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Abstract - This paper describes a 3D computation of 
transverse flux inductors used for heating strip and thin slabs. 
The adopted mathematical model consists of a differential 
equation system for the steady-state eddy current problem in a 
configuration comprising a magnetic vector potential and a 
scalar potential and a Fourier's thermal conduction equation 
for moved media. The finite element method is applied in 
conjunction with the Galerkin method. The simplifications and 
boundary conditions required for an efficient solution are 
discussed. The discretization of the numerical model is set up 
with the aid of macroelements and includes upwards of 
100 000 nodes for simple builds. The suitability of the numerical 
method developed for optimum design of transverse flux 
inductors is demonstrated by some results. 

I. TECHNOLOGICAL PROBLEM 

Induction heating or preheating of strip and thin slabs in a 
longitudinal flux in which the charge material is encircled by 
the inductor is subject to the condition that d/6 > 3 applies if 
a good efficiency is to be accomplished. d is the thickness of 
the material and 6 = 1 / ,/= the equivalent depth of 
penetration with the frequency f, the permeability p and the 
electric conductivity K. This means, however, that an 
uneconomically high frequency > 10 kHz would have to be 
used for thin material. Thus, magnetic strip material up to 
about 0,8 mm thick, aluminium up to 4 mm thick and 
nonmagnetic steel up to 12 mm thick can be heated by 
induction in a longitudinal flux. These limits are lifted by the 
induction heating in the transverse flux. 

In contrast to the longitudinal flux, the work piece is not 
encircled in the inductor. One each separate transverse flux 
inductor is usually arranged above and below the work piece. 
The magnetic flux chiefly passes vertically through the work 
piece. The eddy currents induced in the work piece close 
within the work piece surface, when a display of the primary 
currents flowing in the inductor is observed on the surface of 
the work piece. 

Initial numerical investigations into transverse flux 
inductors revealed that the inductor to strip width ratio has a 
considerable influence on the temperature distribution at the 
strip edge [I]. Long inductors protruding beyond the strip 
edge lead to edge overheating and a slight temperature valley 
forms in front of the edge. Short inductors result in a 
temperature decrease. 

Joint application of both effects results in a multitude of 
feasible combinations going from extreme edge overheating 
to undercooling. With an optimised design, they can also 
result in almost homogenous temperature distribution across 
the strip width. 

Using numerical modelling, parameter variation permits 
development of an optimum transverse flux inductor design. 
The primary objective of optimization is to accomplish a 
definite temperature distribution over the strip cross section 
downstream of the inductor outlet. The technological 

Fig. 1 .Finite element mesh of one octant of the equipment. 
Half the strip width = 300 mm. Strip thickness = 15 mm 
Half the inductor length = 500 mm. Equivalent current 

penetration into strip = 30 mm. Half the inductor 
width = 125 mm. Coupling distance between inductor and 

strip = 20 mm. 
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problem definition specifies different temperature 
distributions at the inductor inlet as well as different work 
piece dimensions and materials. The objective of 
optimization can be influenced by the number of poles 
(inductors), their geometric shape (inductor, yoke) and the 
power source frequency. 

11. MATHEMATICAL MODEL 

The problem considered here is that of eddy currents at 
low angular frequencies o. The displacement currents are 
neglected. Magnetic permeability p and electric conductivity 
K are assumed to be constant over longer periods of time 
(several cycles of the field-exciting voltages). 

The mathematical model for this sinusoidal steady-state 
eddy current problem results from the Maxwell equations and 
is described by means of the complex magnetic vector 
potential 4 and a complex scalar potential $ [2]. - 

1 

P 
rot-rot&+ joK(A--prad$)=KE, - 

gs is the electric field strength impressed by the power 
source. Moreover, the requirement of a solenoidal current 
density must be fulfilled. 

div (A - grad - Q) = 0 (2) 

The scalar potential is, on the one hand, impressed in the 
solution area of the inductor by the applied external source 
voltage and the potential $ . On the other hand, and despite 

the numerically conditioned steadiness of the magnetic 
vector potential A, the requirement of a solenoidal current 
density 

- 

is also met at interfaces. 

(3) 

The current density determines the heat source 
distribution. 

By the initial numerical investigations is shown that the 
introduction of the scalar potential $ is indispensable, if the 
inductor protrudes beyond the strip edge. 

- 

The temperature field Q(x, y, z) is computed on the basis 
of the Fourier’s thermal conduction equation. 

(5 )  -- a(cp6) -div(3Lgrad6)+pv - Vgrad(cp6) 
a t  

wherein h is the thermal conductivity coefficient, c is the 
specific heat, p is the mass density and V is the strip 
velocity. 

The two fields, the electromagnetic field and the 
temperature field which becomes steady-state at constant 
velocity, are coupled via the temperature dependence of the 
electric conductivity K (x, y, z) and the magnetic 
permeability p (x, y, z). This coupling is, however, relatively 
weak, because it is relatively easy to do with iterative 
functions for p (x, y, z) and K (x, y, 2). 

111. NUMERICAL MODEL 

The computation of the electromagnetic field by 
approximation is performed on the basis of the finite element 
method. The Galerkin method is applied to the differential 
equations (1) and (2), duly considering the boundary and 
symmetry conditions. The procedure is described in detail in 
~31. 

