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Abstract — A description is given of an integrated simula-
tion environment for the solution of coupled electromag-
netic and heat dissipation problems in two dimensions, in
particular for the field of induction heating, dielectric heat-
ing, and hysteresis heating. The equations are coupled be-
cause the most important physical parameters (permeabil-
ity, conductivity, permittivity) may depend on temperature
in a nonlinear way. The software has been constructed with
the high level language PDL, using the general ‘Mammy’
design concept.

All heating problems under consideration may involve ther-
mal convection and radiation at the boundaries of the ob-
jects. Also, additional temperature dependent heat sources
(e.g. resistor heating) can be defined. One can include in-
stantaneous effects of movement in the plane on the tem-
perature transfer. Effects around Curie temperature tran-
sitions can be analyzed.

I. INTRODUCTION

Induction heating describes the thermal coenductivity prob-
lem in which the heat is generated by ohmic losses from eddy
currents induced in conducting media, such as metals and
plasma’s, by a varying magnetic field [1, 3]. At high frequency
conditions the peak flux density in the magnetic materials is
sufficiently small to ensure that both the flux density and field
intensity are varying sinusoidally in time. Additional induc-
tion effects can be obtained by considering the movement of a
body in a magnetic field.

Dielectric heating is caused by losses due to friction in the
molecular polarization process in dielectric materials [9, 11].
We consider this type of heating in which the electric field
has a sinusoidal time dependence. The problem is described
by a coupled thermal-electric set of equations. Applications
concern the heating of badly conducting objects between elec-
trodes or in cavities that are subject to electromagnetic fields.
In general, in a homogeneous material dielectric heating causes
a more uniform temperature distribution in less time than can
be obtained by applying heating from the outside, in which
case heat conduction has to play a more important role.
Hysteresis loss forms an additional source for heating when
dealing with a magnetic problem. This kind of heating is in
addition to those caused by eddy currents. It originates from
magnetic domain friction in ferromagnetic materials [11]. In
the simulation package a simple scalar, isotropic, model for
hysteresis is built in, defined by a complex permeability j.

II. THE EDDY CURRENT PROBLEM
Write the magnetic flux density as B = V x A, where A is
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a magnetic vector potential and the electric field is
OA
E=-—r—-Vn (1)

for some scalar potential .

We assume that a separation of variables is allowed, such that
A(z,y,T,t) = A(z,y,T)e™", and Vyp=Ve™“'. (2

In 2D the vector potential A can be chosen to have only one

non-zero component which is along the normal to the 2D (XY)

plane, A = (0,0, A(z,y,T)), and V = (0,0, V(T)).

The 2D eddy current problem is described .by the following

equation (see {7], also for the current conservation case):

iw0A+Vx(leA)—avx(VxA)=Jg—aV, (3)
u

Here we assume that the sources of the magnetic field have
a sinusoidal time dependence. We have neglected the effects
due to displacement currents. Jo = Jo(z,y,t) is the amplitude
of the external current density, where the time dependency is
restricted to time intervals with very modest variations only.
v is the velocity of the Workpiece in the plane. Jo and v are
the main sources for the induced eddy currents J = —iwc A.
Usually, (3) is restricted to the case V = 0. A nonzero value
for V inside the total Workpiece (heated region) allows the
definition of current conservation for a group of regions.

The complex quantities in (3) are related to the physical quan-
tities in the following manner:

B(z,y,t) = Re(V X A(m,y)ei“’t), (4)

and similar for the other quantities.

For a detailed description of the finite element discretization
and variational formulation of the eddy current problem we
refer to [7].

III. THE DIELECTRIC PROBLEM

We start with the introduction of a complex permittivity ¢,
together with some accompanying definitions

E = g-— iELoss - = —15' (5)
Here ¢ is the dielectric permittivity, and °*° the correspond-
ing loss factor. Tan(é) is the loss tangent.

The quantities ¢ and €*°** are material-dependent functions
that may also depend on T'.

Ignoring the effects due to magnetic variations (e.g. induc-
tion heating), the reduced electric problem is defined by one
Maxwell equation and one constitutive relation

V-D: p. D= :E (6)
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Here p. is the charge density (also a material dependent func-
tion of z, y,t). Furthermore, E is the electric field strength, D
is the displacement flux density.

Introducing the electric scalar potential ® such that

E = -V, )
the electric problem reduces to
- V- (eV®) = p.. (8)

The thermal problem needs an expression for the current, which
is time dependent. We will write

E(z,y,t) = E(z,y)e™?, (9)

and similar for the other quantities. Here w is the angular ve-
locity for the steady state AC problem.

If £ is time-independent, the analogue of the constitutive re-
lation (6) between the spatial components of D and E holds
automatically

D(z,y) = (10)

However, in our applications, we will be interested in the case
where & depends on the temperature 7. Then (10) will only be
approximately valid in time intervals where |(8£/0T)(0T/0t)|
is small.

gE(z,y).

