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The Lorentz Forces on an Electrically Conducting
Sphere in an Alternating Magnetic Field

Udaya B. Sathuvalli, and Yildiz Bayazitoglu

Abstract—A method to calculate the Lorentz force on an elec-
trically conducting sphere placed in an arbitrary sinuscidally
varying magnetic field is developed. The crux of this method
lies in expressing the external magnetic field and the eddy cur-
rent density in the sphere in terms of a ‘‘source function’’ of
the current sources and a ‘‘skin depth dependent fumction.”’
The general formula for the Lorentz force is used to derive the
special case of a sphere in an axisymmetric stack of circular
current loops. Numerical results for this case are presented as
a function of the stack geometry. Approximations of the skin
depth functions for practical situations are presented. Finally,
a procedure to determine the magnetic pressure distribution on
the surface of a levitated liquid metal droplet is given.

I. INTRODUCTION

HE solution to the problem of a metallic sphere placed

in a magnetic field finds application in many areas of
containerless processing. For example, in electromag-
netic levitation melting, a small coil that is wound over
the length of a few centimeters and carries a high-fre-
quency alternating current is used to levitate and melt
small metallic spheres [1], [2]. Bayazitoglu and Cerny [3]
propose and study a method to produce fine metallic pow-
ders by allowing a spray of liquid metal drops to fall
through the high-frequency alternating magnetic field of
a long solenoid. In these and several other applications
such as gradiometry [4], determination of surface tension
and viscosity of liquid metals [5], the calculation of the
force on an electrically conducting sphere and the heating
in it are very important.

Since the time when electromagnetic levitation melting
was first demonstrated experimentally [1], it has been ex-
tensively used for the measurement of thermophysical
properties such as thermal diffusivity [6], surface tension
(5], [7], and viscosity of high temperature liquid metals
and alloys in a containerless manner. For example, when
a drop of liquid metal is levitated it executes shape oscil-
lations [5], [7], [8]. The dynamics of these shape oscil-
lations are determined by the balance between the hydro-

Manuscript received October 14, 1994; revised May 9, 1995, This ma-
terial is based in part, upon the work supported by the Texas Advanced
Technology Program under Grants 003604-027 and 003604-041.

U. B. Sathuvalli was with the Department of Mechanical Engineering
and Materials Science, Rice University, Houston, TX. He is now with
Drexel Oil Field, Conroe, Texas 77301.

Y. Bayazitoglu is with the Department of Mechanical Engineering and
Materials Science, Rice University, Houston, TX 77251-1892.

Publisher Item Identifier S 0018-9464(96)00646-2.

static, viscous, surface tension, and electromagnetic
forces. In this case, it is important to calculate the mag-
netic pressure on the surface of the conducting droplet of
liquid metal beforehand [5], [7].

All the works that address the problem of an electrically
conducting sphere in an alternating magnetic field can be
classified as belonging to either the homogeneous [1], [2],
[9], or the nonhomogeneous model. The homogeneous
model assumes that the conducting sphere is placed in a
uniform and unidirectional sinusoidally alternating mag-
netic field and shows that the Lorentz force on the sphere
is proportional to the product of the field and its gradient
[2] [as given by (28)]. This assumption gives rise to sev-
eral problems. For example, the magnetic field can hardly
be regarded as being uniform or unidirectional over the
diameter of the sphere. Calculations of the net power ab-
sorbed by a sphere in a magnetic field by using the ho-
mogeneous model show that it underestimates the power
by as much as 30% in typical laboratory-type levitation
situations [10]. On the other hand, works that account for
the nonuniformity of the field are highly geometry specific
[11}-[13]. They are applicable only to axisymmetric sys-
tems. Often the magnetic fields produced by the labora-
tory coils are not quite axisymmetric [14]. Recently, Lo-
hofer [15], [16] analyzed the problem of a conducting
sphere in a magnetic field placed in an arbitrary (nonuni-
form and not necessarily unidirectional) sinusoidally al-
ternating magnetic field and obtained expressions for the
net power generated in the sphere, and the Lorentz force
and torque on it in terms of certain functions of the ‘‘cur-
rent sources’’ that create the external magnetic field. In
this work, this model is known as the nonhomogeneous
model.

In the present work, the density of eddy currents that
are generated in a diamagnetic sphere placed in a sinu-
soidally alternating magnetic field as given in [15] is first
written. Then, by using multipole expansion, the vector
potential of the external magnetic field is expressed in
terms of the above-mentioned ‘‘source functions.”’” The
external magnetic field is calculated by using a gradient
formula. The expression for the instantaneous Lorentz
force per unit volume is subsequently integrated over the
volume of the sphere to obtain the net time averaged force
on the sphere in terms of these source functions and a
‘“skin depth function.’’ Approximations for the skin depth
function for use in practical situations are presented. The
general formula for the net Lorentz force is then used to
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derive the force on a sphere in an axisymmetric magnetic
field that is created by a stack of circular coaxial loops
and numerical results in terms of the stack geometry are
presented. The homogeneous model is shown to be a spe-
cial case of the nonhomogeneous model, and the differ-
ence in the predictions of the Lorentz force according to
the two models is estimated. Finally, a method to find the
magnetic pressure distribution on the surface of a levitat-
ing liquid metal droplet by using this method is presented.

