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Power Dissipation and Magnetic
Forces on MAGLEV Rebars

Markus Zahn,Fellow, IEEE

Abstract—Concrete guideways for proposed MAGLEV vehicles
may be reinforced with electrically conducting and magnetizable
steel rebars. Transient magnetic fields due to passing MAGLEV
vehicles will then induce transient currents in the rebars leading
to power dissipation and temperature rise as well as Lorentz
and magnetization forces on the rebars. In order to evaluate
if this heating and force on the rebars affects concrete life
and performance, analysis is presented for an infinitely long
conducting and magnetizable cylinder in imposed uniform axial
or transverse magnetic fields. Exact and approximate solutions
are presented for sinusoidal steady state and step transient
magnetic fields inside and outside the cylinder, the induced
current density, the vector potential for transverse magnetic
fields, the time average dissipated power in the sinusoidal steady
state, and the total energy dissipated for step transients. Forces
are approximately calculated for imposed magnetic fields with a
weak spatial gradient. The analysis is applied to representative
rebar materials.

Index Terms—Eddy currents, MAGLEV, magnetic fields, mag-
netic forces, rebars.

I. BACKGROUND

CONCRETE guideways for proposed MAGLEV vehicles
may be typically reinforced with steel rebars which are

electrically conducting and magnetizable. In the presence of
transient magnetic fields due to passing MAGLEV vehicles,
transient currents will be induced in the rebars leading to
electrical power dissipation and local temperature rise. The
induced currents in the presence of a time-varying magnetic
field will also cause a transient Lorentz force on the rebar
in the direction of weaker magnetic field and thus in the
direction away from the vehicle. If the rebar is magnetizable,
there is also a magnetization force in the direction of stronger
magnetic field and thus in the direction toward the vehicle.
The relative strength of these opposing forces are time varying
and depend on the magnetic permeability of the rebar, the skin
depth, the magnetic diffusion time, the magnetic-field gradient,
and the bar radius. The heating and transverse force make
it necessary to study if the concrete strength is maintained
over the usual life in the presence of time-varying magnetic
fields. In order to develop engineering guidelines, the rebar
magnetic problem is idealized by considering an infinitely
long cylinder with constant ohmic conductivity and constant
magnetic permeability with the imposed magnetic field having
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Fig. 1. A cylinder of radiusR, ohmic conductivity�, and magnetic perme-
ability � is placed in a uniform magnetic field that is either parallel(Ho

~iz)
or transverse(Ho

~ix) to thez directed cylinder axis and varies sinusoidally
with time at angular frequency!.

at most a weak gradient, so that the magnetic-field distribution
can be taken as if the imposed field was uniform. The gradient
field analysis is necessary to calculate the force on the rebar
due to field gradients. In a purely uniform magnetic field,
there is no net force on the rebar due either to the Lorentz
force on the induced currents or to magnetization. The analysis
separately considers the imposed magnetic field to be purely
axial or purely transverse to the cylinder axis as shown in
Fig. 1. The analysis separately considers the sinusoidal steady
state, applicable when many sinusoidal cycles occur, and to
step time transients. The analysis is specifically applied to the
representative rebar materials listed in Table I.

II. GOVERNING MAGNETOQUASISTATIC EQUATIONS

A. Maxwell’s Equations

Maxwell’s field equations in the magnetoquasistatic limit for
a material with constant magnetic permeabilityand constant
ohmic conductivity are [1, p. 437]

(Faraday’s Law) (1)

(Ampere’s Law with Ohmic Conduction) (2)

(Gauss’s Law). (3)

0018–9464/97$10.00 1997 IEEE
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TABLE I
ELECTRICAL PROPERTIES,REPRESENTATIVE SKIN-DEPTH � = 2=(!��) AT 60 Hz, AND REPRESENTATIVE

MAGNETIC DIFFUSION TIME � = ��R2 WITH R = 1 cm OF VARIOUS METALS AT 20�C

These can be combined into diffusion equations for the mag-
netic field or the current density

(4)

(5)

B. Boundary Conditions

Boundary conditions at interfaces of dissimilar materials are
the continuity of tangential

(6)

and continuity of normal

(7)

C. Dissipated Power

The instantaneous power dissipated per unit axial length,,
in the lossy cylinder of radius is

(8)

D. Force Per Unit Axial Length

1) Lorentz Force: The magnetic force per unit axial length
on the cylinder due to the Lorentz force on the induced currents
in the magnetic field is

(9)

2) Magnetization Force:The magnetization force on lin-
ear magnetizable material with magnetic permeability that
depends on space is

(10)

We separately write terms of tangential and normal at
the cylindrical interface at because in the problems to

be treated here, the magnetic permeability is uniform within a
cylinder and within the surrounding free space. The magnetic
permeability varies with position only as a step when crossing
the interface where the tangential components of

, and are continuous, while the normal component of
, is continuous. Since the magnetic permeability is constant

everywhere except at the interface where and
take steps, we have that

(11)

(12)

The spatial impulse at , indicates that the
magnetization force is a surface force. With and
continuous through the interface, (10) reduces to

(13)

where it was convenient to replace the radial unit vectorby
its Cartesian components to explicitly show thedependence
of . If is an even power trigonometric function
of , the integration of (13) is zero. This will be the case if the
applied magnetic field, whether axial or transverse, is uniform.
To approximate a realistic magnetic field configuration with a
slight nonuniformity over the cylinder, we take the applied
magnetic field to be of the form

(14)

where is a measure of the magnetic-field gradient. The
magnetic field is at and is
at . With positive, the field is bigger for positive

than for negative . If , the magnetic field and current
density solutions are approximately correct if the imposed
uniform field is replaced by (14). For our numerical case
studies we take , corresponding to a maximum of

10% magnetic-field variation at the left and right hand
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cylinder edges compared to the top and bottom of the cylinder
at in Fig. 1.

