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An Efficient Time Domain Method for Nonlinear
Periodic Eddy Current Problems

Oszkar Bir6 and Kurt Preis

Institut fiir Grundlagen und Theorie der Elektrotechnik, Technische Universitit Graz, A-8010 Graz, Austria

A time-domain method is presented yielding the periodic steady-state solution of nonlinear eddy current problems without having to
step through the transient process. A novel technique is introduced which, under periodic conditions, in the linear case, decouples the
finite element equation systems written for different time steps. Thereupon, a fixed point method is used to iteratively solve the nonlinear
equations. The resulting procedure retains the decoupling property valid in the linear case, therefore, it suffices to step through one
period only. The efficiency of the method is illustrated by two two-dimensional examples.

Index Terms—Eddy currents, nonlinear equations, periodic functions, time-domain analysis.

I. INTRODUCTION

NE of the most challenging problems in computational

electromagnetics is the efficient computation of steady-
state solutions of nonlinear time-periodic problems. The most
straightforward treatment is the so called “brute force” method
of using time stepping technique starting from arbitrary (usually
zero) initial values (see, e.g., [1]). This may require stepping
through several periods and is, therefore, computationally ex-
pensive. An improvement can be achieved by using approximate
frequency domain techniques to estimate the initial value [2].
An important development is the time-periodic finite element
method which applies a special version of the Newton—Raphson
procedure [3]. Only time steps within one period are introduced,
and the number of unknowns in each linear system is just the
number of degrees of freedom at a time instant, but additional
iteration steps are necessary to enforce periodicity. It has also
been introduced in the analysis of three-dimensional (3-D) eddy
current problems [4]. A further frequently used method is based
on the idea of harmonic balance. An early finite element real-
ization is found in [5], and a 3-D eddy current application in [6].
The harmonics are coupled, therefore, additional iterations have
to be used to avoid having to solve for all harmonics simultane-
ously.

In this paper, a novel technique applicable in linear case
is introduced first which decouples the equations relating to
different time steps within one period with the periodicity en-
forced. Thereupon, a fixed point method inherently resembling
the linear case is used to solve the nonlinear system. This results
in computational costs corresponding to time stepping through
one period only, a potentially optimal solution.

II. PERIODIC LINEAR CASE

Applying finite element Galerkin techniques to any time do-
main formulation of linear eddy current problems results in a set
of ordinary differential equations

Sz(t) + Mi(t) = f(¢) 1)
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where ¢ is time, 2(t) is the vector of unknowns, 4(t) is its time
derivative, f(t) is aknown vector, and S and M are large, sparse
square matrices. The order of these vectors and matrices equals
the number of degrees of freedom. If the forcing vector is time
periodic with a period T, i.e., f(t) = f(¢t + T), then there
exists a periodic steady-state solution satisfying the periodicity
condition z(0) = z(T).

The time discretization of (1) within one period with a con-
stant time step At = T/N leads to N coupled simultaneous
linear equation systems

Azp + Bxg_1=b,, k=1,2,...,N 2)
where A and B are linear combinations of the matrices S and
M, by, is a linear combination of the known vectors f(kAt) and
f((k — 1)At), and 2, = z(kAt) is the vector of unknowns
at the kth time step. The steady-state periodic solution can be
obtained by enforcing the condition

o =IN- (3)

Multiplying the kth equation in (2) by e/~ D(k=1)27/N) j —
1,2,..., N and adding all equations results in /N uncoupled

)

equation systems
(A + ej(iil)%B) Yi; = Cqy

where

N
yi = Z ej(”fl)(ifl)%xn, i=1,2,...

n=1

N
cizzej("*”(i*”%bn, i=1,2,...,N.  (6)
n=1

The computational effort needed for the solution of the N equa-
tion systems in (4) is comparable to solving (2) for N time
steps (i.e., for one period only), with the slight complication
of having to use complex arithmetics. Once this has been car-
ried out, the time values zj, can be directly expressed from
the solutions y;. Indeed, multiplying the ith equation in (5) by

0018-9464/$20.00 © 2006 IEEE



696

e~ dG=DkE=1)m)/(N) | = 1,2, ..., N and adding all equa-
tions results in

N /N
Z <Z ej(il)(kn)%") T,
n=1 \i=1
N Iy
=3 e NER Y k=12, N (D)
i=1
Now, using the identities
—i(i=1)(k—n)3F
_J0o,
=N,

results in

-

e

1=1

ifn=1,2...k—1,k+1,...,N
ifn =k ®)

N
1 —i(i— —1)2=
oy = Z_le E=DE-DF k=12 N. (9

The desired time values of the solution z(¢) at the time in-
stants ¢, = kAt are hence simple linear combinations of the
solutions y; of the IV uncoupled equation systems in (4). In sum-
mary, the steady-state periodic solution of linear eddy current
problems with time periodic excitation can be solved at the cost
of time stepping through one period only.

III. PERIODIC NONLINEAR CASE
A. Flux Density Based Formulations

Let us first assume that the formulation leading to (1) is based
on the flux density, B. This is the case if B is described by the
magnetic vector potential, A. If the relationship between the
magnetic field intensity, H and B

H = H(B) (10)
is nonlinear, the matrix S in (1) and, hence, the matrices A and
B in (2) depend on x, so the Fourier block-diagonalization de-
scribed in the previous section does not work. In such a case,

it is advantageous to use a fixed point method to solve the non-
linear (2) (see, e.g., [7]). This means writing (10) as

H = vrpB — Mpp (11)
where vpp is an appropriate reluctivity independent of B and
MgEgp is a field dependent magnetization-like quantity. Starting
from an arbitrary Mpp, the fixed point method means updating
it at each iteration step. The value of the fixed point reluctivity
vpp can be chosen so that the method is convergent [7]. The
rate of convergence depends on the choice of the reluctivity, an
optimal value is given in [7]. Overrelaxation can substantially
accelerate convergence [7], [8].