II. ANALYSIS
Consider a diamagnetic sphere of radius R, electrical
conductivity o;, and magnetic permeability u,, that is
placed in a time varying magnetic field B, (r, 1) (see Fig.
1). If the external magnetic field is created by a set of N
current sources whose current densities are J, (r) cos (w,?),
then its vector potential A, (r, f) may described by

N
Ar, ) = 2 A,() cos (@)

(la)

where
B.(r,©) =V X A,(r, ©) (1b)
VA, H=0. (1c)

For this situation, the density of the induced eddy currents
is given by [15]

J(ryu, ¢, 0
2 N © ! o
= PIEDIEDID
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Jieinv12.0) Nagh + x1iink
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—12
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and Y7 (u, ¢) are complex spherical harmonics defined by
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Fig. 1. A sphere placed in a magnetic field.

and the asterisk denotes complex conjugation. Also, u =
cos 0 and P} (u) are associated Legendre polynomials of
the first kind. J;, 1,5(z) is a fractional order Bessel func-
tion of the first kind, and x, ./, ; is the kth real root of

Ji-ip(x) = 0. )

The k-dependent terms in (2a) may be summed to yield
—4 N o !
Ji(r,u, ¢, 0 = e n§1 zgo m;_l o

* Re [¥,(z, r/R)E“" ™Y1 (u, $)

(5a)
where for real values of s
1 14 4p(zs)
¥, (z,8) = ———— 5b
fl( ) 2z I @) (5)
z=(1+ i)g, (5¢)

and 1 4 1/2(z) denote modified Bessel functions of the first
kind. Equations (5a) and (5b) are proved in Appendix D.
The above equations are valid in a spherical coordinate
system whose origin is at the center of the sphere. Con-
sequently, the current densities of the external sources that
create the magnetic field must be described as seen from
this coordinate system. Equation (2b) defines the complex
vector I, ; ,, which is purely a function of the external cur-
rents that produce the magnetic field and is referred to as
the ‘‘source function.’’ Note that in (2), §, is the skin
depth and g, is the dimensionless ratio of the sphere ra-
dius to its skin depth at a given frequency. Finally, we
must point out that the form of the induced eddy current
density as suggested by (5) is particularly useful in the
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calculation of the magnetic pressure that acts on the sur-
face of a levitating drop of liquid metal (see Section VI).

The net time averaged Lorentz force acting on the
sphere is

LT okt
r=ngll )
-0 I Jo Jo J-1

X Re[B,(r, 1)] r* d¢ du dr dt. (6)

27
|, Reld.r, o)

The form of (6) suggests that it is convenient to express
the external magnetic field in terms of the source function
I, », since the induced eddy current density inside the
sphere has already been expressed in terms of it [accord-
ing to (2)].

The vector potential of the external magnetic field can
be expressed in terms of the external current densities by

[17]
_ Mo
A1) = 47 SSS

Since (7) represents the vector potential due to the exter-
nal currents, the region of integration is all space that is
outside the sphere. The denominator of the integrand in
(7) can be written as a multipole expansion in spherical
harmonics [18]

lr(r, u, ¢) — ', u', o)~

J.(r")

- d3, @)
lr —r|

o 1
B n* myeot ’
= 1§1 m=Z—121 +1 Y, 9) Y70 ¢)
r’ ,
e r<r
l (®)
r ,
ESE r>r

Substituting (8) in (7) and considering only the case r <
r' yields
© !

1.
A, (r,u, ¢) = p, EO m;_l A+ 1 Y7 u, o)

oo +1 2w
. [S S S Jn(r/v ul, ¢I)rl-l+l
Ry J—-1 JO

<Y, o) do' du’ dr’}.

Assuming that J, (r, u, ¢) is real for all n, the above equa-
tion in conjunction with (2b) becomes

o 1 i

A, (r,u, §) = M”zg()mg—lZli 1

P, Q)

(%a)

The vector potential of the external magnetic field is then
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given by

Y, QL1 cOS(ed).

- (9b)
The magnetic flux density of the external field can then
be found by (1b). The calculation of the external magnetic
field [according to (1b) and (9b)] requires the use of the
general gradient formula for functions of the type
f(Y[ (u, ¢) [19]. However, this involves the calculation
of Clebsch-Gordan coefficients which are used in the de-
scription of angular momenta in quantum mechanics. For
the purposes of the present calculation, it is advantageous
(from a purely algebraic point of view) to rewrite the stan-

dard spherical harmonics Y}*(u, ¢) in a slightly modified
form. Following the notation used in [20], we let

Yin(u, ) = P'(u) cos me (10a)

(10b)

so that Y7, and Y? = are the real and imaginary parts of
the standard spherical harmonic Y7'(u, ¢), to a multipli-
cative factor.

Now let the complex vector (“‘source function’’)

In,l,m = Un,l,m + iVn,l,m (11)

where both U, ; ,, and V, ; ,, are real. Then (2a) and (11)
yield
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Equation (12) ensures that the induced current density is
expressed solely in terms of known real functions of the
external currents. It now remains to express the external
magnetic field similarly.

Substitution of (11) in (9b) results in

Re[A.(r, u, ¢, )]

N -y )
= Z] IZ 2 l [(r'Y5 .ty ))Sn.1.m
— ('Y, ONT, 1] €OS (wy1) (13a)
where
Sn,l,m = Dl,mUn,I,m
= Dl,m Re[ln,l,m]s (13b)
Tn,l,m = Dl,mVn,l,m
= Dl,m Im[ln,l,m]’ (130)
and
RY' Pl+1(1—m)
D, = (—1)" =2 . (13d
A TR e (d + m)! (13d)

Since V X I, ; ,, = 0, the definition of the magnetic vector

potential yields,

Re[B,(r, u, ¢, 1]

!
s 2 V'Y 9)

nMg

=]
= s X2
n=1

X s,,,,,,,, — VYD, 8)) X Tpp ] cOs (w,2).
(14)
It is easy to check that (14) satisfies the zero divergence
condition
V- B,(r,u,¢,0) =0

as required by the Maxwell equations.

