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Abstract - The volume  integral  equation  method is 
adopted to analyze  three  dimensional  nonlinear  eddy 
current  problems  in  induction  heating.  The  derived  inte- 
gral  equation is solved  effectively  by  adopting  the 
relation  between  the  surface  magnetic  field  and  the 
magnetic  fluxes  passing  through  the  metal. To check  the 
adequacy  of  the  analyzing  method,  an  eddy  current  prob- 
lem is analyzed.  Computed  values  are  compared  with  meas- 
ured  values.  Both are  in reasonably  good  agreement. 

1. Introduction 
When  a  ferromagnetic  metal is heated  by  induction, 

permeability of the  metal is changed  considerably  by 
the  magnetic  field. In order  to  analyze  the  induction 
heating  problems  precisely, a three  dimensional  non- 
linear  eddy  current  analysis is studied, in which  the 
saturation  effect  of  the  permeability is considered. 
The  integral  equation  method  has  been  adopted  for 

analyzing  eddy  current  problems  with  infinite  domains 
[l], but.applications  to  the  nonlinear  analyses  have 
been  dealt  with  in  only a few  papers [2,3]. 
In this  paper,  the  following  items are presented:  the 

formulation  of  eddy  current  by  an  integral  equation,  an 
effective  method  to  solve  the  integral  equation  and an 
application  to  induction  heating  problems. 

2. Expressions  for  electromagnetic  fields 
Electric  field IE and  magnetic  field kI in a  conductive 

mediuin with  permeability U , permittivity E and  con- 
ductivity 6 satisfy  Maxwell's  equations. 

with  the  magnetic  induction 5 = LIM and  the  electric 
displacement ID = E E. 
Periodical  electromagnetic  fields  can  be  expressed by 

Fourier  series  with  a  fundamental  and  harmonics.  If  the 
fields  are  sinusoidal  ones  of  angular  frequency my time 
derivative  and  time  integration in the  above  equations 
can  be  replaced by jo and l/jw , respectively. 
The  equations  for  the  fundamental  can be  modified as 

QxfH - jwe& = ( j w c - j w c 0  +b)@ (5) 
QxiE + jou0BM = - joB-,u0Sl) ( 6  ) 

V.EBE = -- B.(E-E~+~/~w)IE (8) 
V.u0K = - Q.@-DuIH) (7) 

with  the  permittivity Eo and  permeability PO of  a 
vacuum. The equations  for  the  harmonics  can  be  written 
in  the  same  manner. 

um can  be  replaced by currents,  magnetic  currents, 
magnetic  charges  and  electric  charges  whose  densities 
ti, L o ,  P .  and P are  given  by  the  right side of  the 
above  equations,  that is 

The equations  from (5) to ( 8 )  indicate  that  the  medi- 

i = ( j w  e - j o  E 0 + 6 ) ~  ( 9 ) ,  i.= - jo ( IB-~uoti )  (10) 
~ . = - D . ( I B - D ~ M )  (11). Q = - - V . ( E - E ~ + O / ~ O ) ~ E  (12) 

Given  the  currents  and  charges,  the  following  equa- 
tions  are  established at any  fixed  point Pi [4]. 

+L L p s V J ,  dS 4n s B e  
(14) 

J, = e x p ( - j o  JGZ r)/ r  (15) 
where V is the  volume  of  the  medium, S is the  surface 
of V, and  r is the  distance  from  a  variable  point 
P(X,Y,Z) within V to  the  fixed  point Pj(X ,Y ,Z ) 

r = J(Xj-X)..(u,-u)zt(zi-z)2 (16)  
with  the  global  coordinates X, Y and 2. The last  terms 
in (13)  and  (14) are added  because  the  magnetic  and 
electric  charges  on  the  surface  are  given as [5] 

P . s = ( B - ~ ~ ~ B [ ) s . &  (17) ,  ~ ~ = ( ~ - e ~ + o / j o ) I E s . 6  (18) 
where  the  subscript S denotes  the  surface  of  the  medium 
and & is the  unit  normal  to  the  surface. 

3. Formulation  of  the  magnetic  field  on  a  metal  surface 
The conductive  medium is divided  into  two  Darts: one 

is a heating  coil  and  the  other is a  metal  plate  to  be 
heated by induction. 
The  electromagnetic  fields in the  metal  are  attenu- 

ated  more  rapidly as the  frequency  becomes  higher.  In 
ordinary  induction  heating,  for  high  heating  efficien- 
cy,  the  frequency is chosen so that  the  skin  depth is 
much  less  than  the  metal  thickness [6]. Consequently, 
the  currents  and  magnetic  charges  inside  the  metal  can 
be  assumed  to  exist  only  at  the  surface  of  the  metal. 

