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Abstract -- A 3D package has been developed to compute the 
transverse flux induction heating of flat products. It eontalns 
two vector potential formulations of the electromagnetic 
equations and a thermal equation. All these 3D equations are 
solved by F.E.M.. Numerlcal results are compared to 
experimental measurements on an industrial-scale prototype. 

I. INTRODUCTION 

A transverse flux induction heating device is an 
electromagnetic device with a travelling load at constant 
velocity, where magneto-dynamic and heat transfer 
phenomena occur. Transverse flux induction is used to heat 
very thin strips of non-magnetic conductive material, such as 
aluminium. The source currents induce eddy currents which 
heat the strip by Joule’s effect (Fig. 1). Resultant heating is 
uniform except on the load borders, where under-heating (or 
over-heating) can occur as the strip is larger (or narrower) 
than the inductor (Fig. 2). 

Fig. 1. Transverse flux indudon heating device. 

An indusaial-scale prototype of inductor has been built at 
MADYLAM laboratory. The device is one meter high and is 
placed vertically. A five-meter high frame supports the 
inductors and the rollers which maintain the strip in place 
(Fig. 3). As it can be seen in Fig. 1 and Fig. 2, transverse flux 
induction heating devices have a true tridimensional 
geometry. For this reason, in order to compute transverse flux 
induction heating, a 3D F.E. package has been made that 
would be of great help to the designer. 

The numerical results of this package have been compared 
to the experimental measurements made on the MADYLAM 
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Fig. 2 The drawing of eddy aulult lines 
a) The strip is larger than the induaor. including coil heads. 

b) The strip is narrower than the yoke of the inductor. 
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Fig. 3. Genelll view of the st”lc showing how the atrip md the inductor 
a n  held in pincc 

prototype. The measurements which were carried out lead to : 
- a map of the 3 components of the induction field -bp in the 

air gap between the strip and one half of the inductor (Fig. 4). 
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Fig. 4. Induction field measuTements location. 

- a map of the temperature on the smp travelling into the 
inductor (Fig. 5). 
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Fig. 5. Strip temperature measurements location. 

Fig. 6 shows a good agreement between computed and 
experimental induction fields [I]. in the case of an aluminium 
strip, which receives 5.27 kW power density at 1050 Hz 
working frequency, with an inductor gap of 10 cm wide. 

This paper presents, at first, the 3D F.E. package and then 
validition of the numerical the experimental thermal 

modelling. 

n. THE 3D FINITE ELEMENT PACKAGE 

The electromagnetic field and thermal coupled problems 
have been taken into account. Two formulations for the 
electromagnetic equations have been used : one with the 
modified vector potential and the other with (z,v), where 
2 is the vector potential and the scalar potential @ is a time 
derivative of v [2], the gauge is Coulomb's. Complex 
.numbers are used for time treatment. Laplace eddy currents, 
a??x 9' are neglected, where Q is the elecmcai conductivity. 
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Fig. 6. Induction field along the vertical facing the coil heads. 

The heat transfer equation, with a travelling load at 
constant velocity d, expresses the steady state in the 

inductor referential. The thermal power density in the load 
proceeds from Joule's losses. Since the electromagnetic 
properties are not strongly temperature dependent in the 
studied process, it is not necessary to solve the two equations 
simultaneously. From the solution of the electromagnetic 
equation, the thermal power density can be deduced. Then, 
solving the heat transfer equation, gives the temperature map 
in the strip. Both equations have been soived with nodal 
elements and 2nd order Lagrange polynomials as shape 
functions. The package has been realised with FLUX 
EXPERT [3]. 

It is well known that nodal elements with second order 
Lagrange polynomials do not insure the conservation of eddy 
currents in the modified vector potential formulation, even if 
the condition div$ = 0 is imposed by penalization in the 
induction equation [4]. Eddy currents are better conserved by 
@.v) formulation than by a @ formulation. 

The variational formulation for the modified vector 
potential equation is: 

The variational formulation for @,v) equation is : 

The variational formulation for the heat transfer equation 
is: 

Nomenclature 

$ : modifiedvectorpotential 
i?,@ : 4 vector potential - scalar and vector - 

: time primitive of 0 'i : eddy currents density 
&!x : complex electrical source density 
Q : electrical conductivity 
U, : relative reluctivity 
up : penaltycoefficient 
o : electrical angular frequency 
j : complex number, j2 = - 1 
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T : temperature 
T ,  : ambienttemperature 
p : volumicmass 
C : calorifkcapacity 
k : thermalconductivity 
d : load velocity 
8 

: conjugate of a complexe number 
: normalvector 
: vector basis functions for Galerkin's projection 
: basis functions for Galerkin's projection 

: basis functions for Galerkin's projection 

111. El[PERIMENTAL THERMAL VALIDATION 

A.  Modified vector potential in conductive regions 

Using .@ to compute eddy currents may seem audacious. 
However, there are some cases in which the modified vector 
potential is suitable. The inconvenience of @, when it is 
used with nodal elements and second order Lagrange 
polynomials, is that it does not allow normal discontinuity of 
the electric field I? at the boundary between regions of 
different electric conductivities, since 'E' = - j d .  Therefore, 
it can be used if there is no problem of discontinuity of 
2.2. For instance, when the nearby eddy currents are 
parallel to the boundary between regions of different electric 
conductivities, or when there are no eddy currents near this 
boundary, it is judicious to choose the modified vector 
potential as it leads to only 3 complex components per node, 
versus 4 with the formulation (2,~). 

