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Abstract- This paper presents an integral formulation for 
the calculation of the eddy-current problems in moving 
conductors in the presence of magnetic media. The 
quasistationary Maxwell equations are written in local 
reference frames associaf ed with moving bodies. Only the 
conducting and ferromagnetic domains are discretized. The 
eddy current is described )in terms of a two component electric 
vector potential for which edge elements are used along with 
the tree-cotree decomposition. The magnetization is assumed 
to be uniform in each element of the ferromagnetic domain. 
Time stepping is used for time integration. The nonlinear 
problem is solved usiing Picard iteration, for which 
convergence is guaranteed. Only a part of the relevant 
matrices must be formed at each time step. The features of the 
method are illustrated with the aid of some numerical results. 

Index terms - Eddy currents, integral equations, finite 
element methods, nonlineair magnetics, moving conductors. 

I .  INTRODUCTION 

The eddy current analysis in moving conductors is of 
interest both in the case of rigid motion (especially for 
electrical machines) and deformable bodies (e.g., fluid 
conductors, study of vibrations, and so on). 

Two main classes of methods have been proposed for 
the calculation of the electromagnetic field in moving 
bodies: differential and integral formulations. 

The differential methods show a number of 
disadvantages. The number of unknowns needed to obtain a 
desired accuracy is rather huge, the analysis of unbounded 
domains requires a special treatment, and the mesh nodal 
coordinates and incidence matrices must be modified 
during the time evolution. Differential formulations have 
been proposed in terms of the magnetic vector potential 
[1,2] or scalar potentialls [3] .  In the case of deformable 
conductors, as suggested in [4], it is possible to take 
advantage of lagrangian approach and differential 
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geometry. 
As stated in [ 5 ] ,  the integral methods appear more 

promising. They are characterized by full matrices, but the 
number of unknowns needed to get a required accuracy is 
relatively small. In addition, the regularity conditions at 
infinity are automatically taken into account by the 
formulation. Finally, in the case of rigid motion, the topology 
of the mesh is not modified, and only a part of the stiffness 
matrices must be changed during the movement. The integral 
formulation proposed in 161 is an extension of the approach 
presented in [7] to take into account the presence of linear 
moving media. A similar approach is presented in [8]. 

The possibility of including magnetic materials into the 
models with fixed conductors has already been discussed by 
several authors using different approaches [9- 1.51. 

In this paper, the methods proposed in [7] and [12] are 
combined to take into account the presence of non-linear 
moving media. 

11. PROBLEM FORMULATION 

The model is based on the magnetoquasistatic limit of 
Maxwell equations and the following constitutive 
relationships: 

E = q J  in V, (1) 
H=f(B) inVf  (2) 

where J is the current density, E is the electric field, q is the 
resistivity, H is the magnetic field M is the magnetization 
vector, B is the flux density, V, is the conducting domain and 
Vf is the ferromagnetic domain. 

Constitutive equation (2) is equivalent to: 
B = PO (H+M) ( 3 )  
M = g(B)= v ~ B  -AB) (4) 

where po is the vacuum permeability and vo=l/po. We 
assume f to be uniformly monotonic and verify Lipschitz 
condition. 

For the sake of simplicity we assume zero initial 
conditions for all fields. 

We consider a set of N conducting and/or ferromagnetic 
bodies Bkr each of them moving with a rigid velocity vk. In 

0018-9464/98$10.00 0 1998 IEEE 



2530 

the local frame of any moving body the time integral of the 
electric field is given by: 

(5 1 fJE(x,r)d.r = - A(x, t) - vv 
0 

where V is the time integral of the scalar electric potential 
and A is the divergence-free magnetic vector potential 
given by: 

A(x,t) =& IF&''+ 
4n Ax(t)l 

vc 

(6) 
M(x' , t)x Ax(t) 

dV'+ A,, (x, t )  

f 
where AXEX-x' and A. is the contribution of the external 
current density J, in the volume Vo moving with velocity v,: 

(7) 

The magnetic field B=VxA can directly be obtained 
using Biot-Savart law. 

With this choice the Maxwell equations in the moving 
frame are automatically satisfied. Therefore only the 
constitutive equations (1) and (4) must explicitly be 
imposed. 

111. NUMERICAL APPROACH 

The current density J is expressed in terms of cotree 
edge shape functions Tk [7]: 

n 

J ( x , ~ )  = C I , ( ~ ) V X T ,  (8) 
k=l  

whereas the magnetization M is approximated as a 
piecewise uniform field: 

"In 

(9) 
k=l  

where Pk's are n, unit vector pulse functions obtained by 
multiplying the unit vectors along the coordinate axes by 
the usual scalar unit pulse functions pk's ,  which are 
different from zero only for x belonging to the kth finite 
element of V, 

We apply Galerkin approach in the following form. 