III. THE LORENTZ FORCE ON THE SPHERE

The Lorentz force on the sphere can now be found from
(6), (12), and (14) by direct substitution of the expres-
sions for the current density and the external magnetic
field. This substitution yields

. E Z % SRs S+] SZT

nd,m n'lU',m" k=1 JO -1 J0

[{Mnktmflkm(r u, ) —

X {V(r Yl,m (u, d’)) X Sn,l,m’ -

T
1
. [ Lt —];S €08 (wpt + Yy 1) €Os (w,2) dtjl
0

T— o

nklmflkm(r u, (b)}
VYD @, 0)) X Tygom}

where

Since the fields are all harmonic, the time dependent in-
tegral in (15) reduces to

2r
2
= S 08 (W, + Yy 1) COS (w, 1) dt
27 Jo .

1 :
= —~ COS ‘/’n,k,l(sw,, wn' (16)
2 ’
where §; ; is the Kronecker delta function. The cross prod-
uct in the volume integral can be expanded to yield the
following terms:

Ry p+l1 p2m
X=X X ZCOS‘/’nklaw,.wnS s S
nl,m n',Jl'm' k=1 0 -1 J0
Mn,k,l,mfl,k,m(r’ u, d))
X [V(rl'Yf’,m’(u’ d))) X Sn’,l',m'] r? dd) du dr
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o Ry p+1 p27
Xy = E Cos ‘/’n,k,lawn,wn' S S S
ndm o' ' k=1 0 J-1 Y0

M, i imSiim(rs U, D)
X V(Y0 e, 8) X Ty ) 77 do du dr
(17b)
nlmn'l'm k=1

Ry p+1 p27
SO S—l SO
Nn,k,l,mfl,k,m(r’ u, d))

X (VY5 Wty $)) X Sy o] 77 d du dr
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© Ry p+lt p27
% 2 cos \bn,k,léwn,wn' S S S
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nd,m n'l',m 1 J0
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X VY ety @) X Tyopr o} > dp du dr
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so that the net time averaged Lorentz force on the sphere

} r* de¢ du dr

15)
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F, = %}LO[XI + Xy + X + Xyl (13)

It now remains to evaluate each of the terms in (18), which -

in turn involves the calculation of the sums of the inte-
grals in (17). Fortunately, the four vector integrals in (17)
share a common integral. The calculation of a typical term
in (17) is shown in Appendix A. The evaluation of the
integrals in (17) calls for the calculation of the gradient
of functions of the type 'Y o %(u, $). These are evaluated
in Appendix B.

The final expression for the net time averaged Lorentz
force on the sphere is found by substituting the expres-
sions for the terms in (18) from (A10), (Al1), (A12), and
(A13) of Appendix A. Thus,

I

N N o
>

tn
Nl'—‘

[:(1 + _6m,0)Un,l,m X (ux X Fn’,l,m + uy X

1
6m,O)‘/n,l,m X (ux X Qn',l,m -

+ (1 -
where the skin depth function g,(g,) is given by
o =1 4q

7 ) 7
k=1 X7+ 12,6 4qn + Xi4 124

81(dn) = (19b)

i

Re{\l/l(z, 1) — (19¢)

1
221 + 1):!

z is given by (5¢), and u;, j = x, y, z represents the unit
cartesian vectors. Also,

Frlz,l,m =BUnivim-1 — BoUp s 1m+1 (19d)
Fﬁ,l,m =BiUniv1,m=1 + BoUn st me1 (19¢)
Qrim = BiVasstm—1 = BVuisimer  (19f)
Grim = Bi1Vaisim—1 + BoViisimer (199
K = B3Un i im (19h)
K im = B3Vt im- (19i)

The B-coeflicients are defined as

Bi=Nl-m+2UA—-m+ 1)

Bz=§/(l+m+2)(1+m+l)

and

By=2dl+m+ 1D —-m+ ).

Along with (2b) and (11), (19) gives the net time av-
eraged Lorentz force acting on a sphere placed in an al-
ternating magnetic field. Equation (19) in conjunction
with (Zb) confirms that the Lorentz force is indeed pro-
portional to the (2! + 1)th power of the sphere radius.

" Here, we must point out that Lohofer [16] presents an
expression for the force on the sphere in terms of the same
source functions, but a different skin depth function. The
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skin depth function in [16] makes use of ordinary frac-
tional order Bessel functions as opposed to modified Bes-
sel functions that we use in (19b). .

Appendix D presents a proof of (19b). The skin depth
function g;(g,) for the Lorentz force is analogous to the
function H;(q,) which appears in the expression for the
power absorbed in the sphere placed in an alternating
magnetic field [15]. The function g,(g, ) depicts the: fre- -
quency dependence of every mode in (19a) (see Fig. 2).
Since modified Bessel functions can be expressed in terms
of circular functions [21], the special case of [ = 1 may
be obtained explicitly. For [ = 1,

1 20 + 1
‘5 5 81(q,) ’m B, in

1 sinh 2g, —sin2q, 1
= — - Qo
81(dn) 4q, cosh 2q, — cos 2q, 6 (202)
im oy X K
I z ,1,2) :l (193)
X Fn Jm + u, X Kn‘,l,m)

A comparison to the skin depth function derived by Rony
[2] [see (28b)] reveals that

G(qn) = - 6g1 (qn ) . (20b)

This suggests that the homogeneous model corresponds
to the / = 1 mode in the general expression for the force.
A note about the calculation of the skin depth function,
gi(g,), is appropriate here since it involves the evaluation
of ratios of fractional order modified Bessel functions of
complex arguments. Lentz [22] presents a method to eval-
uate such ratios in terms of continued fractions. Since
modified Bessel functions can be eventually expressed in
terms of ordinary Bessel functions, the Lentz algorithm
may be used to evaluate g;(g,) for arbitrary values of g,,.
However, in most practical levitation situations, the ratio
of the specimen radius to skin depth, g, , is of the order
of 40 to 50. In powder production applications, this ratio
is seldom greater than 2. It is therefore worthwhile to ex-
amine the behavior of the skin depth function g;(q,), for
large and small limiting values of g, . The high-frequency
limit (or large g,) can be shown to be (see Appendix D)