Fig.1  Setting  of  the  coordinates 

Setting  local  coordinates x, y  and z whose z axis  is 
perpendicular  to  the  surface  of  the  plate as shown in 
fig.1,  obtaining  the  magnetic  field M at  an  internal 
point Pj from (13)  and  setting  the  field M = 0, we  can 
get  the  following  integral  equation. 

where  the  subscripts 1, 2, e  and j denote  the  surfaces 
of  the  plate  where z=O, z=d,  the sPde  wall at the  edge 
of  the  plate  and  the  value at  Pj, respectively, Le is 
the  contour  of Sz and  !Hcj is  the  magnetic  field  pro- 
duced  by  the  heating  coil. The last  two  terms in the 
left  side  of (19) are  added  because  the  integrals  con- 
tain  singular  points at Pj. The magnetic  field  produced 
by b is not  included  because  the  region  to  be  analyzed 
is much  smaller  than  the  wave  length. 

charges MSI , Msz , Mse  are  obtained as follows. 
The  surface,  currents '8sj , Esrand  surface  magnetic 
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C*a, and K C ~ L  are  obtained  from (1) as 

u s 1  = / i s  dz 3. $12 x HJ f u;, x t H S 1  (20) 

u s 2  = / ;! dz = \SI2 x M S ?  + 0 1  x IH,  (21) 

by assuming  that  the  displacement  current is negligibly 
small and  that  the  magnetic  field U-I in  the  metal  are 
attenuated  rapidly,  that  is, I 3 H,/  8 z I >>  I a I ~ Z /  a y I and 

i aH,/$zi>>I a I I r / 3 x ;  , where  the  subscripts x ,  y and z 
denote  the  components of H. Msl , Msz and M w  are  obtain- 
ed  from (11) and  (17)  by  making  use  of  (3) as 

(22) 

= , ( ' { (B, - -uOHx)$  f (Bu-uaHv)$ldzl.i& (24) 

where $ and 3 are  the  unit  vectors. 
Setting z =d/2,  introducing  the  magnetic  flux  passing 
through  the  metal  plate @ defined as 

a , a  
$ 1  = / ,  Bt dz (25) .  42 = / '  IRt dz ( 2 6 )  

IDt = 8,; f By;. 

d 1 2  

(27) 
and  assuming  that Mj = 0 and  that B > > l r a I H ,  the  equa- 
tion  from  (20)  to  (24)  reduce  to 

list = m t  x AIS, (28), Us2 = 02 x Msz (29) 

Ms, = (d1+d2)e-tne (32) 
Msl = - O s . $ ?  ,,(30). M s a  = - V s . 6 2  (31) 

respectively,  where v s  is  a  surface  vector  operator 

which  works  just  like  the  ordinary  vector  operator V .  
Dividing SQ into  small  elements  and  assuming  that  the 

surface  currents E51 , 1.~1 are  constant  in  each  element, 
we  can  discretize  (19) as [ 71 

where 
= - IH,j (34) 

L a  = 6 2  x lis2 f 161 x 111s I (35) 
(36) 

8, = 6 2  x 4 2  + I61 x 0 1 ) / / 1 8  (37) 
E a  = ( 6 2  X de - a t  X dl)/uo (38) 

the  subscript  i  denotes  the  i-th  element, Ast i  and ALi 
are  the  surface  area of the  i-th-element  and  the  con- 
tour  of ASli ,  respectively,  and  Bc  is  the  average  of 
Bc  over  the  neighboring  two  elements. 
Eq.(34) is applicable  even  in  the  case  of  metal  bil- 

lets  or  thick  metal  plates;  in  this  case, as the  mag- 
netic  field As1 and  the  magnetic  flux @, are  regarded 
as  zero,  we  can  let Ca = C b and LC = CU . 
The  surface  magnetic  field RS may  be  formulated  also 

by  using (14) ,  but  it  has  not  been  investigated  yet. 

O b  = i62  X & Z  - $1 X H s 1  

4. Q-Hs curve 
When  we  solve  (341,  we  need  the  relation  between Ms 

and c$ . We  call  the  relation @-Hs curve. 
An  apparatus  for  measuring &-Hs curve is shown  in 

fig.2. A ferromagnetic  plate  ring  whose  thickness d is 
more  than  twice  the  skin  depth  is  magnetized by an  ex- 
citing  coil  carrying  a  current  with  the  same  frequency 
as that  flowing  in  the  heating  coil. 

