and
some MHz is taken into account, the EM penetration
depth [1], [2]1 6 = (w+fe0+py*p)"” is of the order of
one mm or less. o is the electric conductivity, u, the
permeability of free space and p, the relative permea-
bility. In deeper layers of the material, the current and
the magnetic flux density vanish. Because the dimen-
sions of the induction heating set-ups are up to some
hundred mm, the above-mentioned situation permits us
to assume that the currents flow tangentially to the
surfaces and the evaluation of the current distribution
can be reduced to the calculation of the surface cur-
rent density j. Because of the solenoidality of the
current

divj =0, rotT =j (1a,1b)
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the electric vector potential T [3] is introduced (1b).
The divergence and the curl are defined only on the
surface S, i.e. in the coordinates 7, (Fig. 1). T cor-
responds to a vector T = (0,0,T,) with only the nor-
mal component T, not equal to zero. In general, T is
unknown and has to be calculated.

boundary

element” node

co—ordinate
system

surface of the workpiece

Fig. 1. Set-up of the inductor and the work-piece with fields and
co-ordinate systems.

The surface current density j on the surfaces of the
set-up components determines the magnetic vector
potential A at a point P corresponding to Biot-Savart’s
law. Connected with the relation B = rot A between
the magnetic flux density B and A this allows us to
evaluate the normal component B, of the magnetic flux
density by means of T:

B = ﬂ‘rot f—r—ﬂds 2
"o4m or

where rot, is the normal component of the curl. On
the surface S of a set-up component, in many cases
the conditions for B, are determined by specific pro-
perties of the material. In the following sections equa-
tions are set up which consider the situation at the
surface of certain materials. Combined with equation
(2) for each group of materials, an equation for the
electric vector potential T is obtained. Because of the
assumed harmonic time dependency, every quantity
may be complex. The numerical method works with
non-dimensional equations, and therefore several cha-
racteristic quantities are used for standardization. For
lengths it is the characteristic length L, and for surfa-
ce current densities the inductor current I referred to
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L is introduced. The vector potential is normalized by
the factor p,*1/(4x), the magnetic flux density by the
factor po*I/(4x-L).

Taking (1b) into consideration, the conditions for
the surface current density j result in the boundary
conditions for T. Usually it is impossible for the
induced current to leave the surface of the arrange-
ment component. Therefore the condition jen = 0 is
applied at the boundaries of the components. This
means a constant value for T at the boundary C of the

surface S (Fig. 1). At the feed-in terminals C; of the

inductor, T is set to describe a given distribution of
the surface current density. :

II. CONDUCTING NON-FERROMAGNETIC BODIES

Set-up components which are both conducting and
non-ferromagnetic [4] can be inductors as well as
workpieces to be heated. In the material, beyond the
EM skin layer, all the components of the magnetic
flux density B, especially the normal component B,,
vanish. According to how high frequency is, there will
only be a thin skin layer and the EM flux in the skin
layer can be neglected. Taking into consideration the
solenoidality of B, B, = 0 results at the surface S of
the conducting non-ferromagnetic body. Combining
this with (2) the conditional equation of the electric
vector potential T is obtained:

rotT

rot, 3)

ftotT

Equation (3) has to be fulﬂlled at every point of
‘the surface Sc. S, means all surfaces of other compo-
nents where T has to be taken into account.

III. NON-CONDUCTING FERRITE BODIES

Ferrite bodies are frequently used to control the
distribution of heat sources. Their field-carrying nature
enables us to achieve a certain concentration of the
EM field and thus to produce the required distribution
of the current. Under industrial conditions, the relative
permeability u, of ferrite materials ranges from 100 to
10,000. Moreover, its value depends on the tempera-
ture and the magnetic field strength as well. If these
dependencies have to be considered when calculating
3D EM fields, the amount of computing resources
required will become very high. However, in many
cases, especially when the magnetic circuits are open,
the simplified calculation using the assumption g, = o0
leads to results of sufficient precision.

The assumption pu, = o means that the tangential
components of B vanish at the surface of the ferrite,
i.e. B, = B, = 0. Taking into consideration the sole-
noidality of the magnetic field formulated in the local
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co-ordinate system (n,¢,n) (Fig. 1), dB/dn = 0 fol-
lIows at a plane surface S; of the ferrite. Applying this
to (2), the conditional equation for T is obtained:

f rotT ( 4)

At the surface of the ferrlte body, T describes a
fictitious surface current which influences the EM-field
in the same way as the infinite permeability does.

f rotT

IV. THIN CONDUCTING STRIPS

The heating of thin strips by the transverse flux
coil is one of the recent applications of induction hea-
ting [5]. Generally, the gauge of a strip h is small
compared with the penetration depth § as well as
compared with the dimensions of the set-up to be con-
sidered. In this case the magnetic field will penetrate
the strip [6]. Due to the small gauge of the strip, in
the strip the magnetic flux tangential to the surface of
the strip is insignificant in comparison with the inci-
dent field. This means that on both sides of the strip
B, is of the same magnitude. Inside the strip this
component B, induces eddy currents which flow tan-
gentially to the surface.

The small value of h leads to the assumption of a
homogeneous current distribution across the gauge of -
the strip, so that it is sufficient to calculate the surface
current j only [7]. The relation between T and the
electric field strength E, rotT = E-<g+h, combined
with the law of induction rotE = -i*weB gives rise to .

rot 1otT = -iw-ho'B, ®)

where i denotes the imaginary number and w the
radian frequency. Taking (2) into consideration, the
desired non-dimensional conditional equation

—
rot totT=~i"wgrot, f 1otT o f otT ;o J o= [

4

(6)

for the calculation of T at the surface Sg of the thin
strip is obtained. ws denotes the mnon-dimensional
frequency normalized by the characteristic length L.