I I V c V x T , . ( E - ~ J ) d V  = O  b'Ti (10) 

s,; 
0 

PI .[g-'(M) - B]dV = 0 YP, (11) 

obtaining the system of nonlinear equations: 

where: 
V X T, . V x T, 

L =kJ j- dVdV' 
I' 4n V' v, Ix - XI1 

V x T, (x) . P, (x' ) x ( x - X' ) 
dVdV' (17) 

(18) 

l X  - ", "f 

D, = I, PITJ dV 
f 

The nonlinear system of equations (12)-(13) IS solved 
using time stepping and a Picard-Banach iteration at each 
time step. The convergence of the iterative procedure has 
been already discussed in [12], with reference to a system of 
bodies fixed in the space. The approach here discussed for 
taking into account moving bodies, due to the particular 
choice of the reference frames, allows for a similar treatment 
of the nonlinearity. In the Appendix we briefly recall the 
main aspects of the convergence properties of the iterative 
procedure. Here we recall the main steps of the formulation, 
from the numerical point of view. 

At each time instant tN+1 = tN + At, the average values 

[B]k",i' of the flux density components in each element of the 
ferromagnetic domain, corresponding to the (k+l)-th 
iteration are given by the Biot-Savart law using the 
magnetization [MI:", the eddy currents and external 

currents as: 

From this estimate of [B] the magnetization [MI can be 
corrected using the numerical counterpart of the function g, 
leading to the following Picard-Banach scheme [ 161: 
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where G is the mapping from [MI to the local average 
values of [B], i.e. the inverse of the operator defined by 
(21). 

Notice that the existence of g-I, which is used in ( l l ) ,  
(13), and (21), is not implied by the existence o f f ' .  On the 
other hand, equation (2!3), which is equivalent to (13) in 
case g-' exists, still holds beyond saturation. We adopted 
g-' in the weak form (11) to explicitly remark that we 
update M as the magnetization corresponding to the 
average value of B [12,16]. However, in (23) ,  the final 
form of the numerical formulation, we only refer to the 
function g. 

The nonlinear system of equations (10) and (23) is 
solved by time stepping and Picard-Banach iteration: 

( (L)  N+l +{RIA t/ 2)[Il;+' = 
N 

i=O 
-{F)N+'[M]F+l - { R )  C[I]'At (24) 

[MI;:; = 

G((D}-'({E}N+'[M]Ff' +{F}NflTII ] r+ l  (25) 

here superscript N refers to the time instant tN, whereas 
subscript k refers to the k-th Picard-Banach iteration. 

Motion is taken into account in (24)-(25) in the source 
terms [U], [W] as well as by updating parts of matrices 
(L) ,  {F]  and (E)  at each time step. The procedure is 
similar to the approach presented in [17]. For instance, the 
source term [U] defined by (16) is affected by the motion 
whenever v@vs, because in this case the distance between 
the two material points XE V, and X'E Vo varies. 

IV. NUMERICAL RESULTS 

Firstly, we study the problem of the moving coil over a 
non-ferromagnetic conducting plate presented in [ 181. Two 
sets of results are presented for this problem for the 
velocity v=138.9 d s  (SO0 km/h). For a coarse mesh, using 
1000 tetrahedra and 541 active edges, we obtained the total 
Joule losses P, = 7.1.106 W. Using a fine mesh, with 2975 
tetrahedra and 1239 active edges, we obtained the total 
Joule losses P, = 8.9-106 W. These values can be compared 
with the analytical value indicated in [IS] for an infinite 
conductive plate, which is 9.0.106 W, and with the 
corresponding numerical results 7.5.106 and 8.5.106 W 
[18]. In Fig. 1 we show the eddy-currents plots obtained 
with the fine mesh. 
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Fig. 1 The eddy-current density plot in the conducting plate for a fine 
mesh and for velocity of the moving coil v =138.9 m/s at t = 2.5 ms. 

Results were also obtained for nonlinear magnetic media 
in movement. First, for testing the linear solver for moving 
bodies, we have considered a permanent magnet (with 
imposed magnetization M = 1 M N m )  moving near a fixed 
conductor non-magnetic plate, as it is represented in Fig. 2. 
The mesh used for M approximation (hexahedra) can be 
different from the eddy-current mesh (tetrahedra). Figure 3 
shows the eddy current distribution at two different time 
instants, during the motion. The velocity considered is v = 1 
m/s, the time-step is 1 ms. 

Figure 4 shows the eddy current distribution for a 
ferromagnetic plate with the same geometry moving with a 
different velocity with respect to the magnet. In this case the 
velocity is 4 d s ,  and the time step is 0.1 ms. Although the 
diffusion time is longer than in the previous case, the time 
step has been reduced because of the higher velocity. The 
maximum power is also higher because of the higher velocity 
and magnetic field. 

Fig. 2 Two moving bodies, a permanent magnet moving with respect 
to one conducting plate, considered non-magnetic, in the first example and 
ferromagnetic, in the second example. 
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Fig. 3 The eddy-current distribution for the conducting non- 
magnetic plate which is moving with respect to the permanent magnet; 

the velocity is v= 1 i d s  along z direction a) t= Ims; b) t= 12 ms. 

V. CONCLUSIONS 

The main features of the procedure presented in the 

The non-linear constitutive relation B-H (2) is replaced 

nonlinear function of the flux density B given by (4). 
Therefore, the magnetic vector potential A can be 
calculated from J and M using the linear relationship (6). 