A second remark refers to a consequence of the spatial variation
of € when it is temperature dependent. In general (8) results
in a complex differential equation. When ¢ depends on the
temperature 7' (and thus varies in space), the equation for the
imaginary part of ® can not be ignored. However, in the special
case when ¢ is constant, the absence of a charge density and
the assumption of homogeneous Dirichlet conditions for the
imaginary component of ® imply that it suffices to consider
only a Laplace equation for the remaining real component of
.

Writing ® = Y. ®;w;, the weak variational formulation of (8)
is of the form Pﬁ = 0, where F; is given by

F; :/E_V(I)'ijdﬂ—/pEWde—/EV@'DU}de. (11)
Q Q r

As for the magnetic case, there are two types of boundary
conditions:

®

‘I’boun(m,y, t)y (12)

0P
_FZZ = D-
S om n
Here both ®poun and Dyoun are complex. These boundary con-
ditions form the sources that drive the problem.

Dhoun(z, y,1). (13)

IV. HEATING BY HYSTERESIS LOSS

In this section we consider briefly the simple model for hys-
teresis in steady state AC electromagnetics as described in [8].
The introduction of a complex permeability in the Maxwell
equations introduces a phase shift between the magnetic flux
density (induction) B and the magnetic field strength H. This
gives a simple model for hysteresis. Associated with this, hys-
teresis loss can be determined.

As in the case of a complex permittivity in (5), the following
definitions can be made for a complex permeability &

B o= p-— 7:'uL.oss — = —in. (14)

Here u is the magnetic permeability, and ;1“°*° the correspond-
ing loss factor. Furthermore, tan o denotes a loss tangent. The
quantities p and p°** are material dependent functions that
may depend on T'.

The magnetic problem can be reduced to the complex scalar
magnetic potential problem (3), with @ instead of p [8]. The
weak variational formulation and boundary conditions are iden-
tical to those in the induction case.

V. THE HEAT TRANSFER EQUATION

The equation for the temperature 7" describing heat conduction
in a material is as follows:

el v VI =V DVI 43 E)+g,  (15)
where Vv is the velocity of the body and g, c and A are the mass
density, the specific heat density and the thermal conductivity
respectively. Furthermore, ¢ = ¢(T, z,y,t) is the heat input
per unit volume and per unit time, which can be used to de-
scribe additional heating (e.g. conductive losses in resistors).
The velocity term describes the effect of movement on heat
diffusion for translation invariant geometries. This means that
one can only analyze flow of material and not problems such
as a Workpiece entering or leaving a primary coil. However,
movement of the coil can be simulated in another way because
the primary current may be position and time dependent.
The term (J-E} denotes the time averaged heat power absorp-
tion density and will be described in the next section. For the
variational formulation of the heat problem we refer to [7].
Similarly as for the electromagnetic problem, there are two ob-
vious types of boundary conditions. The first one is a Dirich-
let condition T = Ty(z,y,t). The other condition is a Neu-
mann boundary condition, combining a given boundary heat
flux with radiation and convection (see [7] for details).
The thermal steady state problem is described by (15), with
9% = 0 at the left-hand side.

VI. HEAT SOURCE TERMS

For induction heating J - E describes the ohmic power loss

due to induced eddy currents. It can be expressed in terms of

the time derivative of A. After taking the time average we find
(3-E) = %a(fiwA+V,—iwA+V)c, (16)

where, (.,.)c denotes the complex inner-product, and {.,.) the

time averaged value.

Time averaging is legitimate as long as the time scale of the

eddy current phenomena is small compared to the diffusion

time of the heat transfer.

For dielectric heating the positive source term (J - E) covers

the effect due to the displacement currents (see [9], p. 70)

Loss
%—It) = w(e™ +ie)E+ (%E: —iasaT )%z:— .
(17)

We will consider (15) only in time intervals where we can ignore

the contributions due to gi;, Here the factor we™*** describes

an effective dielectric conductivity op.

The required thermal source term is again defined by the time-

mean of the ohmic power loss:

J = JDisp

(J-E) = Jue(Be,y) B, y)e.  (19)



The heat problem with the simplified source term as in (18)
can be found in {2].

The hysteresis loss introduces an additional source term at
the right-hand side of the heat diffusion equation ((15), where
{J - E) incorporates the heating effects due to eddy currents or
displacement currents). The work done in reaching the steady
state is given by

H'-H
W=// B-dH' dQ.
Q '=0

The hysteresis power loss is given by P = 2%, In (8] an
expression for the total time-average hysteresis power loss is
derived. The corresponding spatially dependent term (Physt)

that will serve as a source term in the heat equation is

(19)

wlpg| .
®r) = Dliina ey, He e (20)
This expression is correct on time intervals where the time vari-

ation of f is negligible.
VII. PENETRATION DEPTH

When dealing with induction heating in conductors, the skin
depth

bskin = V/2/(w|glo(1 + sin o)) (21)
measures the magnetic penetration into the material [11]. In
general a small value of ésyin indicates large eddy currents that
oppose the varying external magnetic field. These eddy cur-
rents cause the induction heating.
In the dielectric heating case there is also a notion of pene-
tration of the electric field. Assuming constant u and & the
electric field E satisfies (cf. [11], pp. 471)

2 _O’E 83

VE — ME '—at—z —87

Applying the sinusoidal behavior of E, the homogeneous part
of (22) results in a complex Helmholtz equation in space vari-
ables only. The complex propagation factors of the solution
are defined by

1
Votu (22)

v = Fiw/ué.

