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Active Power Loss in Thin Nonmagnetic Tape 
Generated by Two-sided  Inductor Heater 

GRZEGORZ SZYMANSKI 

Abstmct-A method for calculating eddy current losses that are pro- 
duced in thin nonmagnetic tape and generated by a two-sided induction 
heater is presented. The integral equation method permits an approx- 
imate solution of the problem. The distribution of the current density 
and the active power loss in the tape are considered. It is  shown that 
the integral equation method is more useful to analysis of the system 
with a  big flux dissipation than the finite element method. 

INTRODUCTION 

R ECENTLY, particularly in magnetic field papers,  the 
finite element techniques have been used to  analyze 

the electromagnetic field [2], [4]. The electromagnetic field 
equations also  can be solved by the  integral method [5], 
[6], [9], [ 101. The  finite element (FE) method is naturally 
intended  to solve internal problems. Consequently there 
must be a  description of the  distinct  area  constraints  and 
boundary conditions because with the FE method the 
whole area must be covered by the elements. The  external 
problems have boundary conditions described to infinity. 
Thus  the  external problems must be  approximated by in- 
ternal problems. 

These  approximations,  especially  in  a system with a big 
flux dissipation, may  leave very big spaces to be covered 
by the elements, thus giving very large systems of linear 
equations to  be solved. Of course,  in  the  integral method 
the system matrix  is fully populated, but the number of 
nonzero elements in  the  finite element method can be 
somewhat larger. 

In [7] it is shown that the number of unknows can be 
significantly reduced with no loss of accuracy, by the use 
of a combined technique, i.e., a finite-element boundary- 
integral  technique. The  integral method makes it  possible 
to reduce the field analysis to  the conducting area and to 
the  boundary  surface of the nonconducting ferromagnetic 
medium, thereby removing the need to  calculate  the field 
in the whole region. 

In  practice, induction heating systems have large flux 
dissipation. In  these  systems,  the solution of the whole 
system  is not required but knowledge of the power loss in 
the heated substance is important.  The considerations are 
based on the  assumption  that  the permeability of the mag- 
netic shunt of the inductor is  constant.  Thus  the system 
examined is considered linear.  The nonlinear effect can be 
taken  into  account, but additional integral equations for 
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fictional currents within a nonconducting ferromagnetic 
bar must be formulated.  The values of these  currents are 
calculated with the successive approximation method [9]. 
A tape of finite width is considered. The thickness of the 
tape  is  assumed to be  small,  as compared with the depth 
of penetration, whereas the length is infinite.  It is as- 
sumed that  all field quantities or currents vary with time 
as expowt) and are complex. In  the  paper the magnetic 
vector potential formulation is used [3]. This  approach 
makes it possible to  formulate  all boundary conditions by 
the  same  type of potential.  The  rectangular  coordinate 
system is applied. The system considered is assumed to 
be infinitely long along the  y-axis. 

Thus  the problem is two-dimensional. Three-dimen- 
sional problems can  be analyzed as well as 2D problems, 
but in 3D problems the formulation of the  integral equa- 
tions for magnetic charges on the boundary surface of 
nonconducting ferromagnetic media is more useful. In the 
following, the displacement currents are neglected. In such 
cases  the  fundamental solution of the Poisson equation is 
defined by 

A(P,  Q) = 1 5 dQ> W ' ,  Q) ~ L Q  (1) y27r L 

where 

1 
K(P,  Q) = In 

J[(x - X ' l 2  + ( z  - z 'y]' 

INTEGRAL EQUATIONS 
The metallic tape,  as shown in Fig. 1, is situated be- 

tween conductors that  represent coii windings. Near the 
conductors there are two magnetic nonconducting shunts. 

Alternating  current Z is flowing through the conductors. 
For conductors placed in  free space (without tape and 
shunts),  these  currents would generate  the primary field 
described by the vector potential: 

r 

On  the  surface of the  shunts,  the following boundary con- 
ditions must be satisfied. 
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n X A(') = n X A(") 

1 
- n X rot A'" = n X rot A'"). (3) 
Pf 

The system  shown in Fig. 1 can  be analyzed  as a system 
without  magnetic shunts, but with additional conduction 
currents flowing on the boundary  surface [6] .  These cur- 
rents have  only line density and only a y-component.  These 
currents  make satisfying the boundary condition (3) pos- 
sible. The vector potential  generated by these currents is 
given by 

1267 

The vector potential  generated by the eddy current flow- 
ing through  the  tape  is  given by 

= 1 1 7(P, Q) K(P, Q) dLQ. (6) 2 n ,  L3 

The total vector potential  in  the  system as shown in Fig. 
1 is the  sum of four components (2), (4), ( 9 ,  and (6): 

The additional conduction  currents (4) and ( 5 )  that flow 
on  the  boundary  surface of the shunt must satisfy the  line 
integral equations (6): 

X 

Fig. 1. Analyzed  system. 

The total currents  on  the  boundary  surface  are equal to 
zero: 

$L, 
7(Q) dL, = 0 (10) 

$L2 ?(e) dLQ = 0. (11) 

It is easy to show that  the  eddy  current that is  generated 
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in the tape must satisfy the  integral equations (8): 

and 

The electromagnetic field in the  system we obtain from (7) 
is the result of a solution of the  integral equations of the 
system (8)-(13). The active power loss converted into heat 
in the tape  is  given by 

APPROXIMATE SOLUTION 
Consider a system  as  shown in Fig. 1. The  perimeter of 

each bar is divided into N1 = N2 subsections A L ,  and  the 
width of the  tape  is divided into N3 subsections AL. Thus 
in the system  there are N = N1 + M.2 + N3 subsections. 
The position of A L l  is  determined by the coordinates (xi, 
zi) of its center. The  current density ~ ( x ,  z) can  be ex- 
panded in the  operator  domain: 

N 

7 = c 7, $9, (15) 
n = l  

where  the r,, are constants and qn are the basis functions. 
The basis functions for the  problem discussed are defined 
bY 

1,  on A'L, 

p n  = io, on all other MI. 