The coordinate frames are fixed on the rigid moving 
bodies. As a consequence the velocity does not appear in 
Faraday’s law (5). 

In (10) the time integrals of the electric field and of the 
current density are considered when applying Galerkin 

paper are here summarized. 

by a linear One ( 3 )  where the magnetization M i a  il 

Fig. 4 The eddy-current distribution for the conducting ferromagnetic 
plate which is moving with respect to the permanent magnet; the velocity is 

v= 4 m/s along z direction a) t = 1 ms; b) t = 12 ms. 

procedure. In this way, the associated integral equation (12) 
is similar to that obtained for non-moving media. Motion is 
taken into account in the source terms and by the time- 
dependent behavior of the relevant matrices. 

The numerical solution is carried out using an extension 
of the approaoh proposad in [7], basod on a two-component 
electric vector potential T approximated via cotree edge 
shape functions. The magnetization vector M is instead 
approximated as a piecewise uniform field. 

The matrices used for the solution of system (24)-(25) 
may depend on the time, but do not change throughout the 
Picard-Banach iteration at a time step. Therefore parallel 
processors can be exploited to compute to update the 
matrices for the next time step. 
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APPENDIX and in this case we obtain O = l - p & , , , a x r  where bx is the 
maximum value of the differential permeability in Q. 

Non-expansive character of the mapping from M to B 

It can be shown that if the speeds of the bodies are 
given, if two quasi-stationary electromagnetic fields have 
the same boundary initia 1 conditions, then the difference 
(AB,AH,AE,AJ) of these fields verifies the relationship: 

t 

j ABAH dV d T  = (AB, AH) < 0 64.1) 

Let us assume the magnetization M to be defined by 
O f i  

the following constitutive equation: 

where p is a constant. 
For a given magnetization M we obtain a unique flux 

density B, since the function involving Biot-Savart formula 
2: L,  (n) + L,  (n) is, well defined, where B=Z(M) and 

(X, Y)p = (X, pY) . Frorn (A. l)-(A.2) we get: 

B =p(H+M) (A.2) 

Therefore function Z is non-expansive: 
('4.3) iu 

I I Z ( M I  ) - Z(M" < I I M ~ - M ~ ~ I I  

Contractive characte r of the mapping from B to M 

We suppose that the constitutive relation (2) verifies 
Lipschitz condition: 

Ilf(B') - f(B")IIIAllB'-B'ql, V B ' , B f ' ~ L 2 ( Q )  (A.4) 

and is uniformly monotone: 

( B ' - B ~ ~ , ~ ( B F )  - f ( ~ ~ ~ ) ) ~ ~ l l ~ ~ - ~ ~ ~ ~ ~ ~ ,  V B ~ , B " E L ~ ( Q R )  

(A.5) 
where A 2 A >  0. We may choose v so that the function g 
defined by g(B)= vB-f(B) is a contraction: 

Ilg(B')-g(B")I/p <811B'--B"IIV, 'V'B',B''EL:(Q) (A.6) 

where 8 < 1. Indeed, if we choose y=llv E (0, 2 U 4 ,  then 
the contraction factor 0 O F  the function g is: 

2 
Ilg(B' j - g(B" )I( e =  

2 
IIB' - B'll 

2 2 

2 

2 2  

1 1 ~ ~ - ~ ~ j 1  - 2p < B'-B", f (B' ) - f (B") > +p2 llf (B' ) - f (B" 
- 

IIB' - BVll 
04.7) 51-2~12+,  A <I 

Convenient criteria for the choice of the permeability p 
are given in [ 161. There is proof that p = po may be used 

Convergence of the Picard-Banach procedure 

The method is a Picard-Banach iteration yielding the 
fixed-point of the contractive function g 0 Z . 

It is possible to obtain a posteriori error estimates. There 
is the following upper bound for the error in comparison with 
the exact solution: 

IIB-Bk I / v  5 I(Mk+i - M k  11, /(1-e) (A.8) 

Convergence of the numerical approach 

In the numerical formulation a number of additional 
approximations are introduced. The current density and the 
magnetization vector are approximated by (8) and (9), the 
Galerkin approach (10)-(11) is used to impose the 
constitutive equations, time-stepping is employed for the 
integration of (12), and the Picard-Banach iteration for the 
nonlinear system at each time step is carried out by (24)-(25). 

Here we focus on the convergence of the Picard-Banach 
iteration used in the numerical approach. 

The numerical approximation of the linear mapping Z 
used in the iterative procedure is given by: 

(A.9) 

(A.lO) 

where p=po, (T}= (D)~'({E}"'-{F~"'{A) ' (F IT  Ntl), 

{A)=(L}"'+{R)At/2, and [SI is a term that does not depend 

on [M]f;'+' . 
The contractive character of (A.9) follows from (A.6) 

and the non-expansive character of the average operation 
[ 161. The non-expansive character of (A.lO) follows from the 
analysis of the eigenvalues of the iteration matrix { T}, which 
are all real and less than po [ 131. 

N+I - 

N+1- 

[ M l k + l  -G([ iB1kN=: 1) 

[B]k+l [M]F+'+[sl 
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