Fig. 7 refers to the heating of an aluminium strip which is 
much larger than the inductor, at a frequency of 300 Hz. It is 
in good agreement with another numerical simulation where 
the electric field is computed by a hybrid finite element- 
boundary integral method. The finite elements are Whitney 
edge elements and the mesh is made of tetrahedra [5] [6]. 

Fig. 8 relates the comparison between experimental 
measurements on the inductor prototype of MADYLAM 
laboratory, in the case where the aluminium strip is larger 
than the inductor, at a frequency of 1500 Hz, and numerical 
results of the two formulations and @,v) coupled with 
the thermal problem. Both formulations predict an under- 
heating on the border of the strip. 

These two examples demonstrate that the A? formulation 
can be used when there are no normal eddy currents near the 
edge of the strip, and it is worth choosing this formulation in 
order to save memory. 

B .  Using (2,v)formuiation 

Figure 7 : The strip is much er lhan the inductor. 
a) Monopale inductor geometry. &%de logs density on the rtrip. 
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Figure 8 : Rise. in temperature when the strip cros(~es half plc 
The strip is larger than the inductor. 
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However, when eddy currents come normal to the interface 
of two regions with different conductivities, the ,@ 
formulation should not be used, as it imposes on the electric 
field, a normal continuity which must not exist. In that case, 
the (2,") formulation has been chosen to simulate transverse 
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Figure 9 : Rise in temperature when h e  strip crosses half pole. 
The strip is narrower than the inductor. 



flux induction heating of strips which are narrower than the 
inductor. Numerical and experimental results are shown in 
Fig. 9, with an aluminium strip, at a frequency of 1500 Hz. In 
spite of a satisfactory agreement, they pointed out a third 
problem : the existence of bifurcation points. 

IV. BIFURCATION POINTS 

When the strip is narrower than the inductor, the source 
currents force the eddy currents to follow them, so the eddy 
currents come normal to the border of the strip. As they can't 
go out of the strip, they have to comer sharply very close to 
the border. But they have the choice to turn right or left hand. 
In fact, the layer of currents divides into two equal parts. As 
Fig. 10 shows it, point P is singular, it is a bifurcation point. 
There are bifurcation points on the border of the strip, facing 
every side of each pole, if the inductor is larger than the load. 

Special attention should be paid to computing eddy 
currents at those points. The current density vector, which is 
parallel to Oy at node 2, must be parallel to the border (Ox) 
at node 4. Which direction has this vector on node 3 (Fig. 
11) ? The answer to this question should take into account the 
conservation of the currents, and must avoid a loss of 
computed power in the neighbourhood of point P, because it 
is in that region that the tightening of the current lines 
produces a maximum of thermal power density, which is 
responsible for the over-heating of the border of the s&p. 

The problem comes from the strong decrease of the values 
of the y-component of the eddy current density vector, 
between nodes 1 and 3, and from the strong increase of its x- 
component value, between nodes 3 and 5. As thermal power 
density proceeds from the interpolation of J' between the 
electromagnetic mesh and the thermal mesh, those variations 
produce a numerical loss of power on the border of the strip. 

Decreasing the size of the meshes would be a solution. In 
spite of the use of 22572 unknowns, the problem of the 
bifurcation point produces numerical oscillation in this area, 
even with the @,Y> formulation. The matrix was ill- 
conditionned for each formulation. Further it is non 
symmetric for the @ formulation, because it is necessary to 
impose the condition @.7?=0 on the boundary between the 
load and the air gap, to insure the conservation of eddy 
currents there. This condition is set as a boundary condition 
and turns out to break the matrix symmetry. 

CONCLUSION 

The 3D FE package which is presented in this paper can be 
useful for designing transverse flux induction heating 
devices. Two formulations are proposed. The @ formulation 
is to be used when the normal discontinuity of the electric 
field is weak at the edge of the load. The (2 ,~)  formulation 
will be used for strong discontinuities, that is when the strip 
is narrower than the inductor. In fact the (2,~) formulation 
can be used in every case, but the@ formulation lcads to 

fewer unknowns per node. 
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Figure IO : A bifurcation point 1 I I 
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Figure 1 1  : The eddy current density vector in an element with a point P 
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