-1
— 21a
221 + 1) @1a)
This is physically reasonable since (21a) impHes that in-
creasing the frequency indefinitely does not correspond-
ingly increase the force (see Fig. 2). On the other hand,
when g, is small, it can be shown (see Appendix D) that

Lt [gig] =
q—‘)ou

Lt Tggn] = — 44 |

0 " QL+ 1)@+ 3)@l+5)

Since, 1), 12(2) = I;_,5(z) for large values of z, the skin
depth function may be approximated by

1

220+ 1)

(21b)

8(qn) = — — @210

4q,
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Fig. 2. The behavior of the skin depth function.

for intermediate values of g, > 2. For [ = 1, (21b) and
(21c) give

—6 It [gi(g,)] = 0.025397¢* 21d)
gn—>0 .

and

3
—681(gn) = 1 — —— 2le)

24,
respectively. These are the limiting values for the skin
depth function obtained by using the homogeneous model
of Rony [2, (12) and (15)]. The relations in (21) obviate
the need for the Lentz algorithm, which at the minimum
requires the use of a computer program to evaluate the
ratios of fractional order Bessel functions.

IV. T AxisYMMETRIC CASE

Fig. 3 shows a sphere placed along the axis of a conical
stack of coaxial loops. The vector source function I, ; ,,
for this arrangement can be shown to be [15], [10]

T . ‘ .
In,l,m = \/;In,l[_am,l(lux + uy) + ‘Sm,-—l('—lux + uy)]

(22a)
where
1., = I, N2l + D[ + 1)] R,/r,) sin §,P} (cos 6,)
(22b)

and 7, is the current flowing in the nth loop. The form of
(11) allows the following:

™
Un,l,m = uyIn,l ,\[% (—am,l + 6m,—1) (233)
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Fig. 3. A sphere on the axis of a stack of loops.

™
Vn,l,m = _-uxln,l \['2: (5m,1 + 6m,—l)- (23b)

It is now merely a matter of substituting (23) into (19)
and plodding through the various steps. Passing lightly

“over the finer algebraic details, the following points are

noted: 1) only two terms that denote the transverse (i.e.,
x and y) components survive the triple vector products in
(19a); 2) however, these terms do not survive the sum-
mation over the index m due to the presence of factors
such as (=8, 1 + 8, ~1) (£8n—1,1 + On+1,-1); and 3)
the two terms that survive the cross products and the sum-
mation over m are along the z-axis. The net Lorentz force
is directed along the positive axis of the stack, and is given
by ‘
NS 20 + 1

Fs = WMo n§1 ngl 1; gl(qn)swn,wn' m Inln'

20+1
- sin 8, sin 6, P} (cos 8,)P}.(cos 6, Wﬂ

n'n'

@4

Brisley and Thornton [11] obtain an identical relation, al-
beit in a slightly different notation, by calculating the force
exerted on the individual loops by the eddy current field
outside the sphere.

It is convenient to nondimensionalize (24) by choosing
the least radius of the stack of loops as the length scale a,,
(= a;) and I, as the current scale. With reference to Fig.
3, (24) becomes

F, AR 20+ 1

n=1 lgl C) I+ 1

LI,

B2+ 1
- sin 6, sin 8,.P; (cos 8,)P}.(cos 6,) ?T;ﬂT
nln'

(25a)



where ‘
7o = NG, — 76, + (yc, tan a + 1> (25b)
t; + 1
tan 6, = Yo AT 2 (25¢)
2o — YCy
and 1, = L/I,, F, = r,/r,, ¢, = (n = D/IN = 1), Z, =

z,/a,, v = hla,, R; = R,/a,. Note that Z, is the scaled
height of the center of the sphere from the center of the
bottom loop in Fig. 3. For the special case of a single
loop (i.e., N = 1), puty = O and n = 1 in (25) to obtain
2l + 1
[ +1

=u, sm 0 Z
ﬂoll T 1 2 &i(g)

. 20+1
- P}(cos 8P}, (cos 6;) <_—> . (26a)
Ty

Equations (25) and (26a) are reasonable, since they dic-
tate that the force on the sphere should vanish at points
far removed from the coil. Further, it is easy to check that
the expression for the force in (26a) is an odd function of
the position of the sphere with respect to the center of the
loop, i.e.,

Fs\01 = —Fs\ﬂ“‘gl' (26b)

From a physical standpoint, this is expected since a dia-
magnetic body tends to move to a region of weaker field
strength.

V. THE LORENTZ FORCE ACCORDING TO THE
HoMoGENEOUS MODEL

The homogeneous model proceeds by assuming that the
sphere is placed in a uniform and unidirectional external
magnetic field. Let this magnetic field be given by B, =
B, cos wt = u,B, cos wt. In spherical coordinates, the
- vector potential of this field can be shown to be [17]

A, = u, 3 B,r sin 0. 27

Based on this assumption, Rony [2] shows that the Lor-
entz force on the sphere is given by

Fs. _ _27rR§

Ho

G(q) (B, - V)B, (28a)

where

_?_ sinh(2g) + sin(2q)
2g cosh(2q) — cos(2q)’

Glg) =1 - (28b)

In order to calculate the Lorentz force on the sphere for
this configuration of the field by using the present method,
the appropriate source function I, ; ,, must be found. For
a uniform z-directed field, 1, ; ,, has been shown to be [10]