For initial computations for orientation purposes, the 
reaction of the temperature field and the influence of the 
supply feeds (connecting leads) on the electromagnetic field 
are preferably neglected. Under these assumptions, three 
planes of symmetry can be defined. This reduces the solution 
area to 118 of the total volume. 

In the x-z and the y-z planes of symmetry, the electric 
current density is oriented perpendicular to these planes. 
Hence for the tangential components of the magnetic vector 
potential 4 and for the scalar potential $ : - 

At, = At2 = 0 

$ = 0  - (7) 

In the x-y plane of symmetry, the current density has no 
perpendicular component and 

d $ / d n = O  - (9) 

In the present problem definition, the scalar potential in 
the electrically non-conductive field areas is practically 
insignificant because in the equations (1) and (3) it appears 
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always in conjunction with the electrical conductivity. The 
perpendicular component of the current density must be zero 
on the surface of electrically conducting areas, except for the 
impressed source current density. Hence the following is 
valid for: 

As regards the magnetic vector potential, the present 
problem is an open boundary one because the vector 
potential disappears only in the infinite. With the aid of 
comparative computations, an enveloping surface can, 
however, be determined for which the condition 

computation, wherefore the Cranck-Nickelson method was 
applied. Convergence problems at an increasing velocity 
were eliminated by adopting shorter time steps. 

A semi-automatic process using what is termed 
macroelements is adopted for discretising the solution area. 
Macroelements are hexahedral, prismatic and tetrahedral 
elements which are automatically meshed and then 
assembled for overall discretization. Manual work is 
restricted to the definition of the macroelements. Grids with 
100,OOO elements can readily be set up. The macroelement 
concept does not fully exclude input errors. For this reason 
the completed discretisation is tested for meshing errors with 
a special program [4]. 

IV. RESULTS 
is valid with a known upper error limit. 

For temperature field computation the solution area is 
restricted to the strip. But because of the mass-bound heat 
transfer, there is no y-z plane of symmetry. The heat sources 
in the newly added area can be obtained by reflection at the 
y-z plane or by separate computation for a corresponding 
temperature distribution. Thermal losses by convection and 
radiation on the strip surface are duly considered. On the side 
on which the strip enters the solution area, temperatures (e.g. 
ambient temperature) are given. On the exit side, however 
d 6 / d x = O  (the x coordinate corresponds to the velocity 
direction) is indicated. 

Dividing the solution areas into computation elements is 
necessary both for the 3D electromagnetic field and for the 
transient 3D temperature field. At the nodal points of these 
elements, the values of the vector potential 4 and, 
additionally in the conductive areas, the values of the scalar 
potential I$ are computed. The coefficient matrix of the 

resulting algebraic equation system is positively definite, 
symmetric and sparse occupied. For the present practice 
relevant example, grids with up to 100,OOO nodes or elements 
are required. The resulting very large matrices require 
specific storage types. For solving the equation system, the 
conjugate gradient method is used in the iterative solution 
process. 

- 

The computation of the temperature field of the moving 
strip is done on the basis of a particular grid. The heat source 
distribution, in the form of node values, is transferred to this 
grid (which can be not identical with the grid of the 
electromagnetic computation) by means of the shape 
functions. The influence of the velocity destroys the 
coefficient matrix symmetry of the equation system. A 
biconjugate gradient procedure or a relaxation procedure was 
therefore adopted as solution method. Test computations 
revealed that a better stability is accomplished by transient 

Fig. 1 shows the mesh of inductor (coil), yoke and strip. 
11776 hexahedral elements with 13464 nodes resulted for the 
1/8 of the overall computation domain, including the 
discretisation of the airfilled spaces; the latter is not shown 
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Fig. 2. Eddy current distribution on the strip surface: 
real part at the top, imaginary part at the bottom. 

N.B.: The measure of intensity is the arrow 
length, not the arrow density. 
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Fig. 3. Distribution of heat source density. Fig. 5.  Steady-state temperature distribution. 

in the figure. The results presented below relate to this 
specific example which is one of many modifications [ 5 ] .  

The calculated eddy current distribution on the strip 
surface is illustrated in Fig. 2. Because the depth of current 
penetration is much greater than the strip width, a similar 
eddy current distribution will also occur in the deeper layers. 

The density of heat source distribution according to eq. (4) 
is shown in Fig. 3. 

If these heat sources are integrated along the x and the z 
coordinate, this will show the power density unit of length 
illustrated in Fig. 4 which would be proportional to the 
temperature rise if no thermal conduction and no surface heat 
losses were incurred. 

Fig. 4. Distribution of normalised integrated power density 
p' I p', across the strip width 

N.B.: The long inductor is according to Fig. 1 and the 
short inductor is approximately as wide as the strip. 

The comparison of power density distributions for a long 
(computation example) and a short inductor indicates the 
possible combinations, configurations and geometries by 
which a desired final temperature distribution can be 
obtained. 

Fig. 5 shows the temperature distribution resulting from 
the reflected heat sources distribution as per Fig. 3 in the 
steady-state situation. The computed results are confirmed by 
temperature measurements performed with an infrared 
camera. 
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