V. CONDUCTING FERROMAGNETIC BODIES

Due to the high value of the relative permeability
i, the magnetic flux tangential to the surface inside
the conducting ferromagnetic body may be large and
thus should not be neglected. Nevertheless, the small
penetration depth 6 allows us to use the exponential
solution for the EM field inside the skin layer. Assu-
ming a constant value for u,, the relation
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between j on the surface Sc; of the conducting ferro-
magnetic body and the surface flux density ¢’ can be
given. Allowing for the solenoidality of the EM field,
(7) gives rise to the relation

B =

: ——;—-(l—i)-é-po-p,-rotnrotT ®
at the surface Sqe. Finally, (2) is used to formulate the
non-dimensional conditional equation for the calcula-
tion of the complex electric vector potential T at Scg:

rot, rotT = - (1+i) o p-10t (frot frotT ]
op = —E— e ©
cF 4om-dp,

where wcp denotes the non-dimensional frequency.

VI. TotAL SET-UP

The groups of bodies with different properties abo-
ve described form the total set-up to be considered.
The distribution of T is calculated on the overall sur-
face S = S¢ + S + Sg + Sce- Each single surface
has to belong to one component group. At every sur-
face Sc, Sg, Sg and Scp the attached equation (3), (4),
(6) and (9) is considered, where S, denotes the remai-
ning surface S - S, S - Sg, S - Sgand S - S

VII. NUMERICAL PROCEDURE

For the numerical solution of the problem, the
boundary element method (BEM) is used. All the
surfaces of the set-up components are divided into
finite triangles. The unknown quantity, the vector
potential T, is defined at the corners of the triangles
and is interpolated in a linear manner inside the trian-
gles. Each triangle k has its local co-ordinate system
(n,¢) (Fig. 2). According to (1b), T and the compo-
nents of j are connected by (10) in each element k.

L-T _Tz'Tl+T1'T3_

J. = s J
" HEY ‘ &, PR

The components j, and j, are transformed to the global
co-ordinate system (x,y,z).
According to Biot-Savart’s law the sum
N
AP) = YL Pl sA
k=1 rb

(10)

2

(11)

is used to approximate the magnetic vector potential A
in a point P numerically. N denotes the quantity of all
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elements, k and S,* the number and the content of the
surface of the element respectively and r™* the distan-
ce between P and the centre of k (Fig. 2). If P is
located in k, the corresponding part of the sum is
calculated analytically. rot A is described by
A Ai L Ai
LE ! A‘ 2,
S 2

A=l

rotA = — fAdl * (12)

Sa L,
where A is the number of elements which have the
node M and S, is the content of the hatched surface in
Fig. 3. The operator rot,rotT = rotj is replaced by a
line integral (Fig. 3) and approximated numerically by
a sum similar to (12). The discretization of the partial
derivative of B, (Fig. 4) uses

Il~_____ dl—

0A ali}
—(P.):1.+A(P.)— 13
S an A‘ 1 n(P') ! A( ,) on ( )

Finally, the numerical sum for the calculation of
the partial derivative of A(P) is given by

—(P)"— E Jk[ lP ]*2 nj, (14)

A k=1,k»i

(m,.£,)
a4

£l
0™1(0,0)

Fig. 2. Boundary element in the local and in the global co-ordinate
system.

Fig. 4. On the numerical deriva-
tive of B, with respect to the
component n.

Fig. 3. Numerical line integral
round a node M.

After all the operators in (3), (4), (6) and (9) have
been described numerically, the conditional equation at
every node can be considered. In this way a system of
algebraic equations is obtained. The numerical solution
of this system gives the distribution of T in the nodes
on the surfaces of the set-up under consideration. Pro-
ceeding from T, the distribution of the heat sources is
calculated by using the exponential solution for the
EM field inside the workpieces.
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Fig. 5. Influence of non-axisymmetric elements (two inductors

(1,2) in antiphase) on the falling jet of the melt (3) during jet-

casting (frequency 70 kHz, diameter of the titanium jet 20 mm)
discretization (a); calculated current lines (b).

Then, several integral quantities are evaluated, for
example the total power, the induced voltage and the
inductance and the active resistance of the inductor.

VIII. CALCULATION PROGRAM

The preprocessing uses a programmable commercial
CAD-program for PC to display the 3D geometry of
the set-up. The triangular boundary elements are
drawn as 3D surfaces. An applications program library
has been developed for the automatic generation of
certain surfaces. The main program builds up the
matrix, which describes the algebraic equation system.
Gaussian elimination is used as the solution method.
Proceeding from the distribution of T, the program
calculates the above-mentioned integral quantities. The
postprocessing program evaluates the location of the
isolines (current lines) of the normal component of T.

IX. EXAMPLES OF NUMERICAL RESULTS

The current lines at the surfaces are taken into
account for graphic presentation as a characteristic
quantity of the 3D EM field (Fig. 5, Fig. 6). The
density of the current lines describes the intensity, and
the direction corresponds to that of the current. If T is
complex (Fig. 6), the real component as well as the
imaginary component is plotted.

CONCLUSIONS

The 3D computer program developed allows us to
consider many industrial set-ups in the field of high-
frequency induction heating. The physical fundamen-
tals of the high-frequency EM field connected with the
specific advantages of the BEM, lead to a simulation
program which runs on an efficient personal computer.
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Fig. 6. Induction strip heating by the transverse flux coil:
f = 10 kHz, gauge of the strip 0.2 mm, width 500 mm;
discretization (a); current lines in the strip (b), (c).
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