’311' B,R,
In,l,m = _2_ ( ) 51 1[(”‘ + uy)am 1
Ho

— (—i, + )8, 1] (29)

which, when coupled with (11), gives
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f37r B,R,
Un,l,m = Uy 7 < > 5l,l(ﬁm,l - Bm,—l) (303) .
Ko
/37r B,R N
Vn,l,m =u, E— < L S) 5!,1(6m,1 + 6m,—1)~ (30b)

These equations may be substituted in the general force
equation (19). The principal steps are essentially similar
to the axisymmetric case of the previous section, except
that all the terms in the force expression vanish. None of
them survives summation over the index / due to the pres-
ence of the factor §; 18, 1 ;. Therefore, the present method
when applied to the sphere in the homogeneous unidirec-
tional field implies that the Lorentz force is zero. Clearly,
this result does not agree with (28). It must, however, be
anticipated, since paradoxically enough (28) predicts that
the Lorentz force vanishes in the absence of a field gra-
dient. In other words, the homogeneous model begins by
assuming a homogeneous field and derives a nonhomo-
geneous field as a precondition for a nonzero Lorentz
force! This is not surprising since the homogeneous model
calculates the force on-the sphere by assuming it to be a
small dipole that is placed in a nonhomogeneous field [2].!

In Appendix E, it is shown that for a very small sphere
placed on the axis of a circular loop, the homogeneous
model overestimates the Lorentz force by as much as
33%. This assertion must be tested experimentally.
Fromm and Jehn [9] measure the forces on small copper
spheres placed in the field of a circular loop. However,
the radius of the smallest sphere that they use is only a
fourth of the radius of the circular loop. The result of Ap-
pendix E is very likely valid for the limiting case of a
small sphere. It suggests that the forces on smaller spheres
(one-tenth of the loop radius and smaller) might be over-
estimated by (28). These results will be of interest to
workers in the area of electromagnetic powder produc-
tion, where very small droplets of liquid metal are al-
lowed to fall through the magnetic field of a long large
diameter solenoid [3].

It is worthwhile to consider the limiting case of a sphere
with a very small radius, i.e., R; = 0. The source func-
tion for such a sphere placed in an arbitrary magnetic field
is given by [10] '

™ .
In‘l,m = '—An(ro, U,, ¢o)6l,06m,0 (31)
o ;
where (r,, u,, ¢,) are the coordinates.of the center of the
sphere. Since the source function vanishes identically for
all values of [ = m # 0, (19) indicates a net zero Lorentz
force on the sphere. This is an expected result since a
magnetic field cannot exert a force on a zero-radius
sphere. Also, in the case of an extremely small sphere,
the magnetic field is essentially uniform over its volume.

The sphere is not large enough to sense the inhomogene-

'The force on a dipole of moment M placed in a nonhomogeneous mag-
netic field B is (M - V)B. ~
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ity of the magnetic field and hence does not experience a
force.

VI. THE MAGNETIC PRESSURE ON THE SURFACE OF A
CONDUCTING DROPLET

When the conducting sample is allowed to levitate, it
melts after a short time (~ 100 s) [23]. The Lorentz force
drives the liquid metal flow in the droplet. If shape oscil-
lations are induced in the droplet, its dynamics can be
analyzed to yield the surface tension of the liquid metal.
For an inviscid fluid oscillating in an inviscid medium,
the hydrodynamic equation for the oscillating droplet is
given by 7]

p(g—'%li) + au(r, ) - Vo(r, t))

= —Vp(r, 1) — pg + RelJ,(r, D] X Re[B,(r, 0]
(32)

where u(r, t) is the bulk fluid velocity, o(r, t) = 0 is the
equation for the surface of the droplet, p(r, ©) is the pres-
sure, p is the fluid density, and g is the acceleration due
to gravity. However, at very high frequencies, the in-
duced eddy currents are confined to the skin depth and the
Lorentz force does not act on the bulk of the fluid [7].
Instead, it manifests itself as an effective magnetic pres-
SUIe, Prag(r, U, @, 1), on the surface of the droplet. The
details of how such an external pressure affects the dy-
namics of the droplets are given in [5] and [7]. For the
present, we indicate how our method may be directly used
to obtain the magnetic pressure distribution on the droplet
surface. In the limiting case of very high frequencies (i.e.,
g, — o), the magnetic pressure decays exponentially
from the surface of the droplet and can be regarded as a
superficial quantity. Therefore,
VPmag(rs 4, ¢, 1) = Lt RelJ(r, u, ¢, ]

qn = >

X Re[B,(r, u, ¢, H)].

Thus, the pressure difference Apy,,,(u, ¢, £) between the
outside and the inside of the droplet surface is simply

Apmag(u; ¢, 0 = Pout, mag — Pin, mag

Il

Rs
S -0 meag(ua o, 0 dr

Il

Ry
S ( Lt RelJ(r, u, ¢, )]
r=0 \ g~

X Re[B,(r, u, ¢, t)]> - ar. (33)

It now remains to obtain the limiting value of the current
density as g, — oo. This is easily obtained from (5a) by
using the asymptotic values for the modified Bessel func-
tions. This process yields

Lt Us(r, u, ¢, D]

qn =
\/E N o 14 .
2 2 gy o (r, OYT(u, ¢)  (340)

R, n=11=0m=-1

where
fulr, B = L pmaa-rir) o qul 1 — L
n bl r n R

(34b)

Note that (34) is a physically reasonable and an expected
result, since it indicates an exponentially decaying current
density toward the center of the sphere. It is interesting
that (34) compares well to the result of Van Bladel [24,
(9.22)] for a conducting sphere placed in a uniform and
unidirectional magnetic field. The magnetic pressure dis-
tribution on the surface can now be obtained by resolving
the induced current density and the external magnetic field
into their real and imaginary parts and then evaluating the
integral in (33) by using (34).