The coefficient r, appearing in (15) is the approximate 
value of the  current density in A L i .  It is easy  to show that 
the system of integral equations (8)-(13) can  be reduced 
to a system of N linear equations 

1 

The submatrices of (16) are defined in the  Appendix. The 
numerical solutions of (16) can  be found  with digital com- 
puters.  This  computation results in the  approximate val- 
ues T ~ ,  r2, * e - , 7 of the  current density on the boundary 
surface  and in the tape. The total active power loss in the 
tape  we obtain from 

Fig. 2. Current density in the tape. 

AL N 

As an example, we consider the system with the following 
data: a = 0.1 m, b = 0.01 m, 2d = 0.1 m, 2e = 0.05 m, 
h = 0.005 m, A = 0.0005 m, Z = 1 A, w = 100 d s ,  
u = 56 MS/m, pf = 1000. The  perimeters of the bars  are 
divided into N1 = N2 = 70, and  the  tape  is divided into 
N3 = 25 identical subsections. The result of the calcula- 
tions are shown in Fig. 2. The active power loss converted 
into heat in the tape  is P h  = 0.1527 W/m.  The active power 
loss can  be treated  as a measure of approximation  and 
computation errors. For double  the  number of subsections, 
N = 330, the active power is P h  = 0.1525 W/m.  The re- 
sult for the division into N = 165 subsections is the same 
as that for the division into N = 330 subsections within 
three significant digit accuracy. The results are compared 
with an analytical method in Appendix 11. 

FINAL  REMARKS 
The  method  presented permits the use of a digital com- 

puter  to  compute the electromagnetic field in a system  with 
large flux dissipation. This  method  does not require ex- 
tensive computer  memory space. 

The  use of the  integral  method [6] for the analysis of 
similar systems [l] has  decreased the number of un- 
knowns  twenty times with respect to  the  FE method.  The 
integral  method has also  decreased the number of ele- 
ments  three times with  the respect to  the  nonzero  element 
of the  FE method.  It  is evident that solution times will 
reduce  as n3. The needed  number of unknowns for the 
analysis of this  system  with  the  integral  method  is equal 
to 165, but with the  FE method the improvement will be 
greater than in the  above-mentioned  papers.  A small num- 
ber of linear equations makes possible a multiple calcula- 
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tion of the  analyzed  system for different parameters.  This 
ability is particularly important for calculations of the - 1 ~ N Z  X mt~hrz 1y K ( p ~ 7  Qn) dLnJ 3 

transient processes  in  these  system [2] , [SI. Consequently 
many problems  that are beyond the practical limit of pre- N l + l I m I N l + r n - l ,   l I n . S N 1  
viou-s approaches  can be easily handled. 

NOMENCLATURE 

A Vector potential. 
Z Current in a conductor. 
Ph Power  converted  into heat in a tape. 
(T Conductivity of a tape. 
6 ,  Kronecker delta. 
po Permeability of vacuum. 
pf Relative permeability of magnetic shur 
o Angular frequency. 
7 Line  current density. 
1, Unit-length vector along y-axis. 

APPENDIX I 
The submatrices of (16) are defined by 

r p  

r r  

r r  

- nN1 X rot AO(PNI)] 3 , 1 I m 5 N1 - 1 

N l + N 2 + 1 ~ m I N - l .  

APPENDIX I1 
Let us consider the system  shown in Fig. 1 a = b = 

d = -+ 03, pr -+ 03. The vector potential in the region 
between  both the magnetic shunts satisfies the Poisson - s, nN1 x rotp,, 1, K(PNI,  Q,J d ~ ] ] ,  

l I m I N 1 - 1 ,  equations: 
a2A, a2A 

N l + N 2 + 1 I n I N  - 
a2 ++= -pJ [6(x + e )  - 6(x - e)] 6(z - h),  

a"A, a2A2 
ax2 a.$ + - = -pd [6(x + e)  - &(x - e)] 6(z + h), 

- C < X I O  (19) 
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Fig. 3. Comparison of the methods. 

and the boundary conditions 

A1 I F 0  = A2 L O  

Equations (20) and (21) state  that  the tangential 
nent of the electric intensity is continuous, whereas  the 
tangential component of the  magnetic intensity is discon- 
tinuous at the surface  carrying  current. 

In accordance  with  (22), the tangential component of 
the magnetic intensity vanishes at  the  surface of the  mag- 
netic shunt. 

When we use  the  Fourier  transform,  the solution of the 
boundary-values problem given by (19)-(22), takes the 
form 

3. The differences are due  to  approximation and compu- 
tation accuracy. 
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m ( 2 ~  - ~ ~ , w o A )  + ePM> sin (X e )  sin (X x) 
X 

dA 
o (2A + jp0waA) - (2X - jpowaA e-2Xc 

pd 1 [(2X + jpowoA) (e-h(2c-h) ) + ( 2 ~  - j p o w a ~ )  e-X(2c-h)] ek m 

a 0  (2X + jwp0aA) - (2h - jpOwaA, e-2hc 

sin (X e)  sin (X x) 
X 

dX, 0 I z I c. 
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