Using the same value for vpp at every time step, the matrices
A and B in (2) are the same for all values of k, so that the block-
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Fig. 1. Flowchart of the proposed method.

diagonalization described in Section II can be applied at each
nonlinear iteration step. As a result, the computational effort is
comparable to time stepping through one period only.

B. Field Intensity Based Formulations

If the formulation leading to (1) is based on the magnetic field
intensity, H, e.g., when using the electric vector potential, T and
the magnetic scalar potential, ¢ to describe the magnetic field,
and the relationship between B and H

B =B(H) (12)
is nonlinear, then (1) has to be modified to
d
Salt) + 5 [Ma(0) = f (13)

with the matrix M depending on z(t). Hence, the matrices A
and B in (2) will depend on both =, and z;_1 and the block-di-
agonalization technique does not work, unless this dependence
is eliminated by a suitable choice of the nonlinear technique
employed. The fixed point method helps again. It involves re-
placing (12) by

B = urpH + Irp (14)
where ppp is a suitable permeability independent of H and Ipp
is a field dependent polarization-like quantity. Irp is updated at
each nonlinear iteration step. The value of upp can be chosen
to ensure the convergence of the method [7]. Techniques to ac-
celerate the convergence are discussed in [7] and [8].

If ppp is chosen to have the same value at each time step, then
the matrices A and B do not depend on x, or x_1 and, there-
fore, the Fourier block-diagonalization method of Section II is
valid for each nonlinear iteration step. Again, this means that
the computational effort necessary is about the same as that re-
quired if time stepping is employed through just one period.

The flowchart of the proposed method is shown in Fig. 1.



BIRO AND PREIS: AN EFFICIENT TIME DOMAIN METHOD

 Symmetry plane

B —

0720
50

v .

I

1

1

[}

[}

1

1

[}

!

1

i 120 20
i

1

[}

[}

I

1

s W
i 50 10
I

Fig. 2. Aluminum conductor (¢ = 3.5107 S/m) with a sinusoidal voltage of
0.66 V/m peak, 50 Hz parallel to a steel wall (¢ = 1.0 x 107 S/m).
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Fig. 3. B-H curve of ferromagnetic wall and of ferromagnetic screen.

IV. NUMERICAL EXAMPLES

A. Conductor Near Conducting Ferromagnetic Wall

This two-dimensional (2-D) example involves an aluminum
conductor with given sinusoidal voltage parallel to a saturated
ferromagnetic wall (Fig. 2). The nonlinear B—H curve of the
wall is shown in Fig. 3. The problem has been solved by the
“brute force” method with six periods stepped through, practi-
cally arriving at the steady-state solution. One period has been
discretized in 20 time steps. The nonlinear equations have been
solved using a robust direct iteration technique [1] until the
mean relative variation of the reluctivity over the Gaussian in-
tegration points fell below 0.1% and the maximal relative vari-
ation below 1%. The number of linear equation systems to be
solved is 1139. The time variation of the total current through
the ferromagnetic wall is shown in Fig. 4.

Using the present method, the same stopping criterion for the
nonlinear iterations has been applied as in the step-by-step ap-
proach. No overrelaxation has been employed, the value of the
relative permeability corresponding to vpp has been taken to be
490. No more than 210 linear equation systems had to be solved
to step through the 20 time steps. The resulting current is shown
in Fig. 5 to coincide with the current in the sixth period com-
puted by the “brute force” method.
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Fig. 4. Total current through ferromagnetic wall by time stepping.
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Fig. 5. Comparison of total current through ferromagnetic wall by present
method and by step-by-step method.

B. Conductor Shielded by Conducting Ferromagnetic Screen

A second 2-D example comprises a copper conductor with
a given sinusoidal voltage within a conducting ferromagnetic
screen (Fig. 6). The B—H curve of the screen is again the one
shown in Fig. 3. Due to the much larger time constant of the
transients, the “brute force” method has required 60 periods to
be stepped through in order to practically arrive at steady-state.
Each period has again been discretized in 20 time steps. The
stopping criterion of the nonlinear direct iterations according
to [1] has been 0.1% for the mean relative variation of the re-
luctivity in the integration points and 1% for the maximal rela-
tive variation. All in all, 19 058 linear equations have had to be
solved. The time variation of the current in the copper conductor
is shown in Fig. 7.

The stopping criterion for the nonlinear fixed point iterations
of the paper has been the same as in the brute force method.
Again, no overrelaxation has been used and the relative perme-
ability corresponding to vpp has been chosen to be 450. The
number of linear equations to be solved turned out to be 980
for the 20 time-steps. The resulting current in the conductor is
compared with the time variation in the 60th period obtained by
time-stepping in Fig. 8. Notice that the current by the brute force
method after 60 periods still has a slightly visible dc component.
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Fig. 6. Copper conductor (¢ = 5.7 107 S/m) with a sinusoidal voltage of
1.4 V/m peak, 50 Hz within a conducting ferromagnetic screen (o = 1.0 x 106
S/m).
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Fig. 7. Conductor current obtained by stepping through 60 periods.

V. CONCLUSION

The computational effort of the method introduced is compa-
rable to that needed for time-stepping through one period. The
necessity of using complex arithmetics is offset by the fact that
the system matrix of the fixed point method is the same at each
nonlinear iteration step. If the linear equations are solved by a
direct method (as usual in 2-D problems), the decomposition has
to be carried out just once. If iterative techniques are employed
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Fig. 8. Comparison of conductor current by present method and by
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(as in 3-D problems), the equations in (4) can be solved parallel
for each time step.
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