VII. REsULTS AND Discussion

The results in the paper by Brisley and Thornton [11)
provide a benchmark to check the results obtained here.
An order of magnitude calculation for a 0.5-cm-radius
copper sphere (g, = 2.5 X 107/Q — m) placed 1 cm from
the center of a loop of radius 1 c¢m is reported in [11]. The
loop carries a current of 1320 A at 400 kHz. This current
is sufficient to balance the weight of the sphere (45.72
mN). Using these values in (26a) yields a value of 46.2
mN.

Fig. 4 shows the variation of the magnitude of the Lor-
entz force along the axis of a single loop for three different
values of the radius-to-skin depth ratio. The figure indi-
cates that the force is a very weak function of g, for large
values. Also, note that the case of ¢ = 31.4 corresponds
to the case shown in Fig. 4 of [11]. The difference in the
scaled values along the force axis arises from the present
choice of rationalized MKS units. When the values of the
forces shown in Fig. 4 are multiplied by a conversion fac-
tor of 47 (to convert from rationalized MKS to electro-
magnetic units), the curve reported in [11] is recovered
exactly. Recall that (28) predicts that the Lorentz force on
a sphere varies as the product of the field and the field
gradient. The magnetic field due to a circular loop has
only an axial component on its axis, and is given by (E1)
of Appendix E. The maximum of the product of the func-
tion in (E1) and its derivative occurs at 7, = 0.378, which
is close to the point at which the force shown in Fig. 4
peaks.

The top half of Fig. 5 shows the variation of the force
along the axis of a right circular stack with two and five
loops. The effect of the individual loops is clear. There
are as many peaks as there are loops. In the case of only
two loops, the loops are situated at z;/k = 0 and z,/h =
1. Then the field in between the two loops is relatively
gradient free, and thus the force is close to zero. As in the
case of the single loop, the peak occurs at a point just
above the top loop. When the number of turns is increased
to five (5), there is significant variation of the field over
the length of the stack, and this is reflected in the force.
In fact, when the number of loops per unit length is large,
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Fig. 4. The force on a sphere along the axis of a circular loop.
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induced eddy current density and the magnetic flux den-
sity of the external field in terms of certain ‘‘source func-
tions’* of the current sources that create the field. Once
the “‘source functions’’ for a given configuration, such as
a coil, are known, the force on the sphere ‘may be evalu-
ated. Further, the present method: calculates the Lorentz
force per unit volume by resolving the current density and
the magnetic flux density of the external field into real and
imaginary parts. This method has the advantage that it can
be used to obtain the pressure distribution on the surface
of a levitating liquid metal droplet. We conjecture that
this method can also be used to find the magnetic pressure
distribution on the surface of a slightly deformed aspher-
ical liquid metal droplet in order to determine the surface -
tension (of a liquid metal) by studying its dynamic under

normal gravity (1 g) conditions.
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o v S and
the variations die out completely, and the force profile Re ntl aow
becomes smooth within the coil [14]. The bottom half of p.¢  _ g S S £ (s, ¢) g
Fig. 5 shows the same results for a conical stack of 15° =™~ Jo J— bhm j
semiangle. Due to the increasing diameter of the loops ; . ‘
with height, the field and the field gradient become smaller AYY  (u, ¢)}r? dé du dr JExR)
with increasing distance from the bottom of the stack. Fom? 20 . p,q =e, 0.
Consequently, the effect of the individual loops is not (A3a)

seen. The effect of a nonzero semiangle is to reduce the
average magnitude of the force.

VIII. CoNCLUSIONS

A method of calculating the Lorentz forces on a sphere
has been presented. The method relies on expressing the

[T
—igo S—l 50
" {a' )@+ = ” i, | NN

~172
J1+1/2 X412,k
R

, r
T <XI+ 1/2,k§> Yim(u, $)Yi l,m'+1d¢dudr}
§

Pl
Jiv1n <x1+1/2 kR

The calculation of the various terms of (17a) finally in-
volve the calculation of triple integrals of the type shown
in (A3a). As an illustrative case, consider the case j = x,
p = g = e. Equation (A3a) then becomes [after making

use of (12b), (B3) and (B4)]

>Y:m(u ¢)—(?’ Y5, )1’ do dui dr

(A3b)

>Ylm(u ¢)YI '—1,m' ——ldd)dudr}
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The orthogonality relation (C1) implies that I’ = [ + 1, m’ = m 1 1 for nonzero values of the above integral. This
enables the evaluation of the r-integral in both the terms above to yield

Rs 14512 )
g R <x1+1/2 k ) dr = QL+ D& 12.0)- (Ad)
0 R/ X1+1/2 k
Finally,
RS2 I+ m!
AEmyx = l:‘ 2s S ®vin0) ( w(l + 5m,0)61,l'—1{5m,m'+1
T Xi+12.k (-m
~-(l+m+2)(+m+ I)Bm,mr_l}}. (AS)

For real values of », the following relations are useful in evaluating the r-integrals [21]:

Z
So 2,@ dz = 24,412 (A62)

2
5@ + 1@ = T 160 (A6b)
After some straightforward algebra, the term X , can now be found from (A2), (A5), (12e), and (13d) as

20 + 1
21+ 3

S L (1S -1 4
X,=2X% 3 { = q" } o (1 + B0)
n n' =

2 k=1 X1 1k g + XTe1n4)
I-m+2)—m+ DUy o1m-
. {Unlm « 3 X ( ) l+1,m—1 >}] A7)
o (l+m+2) (l+m+ I)Un’,l+1,m+l

In (A5), the sums over the indices I’ and m’' vanish due to the presence of the Kronecker delta functions §;; -, and
8,n.m'+1- Note that the expressmn for cos ¥, . ; from (2¢) has been used in arriving at (A7).
The other two terms in (A1) can be found by following a similar set of steps. This yields,