We note that |Re(y)| indicates an attenuation factor, of which
the inverse will be defined as the penetration depth A,. It is
easily derived that

2 .
A, = w_—;;e}"/"i’ if tan(é) <€ 1,

V2 1
w\/ﬁ ,leLoss’

VII. ALGORITHMS

(23)

(24)

A, = if tan(8) > 1. (25)

The algorithm is based on a sequential iteration process. Both
the electromagnetic and the thermal steady state are Newton
processes, and for the time integration in transient problems
use is made of a Gear type variable order, variable step-size
Backwards Differencing algorithm for stiff ordinary differential
equations. The intermediate nonlinear problems are solved by
a Newton-Raphson-like procedure. For more details see [7].

In the induction heating case we do not need quantities like for
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instance —g‘%, that would be required when solving the complete
coupled system. However, when we deal with hysteresis loss,
we do need this term when integrating the heat equation. A
similar remark with respect to the permittivity applies in the
dielectric heating case.

There is the possibility to have an automated profile control
for updating the eddy current equation, which can be used
to simulate Curie temperature transitions, where the perme-
ability changes dramatically with temperature [7]. The abrupt
change in material properties means that special care has to be
taken to guide the algorithm across such a transition. There-
fore an automated control mechanism has been provided in the
program which monitors the temperature profile such that the
eddy current equation will be updated as soon as some critical
temperature value is exceeded. In this way a zone can be sim-
ulated which moves with the temperature transition front.

IX. AN INTEGRATED SIMULATION ENVIRONMENT

The Eddy/Heat software package [4] has been constructed with
the high level language PDL (Package Designer Language), us-
ing the general ‘Mammy’ design concept [6]. This concept in-
volves, besides the use of PDL, an easy interface to existing
pre- and postprocessing packages and to libraries of numerical
subroutines. The database structure, the mathematical for-
mulas and the numerical algorithms are all described in PDL.
The PDL formulation is compiled by Mammy, a Philips’ pro-
prietary package generator, resulting in the source code of a
Fortran package. This code is linked with auxiliary libraries.
In order to conform to existing simulation practice within Phi-
lips in the field of electromagnetic heating, we use the package
OPERA-2D (Vector Fields Ltd. [10]) as geometric preproces-
sor. With this preprocessor a file containing the geometrical
input data is created. Physical parameters must be provided
in a separate Attribute File. These two files together form the
input for an Eddy/Heat analysis.

The results of an analysis can be subject to interactive post-
processing with OPERA-2D.

X. MOVING WORKPIECE OR COIL

As explained earlier, deformation of the model due to velocity
is not possible. One can only analyze stationary flow of mate-
rial and not problems such as a Workpiece entering or leaving
a primary coil.

However, movement of the primary coil can be simulated in
another way because Jo may be position and time dependent.
So at every time level point this coil can be replaced, allowing
movement by steps with lengths determined by these time level
points.

The procedure is as follows: model the complete track of the
primary coil as a current region. Define the position of the coil
in this region by Jp # 0, for instance with a Fortran subroutine
or the product of two Heavyside functions.

Current conservation is not possible, but when necessary the
coil can be remodelled to get a better representation of the real
current density distribution. This application is used in [5].

XI. EXAMPLES

Figure 1 shows a glass cylinder in a rectangular cavity, with
an applied homogeneous alternating electric field. The equipo-
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tential lines are displayed. In Figure 2 the temperature profile
in the cylinder is shown. It is asymmetric because we applied
a convection boundary condition at the left and a radiation
boundary condition at the right of the cylinder.

In Figure 3 the magnetic flux lines are shown for a problem
with two current conservation domains. We have a coil at the
right and pieces of tungsten and graphite (with current con-
servation) near the z-axis. All thermal quantities are temper-
ature dependent. Therefore, the magnetic potential changes
with time through the o coupling. In Figure 4 we have plotted
the temperature profiles in time of two points located in the
two Workpieces. Note that the temperature in the graphite
disk exceeds that of the tungsten ring, which is due to a lim-
ited radiation of the latter.

XII. CONCLUSIONS

A description has been given of a software package for the solu-
tion of coupled electromagnetic and heat dissipation problems.
One can simulate induction, dielectric, and hysteresis heating.
Movement of Workpiece or coil can be taken into account, as
well as Curie transitions, where use is made of an automated
time-stepping mechanism. With the general ‘Mammy’ design
concept for the generation of simulation packages, considerable
reduction of development time was achieved.
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Fig. 1: Potential contours for dielectric heating of a cylinder.
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Fig. 2: Asymmetric temperature profile (unit K) due to convection
at the left and radiation at the right side of the cylinder.
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Fig. 3: Magnetic flux lines for the heating of tungsten/graphite
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Fig. 4: Temperature profile in time for points in the two Work-

pieces.