Fig.2  Apparatus  for  measuring 9'-Hs curve 

Taking Hs as  the  reference  phasor,  a  pair  of  measured 
$-Hs curves  of a  low  carbon  steel  plate  is  expressed 
with  effective  values  of Hs [A/cm]  and 9 [Wb/cmj  as 

where  the  subscripts r and i  denote  the  real  and  imagi- 
nary  parts  of  the  complex  values,  respectively.  &and 
@, are  obtained by measuring  phase  difference (3 between 
the  magnetic  flux @ and  the  surface  magnetic  field Hs. 
The @-Hs curves  are  shown  in  fig.3  where  the  solid 

lines  are  obtained by means  of a  numerical  analysis  [3] 
using  the B-H curve  given as 

where B(t) and H(t) are  instantaneous  values  at  time t. 

Surface magnetic f i e l d  HS CA/cmj 

Fig.3 6 -Hs curve 

'.@ is  expressed  with  the  components of Ms as 

heating  coil is set as shown  in  fig.4.  Conductivity  of 
the  steel  billet  is d=50,000 S/cm  and  the @-Hs curves 
are  expressed  as (39)  and (40). The  heating  coil  con- 
sists  of 16 turns  and  it  carries  a  sinusoidal  current 
with  effective  amplitude of 25 A whose  frequency  is 
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25.6  kHz. This  frequency is high  enough  for  the  cur- 
rents  and  magnetic  charges  to be  assumed  to  exist  only 
at  the  surface. 
We  divide  a  part  of  the  billet  surface  into 100 ele- 

ments by straight  lines  parallel  to  the X, Y and 2 axes 
as shown in fig.4  and  fig.5,  and  determine Hs by solv- 
ing  (34)  utilizing  the  symmetry  of  the  shape. 

Fig.4 A steel  billet  and  a  Heating  coil 

In obtaining Hs, the  lumped  circulating  current I [7] 
along  the  periphery 1 of  each  element d S as  shown  in 
fig.5 is introduced in order  to  insure  zero  divergence 
of  the  surface  currents ita and  Ub  (Ua=Eb  in  the  case 
the  billet)  defined  by (35) and (36). Ua is expressed 

(43)  

(44) 

where I , ,  and I , ,  are the  conponents.of 0,. 

for  the  calculated  values  to  converge. 
By  Newton-Kaphson  method,  four  iterations are enough 

Fig.5  Setting  of  lumped  circulating  currents 

The power  densities  of  the  elements  calculated  from 

The power  density is given  by  the  Poynting  vector 
Hs are shown in table 1. 

P = iEs*~Hs + i E s ~ H s * l /  2 = RS IHs.IHs* (45)  
where  the  superscript * denotes  the  complex  conjugate 
and Rs is the  real  part  of  the  surface  impedance 2s [8] 

ZS = Es/Hs = -j o 6 /Hs (46) 

In order  to  examine  the  accuracy  and  adequacy  of  this 
method,  temperature  rises  of  the  elements of A and B 
shadowed in fig.4 are  calculated  from  the  power  densi- 
ties and  compared  with  experimental  data. The results 

are  shown  in  fig.6. The experimental  data  are  obtained 
by measuring  the  temperature  of  a  0.32 mm thick  steel 
plate. In calculating  the  temperature,  it is assumed 
that  the  heating  time is 1 s and  that  the  steel  plate 
has  a  specific  heat  of 0.44 J/g."K  and  a  density  of 
7.86 g/cm3. The heat  conductivity is not  considered. 

Table 1 Power  densitv  distribution P W/cm2 

1 n "I - Calculated 
$ I @ Measured 

01 - ' -  . ' . * I 
1 2 3 4 . 5 6 7 8  

Fig.6  Temperature rises of  the  steel  billet 
Posi t ion 

6. Conclusions 
An  effective  nonlinear  eddv  current  analysis is pro- 

posed  by  adopting  the  volume-  integral  equation  method 
which is found  to  be  useful  for  analyzing  induction 
heating  problems. In the  analysis,  the  saturation  ef- 
fect of  the  permeability is taken  into  account. 
The derived  integral  equation  can  be  solved  effec- 

tively  by  adopting  the 0-Hs curve  instead  of  the  B-H 
curve. The @-Hs curve  can  be  obtained  either by an 
apparatus  similar  to  that  for  measuring  the B-H curve 
or  by  numerical  analysis  using  the B-H curve. 

culated  values  of  temperature  rises  are  compared  with 
measured  values.  Both  show  reasonably  good  agreement. 
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