Xl,y=0 . v (A8)
and
@ +I T o® ) 4
_s3 s z{ s : }Mamm)
om0 m==1 (2 k=1 XT4 1k (g + X4 1200) 0 l+3

Ui X g, X QYA £ m + DA~ m + DUppirm)}l (A9)

Finally, (A1), (A7), (A8), and (A9) result in the following expression for the first term in (18):

2l+l

1
L=2x 2 mZ 2 81 L+ B 0) T3
u, X \/(l —m+ 2) (l —m+ 1)Uvn’,H-l,m——l
U,im X VU +m+2)A+m+ DUy psime . (A10)

+u, X QYT +m+ DA~ m+ U1
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Tl} remammg three terms in (18) can be obtained by a similar procedure. For the sake of brevity, only the final

expression for each of these terms is g1ven below:
“~

n n' 1=0

Xy =222 E g,(q,,)éw,. (L + 8m0)

[ { <\/(l~m+2)(l—m+1)
M U,,J,mx uy><

-3

p=-S5 5 3

n n 1=0m=-I

= 19 1
2 8 (qn) w,.‘w,,.(

20 + 1
20 + 3
+1,m—1 >}:| (All)
+YU+m+ DA+ m+ DV
o+t
2gl(Qn)5wn 2 (1 6m 0) 21 + 3
l—m+2(—m+ DUy sy
. {V,,lm x ) u, X ("/( hmet >H (A12)
” +YU+m+ DT+ m+ DU isimer/
20+ 1
=m0 21 ¥ 3
VU=m+2)A=m+ DVys1m
\/(1 +mA+2+m+ DVeyimi (A13)

=1
u, X
Vn,l,m X -

+uzx(2\/(z+m+1)(l—

. APPENDIX B
THE CALCULATION OF THE GRADIENT OF FUNCTIONS
of THE TypE r'Yio%(u, ¢)

In evaluating the volume integrals in (17), it is conve-

m + I) Vn',l+ l,m)

.ﬁ + i i) [f’IP?n (u)eim(zS] = _rl— lp;n_+[1 (u)ei(m-(—l)qﬁ
ox dy :

B3
nient to employ a cartesian system of axes, since the unit ®3)
vectors in this system are space independent throughout F
the region of integration (i.e., the volume of the sphere). (5; —i —> [r' P (u)e™]

Hence, it is easier to obtain the gradient formula in carte-
sian components. The definition of the gradient gives =(@l+md+m-—Dr'T PP e ™ (B4)
VeSO, 4) = 2 u,— [F'Yi o (u, o) P , ,
j=xy. = [r’Pf(u)e’”‘ﬂ =+ mr' P e, (BS)
al cos
= 2 w— | rPrwy . me |
j=xyz 7 0f sin Following through with some tedlous but stralghtforward
(B1) algebra yields the following gradient formulae:
| w{=Y_ 1w +(+myA+m—DY 1}
VI Yin o)} =5 r 7 X + Crm) @ tm = DY} (B6)
+uz{2(l + m)Yf—l,m}
T w A=Y i + C+m)+m— DYy, )
VI in@, o)} =5 r' "+ Vi e + (- m) (o m = DY i) (B7)
L+ w20 + mY{_ i n}
The derivatives on the right-hand side of (B1) are evalu- ApPpENDIX C
ated by using the following relations [25, p. 361]: THE u AND ¢ INTEGRALS OVER THE SURFACE OF THE
SPHERE

R ,
g oo

al, cos
| rPlw | méd
dj sin

(B2)

The surface harmonic functions, as defined in (10), can
be shown to obey the following orthogonal properties.
Unlike the standard spherical harmonics, these functions
are not orthonormal. By direct substitution of the defini-
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tions for the functions Y7, (u, ¢) and Y}, (u, ¢), the fol-
lowing can be verified:

+1 21r’ .
5_180 Yinu, @Y7 no(u, ¢) do du

2 ! + m)!
= 20+ 1 ET_’% 7l'(1 + 6m,0)6m,m’6l,l’ (Cl)
+1 27
'S_l So Y00, §)Y0 (0, ¢) d du
2 l + m)!
= 2] + 1 El _ :3‘7"(1 - 6m,0)6m,m’61,l’ (CZ)

+1 p27 ’ ‘
X—-l go Yf,m(ui d’)YIO',m’(u’ ¢) d¢ du =0 (C3)

where the orthogonality of associated Legendre polyno-
mials [18], i.e.,

+1
2 (4 my
S_l Pl (WP} (u)du = —-—21 S —k

has been used.
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froms = 0tos = 1, gives

2

N -
+1/2,k 2
I 1nlx + 12,k)

1 -
: sto ST 10 12,168 4 12(28) ds - (D3)

due to the orthogonality of the Bessel functions, i.c.,

1
j . ST 10 12,6+ 120 4 112, 505) ds
s= '

i 2
312G 12,600k k-

The integral in (D3) can be evaluated to yield [21,
(11.3.29)] '

1
S . ST 10+ 12,1k 1 12(28) dt
.

= i) Jir 120G 412,00 - 12(02)
2 3
25t X

and so
: APPENDIX D
THE SKIN DeprH Functions ¥,(z, £) AND £,(q,) 2z 1
: A = I_1p(2). (D4da
Noting that ik Jl+1/z(xz+1/z,k) Z2 + x12+l/2,k 1-12(2) ( )
2432 '
COS Yy 11 = -—‘———qﬁ—-—, Therefore,
k, Jadt + 1.
4q, + X110k
x
2z Jrr10p(x s)
2 , 1+12%+ 112,k
. X412,k Leap@s) = 2 1,1 (2)-
sin Y, 5, = —_‘“—“——\/—Tl—“— o £=12° + Xieinp Jie1nGrs 20
4g, + X112k
(D4b)
the k-dependent terms in (2a) are
r
© Jivin <xl+1/2,k RT) )
5 an
2 = = cos (w,t + Yy 1)
k=t JpipGang)  VAg + X0
r
W Jivin <X1+1/2,k E) R , )
2q2 Z s {“2(],, COS Wyt + X741k SIN w,,t} (D1
= 4 | .
k=t TG, Aq, + X+ 104

The above sum is evaluated by expressing the modified
Bessel function I, ;(z#) in a Fourier-Bessel series as

]

L+ 1(z8) = EJ‘ N1 @124 172,68)

0 1=0,1,2..., (D2

IA

s =<1,

where z may be complex, A, , are yet-undetermined
coefficients, and x;,,, , are defined in (4). Multiplying
both sides of (D2) by sJ,, 12(X;+1/2.4s) and integrating

Forz = (1 + i)g,, the above equation gives

_1_ 1 1 12(25)
2z Ii_ 1

o . 2 2

=3 11200 12,45) [“2“]" + xl+1/2,kJ

= T A .
k=1 Spin@eiz ) L 4, + Xion

¥z, 8) =

(D5)

Finally, putting s = r/R,;, multiplying throughout by
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£@t+ 7D and taking real parts leads to

Re[¥(z, e/l )

r
J) X -
1+172 1+1/2,k Rs

Iy in@ivang)

-3

k=1

. [—qu, COS Wyt + X741/ SN @7
44, + x?+1/2,k
Together, (D1), (D6), and (2a) establish (5a) and (5b).
Finally, for z = (1 + i)q, = s = 1, equating real parts
throughout (D5) gives ’
< x12+1/2,1< - R [1 11+1/2(Z)]
AL & = Re o/
k=14q, + X112, 221 1(2)
= Re[¥,(z, D] D7)

To prove (19b), consider the function s' 12 Since it is
continuous in the interval 0 < s < 1, it can be expanded
in a Fourier-Bessel series as

J- (D6)

2
sl+1/

(D8)

<
= k;} N1 i+ 10+ 112,15)-

As before, the undetermined coefficients A, 1/  are de-

termined by making use of the orthogonality of Bessel.

functions. Thus,

2020 + 1)

Iy = (DY)
i x12+1/z_,k-71+1/2(x1+1/2,k)
and
J
s = 221 i 0 Z 112+ 12,65) (DOb)
k=1 XLl 1sre 1m0
Fors = 1,
S | 1

(D10)

K=1 X711 N 221 + 1)

Finally, the subtraction of (D10) from (D7) gives the de-
sired result, i.e., (19b).

The limiting case in (21a) can be proved by rewriting
(19b) as

e

1 -1
2(g) = 2 i (D1
k= 1X1+1/2k1 + Xi+1/2,k
44,

By virtue of (D10), (21a) follows. Similarly, in the limit
of very small g, , (19b) can be written as

Lt [gi(g)] = 4q} 2

gn— o k= 1xl+1/2k

(D12)

Multiply (D9b) by s'**? and integrate from s = O to s =
s. The use of (A6a) leads to '

J
S =200 + 1) 2 + 3) Z ! 1430+ 12,k5)
k=1 X 12,5014 12001 12,8)
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I+5/2

Multiply the above equation, once again, by s and
integrate from s = O to s = s. This leads to -
ST =220+ 1D QL+ 3) QL+ 5)
« 1 Jesn(s10,65)) D13)

. ; L
k=1X1112,k Jio12is12,0)

Putting s = 1 in (D13), and then using the recursion re-
lation (A6b) in conjunction with (4), gives '

1=2Q+ 1)@ +3)Ql+5)
> [(21 the+sy 1 }; o

Xi+1/2,k

3
X+ 12,k

Squaring both sides of (D8) and then multiplying through-
out by s, and finally integrating from s = 0'to s = 1
(Parseval’s theorem), yields

S Aty = Z ; )\l+1/2k N1k

k=1
‘ N
: So 2dii1n G164 12 Gre2,e0?) dz.

By using the orthogonality of Bessel functions and then
(D9a) results in

«©

1 1
k=1 X, 2Q0+ 3) @2+ 1D

Together, (D15) and (D14) give (21b).

(D15)

APPENDIX E
THE DIFFERENCE BETWEEN THE HOMOGENEOUS AND
NONHOMOGENEOUS MODELS

The magnetic field on the axis of a circular loop is
purely z-directed and is given by [19]

a2

1
B,(z,) = tetols 5 @+ (ED)
where z, is the axial distance from the center of the loop
of radius a. Using superposition and (28), the homoge-
neous model yields the following expression for the Lor-
entz force” on the sphere along the axis of the stack of

loops shown in Fig. 3:

R, I

2
Bols

12205,
(t + 5272 (22,

+ S'21y)5/2

hom

(E2)

where £, = 1 + vc¢, and s, = Z — +yc¢,. For the special
case of a single loop, the force on the sphere at a height
Z, above the center of the loop becomes

F.
luol2

4 .
= TR G(g) — (E3)

1
2 234"
olhom (al + Zo)

2Assuming that all loops carry current at the same frequency.
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If the sphere is small compared to the radius of the loop,
then all terms of order / = 2 in (26a) may be dropped.
Considering only the / = 1 term and expressing all func-
tions in terms of the dimensions in Fig. 3, (26a) can be
written as

F, 9 ailz,
= — 7Ry ——57. E4
ol T TRe@ Ty B
By (20b), it follows that

ZE N
— = —, (E5)

l:‘uolg nolr:hlum Ho Iglhom Ho Ig n01n-=h<])m 3
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