III. A XIAL MAGNETIC FIELD IN

THE SINUSOIDAL STEADY STATE

A. Exact Solutions for Magnetic Field and Current Density

With an applied uniform axial magnetic field in the
direction varying sinusoidally in time with angular frequency

, as shown in Fig. 1, the total magnetic field within the
cylinder remains purely directed and is of the form

(15)

The diffusion equation of (4) then becomes

(16)

Defining the skin depth as

(17)

(16) is Bessel’s equation [2, Sec. 4.8–4.10], [3]

(18)

with solutions that satisfy the boundary condition

(19)

as

(20)

The current density is obtained from Ampere’s law as

(21)

B. Exact Solution for Dissipated Power Per Unit Length

The time average power dissipation per unit length after
integrating over in (8) is then

(22)

The last integral is a Lommel integral [3, pp. 102–104], [4,
Appendix B], [5, p. 199] which is exactly integrable

(23)

For our problem so that (22) reduces to

(24)

C. Nondimensional Solutions

It is convenient to use dimensionless variables by normal-
izing all variables to the applied magnetic field amplitude
and to the cylinder radius

(25)

so that the solutions of (20) and (21) are

(26)

(27)

For the magnetic field is fairly uniform over the cylinder
cross section, and the current density is approximately linear
with radius with peak amplitude at . As becomes much
less than unity, the magnetic field and current density decrease
exponentially from with penetration depth about equal
to . As becomes small, the current density becomes very
large at approaching a surface current as .

The nondimensional power per unit length from (24) is

(28)

Fig. 2 plots the nondimensional dissipated power per unit
length in (28) versus nondimensional skin depth, .
Fig. 3 applies (24) to the materials in Table I and plots
dimensional dissipated power per unit length versus frequency

in hertz, , for a representative cylinder radius of
cm with an applied peak magnetic field strength of

T.

D. Force Per Unit Length

1) Lorentz Force Per Unit Length:In a perfectly uniform
applied field, the Lorentz force of (9) would integrate to zero.
We thus assume that the applied magnetic field has the slight
nonuniformity over the cylinder given by (14). The Lorentz
volume force density [Nm ] is

(29)

where we convert to Cartesian coordinates to explicitly show
the dependence of . Substituting (29) into (9) gives the time
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Fig. 2. Nondimensional dissipated power of (28),h ~P i = hP i�=[�jĤoj2],
versus nondimensional skin depth,~� = �=R, in a lossy magnetizable cylinder
placed in a uniform axial magnetic field.

Fig. 3. Dimensional dissipated power per unit length (W/m) of (24) for
an axial magnetic field versus frequency in hertz for materials in Table I
for representative radiusR = 1:0 cm with peak magnetic field strength
j�oĤoj = 0:5 T.

average Lorentz force per unit length as purely directed
, in the direction of weak magnetic field

(30)

It is also convenient to nondimensionalize all forces per unit
length as

(31)

Fig. 4. Magnitude of nondimensional�y directed Lorentz force per unit
length of (32),h ~fLyi = hfLyi=[�a�RjĤoj2], versus nondimensional skin
depth,~� = �=R, of a lossy magnetizable cylinder placed in a uniform axial
magnetic field.

so that (30) becomes

(32)

The integration over is done numerically and gives the
nondimensional plot in Fig. 4.

E. Magnetization Force Per Unit Length

The time average of the magnetization force in (13) with
the weak gradient magnetic field of (14) is

(33)

which has and

(34)

Fig. 5 plots the magnitude of the dimensionalcomponent
of the total time average force per unit axial length,

, versus frequency for materials in Table I taking
to be 1.0 cm, , and T. Note that

for nonmagnetic materials and for magnetic steel materials at
high frequency when the Lorentz force dominates, the force
is always directed, that is, in the direction of decreasing
magnetic field. For magnetic steel materials, the force is
directed at low frequencies due to the cylinder magnetization
being attracted to strong magnetic field regions. The dips in
the force curves of magnetizable steels show the force passing
through zero as it reverses sign on the log-log plots.

F. Approximate Limits

It is clear from the breakpoints in dissipated power and
force plots of Figs. 2–5 that the solutions have approximate
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Fig. 5. Magnitude of the total dimensional force per unit length (N/m) in
the y direction versus frequency in hertz due to the sum of Lorentz and
magnetization forces of (30) and (34) from an axial magnetic field with a
weak gradient,a = 0:1, in the y direction given by (14) for representative
radiusR = 1:0 cm with peak magnetic field strength ofj�oĤoj = 0:5 T.

limiting expressions for skin depth large or small compared
to cylinder radius.

1) Small Skin Depth Limit, : When , the
zero and first order Bessel functions approximately reduce to
[2, Sec. 4.9]

(35)

Then the dimensional and nondimensional magnetic field and
current density distributions approximately reduce to

(36)

The dimensional and nondimensional time average dissipated
power per unit length and time average total force per unit
length in the weak gradient magnetic field of (14) are then

(37)

(38)

To approximately verify (37) we realize that for small skin
depth, all the current is approximately confined to a skin

depth thick layer at the surface. With the magnetic
field at equal to dropping to approximately zero
within the small distance from the interface, the effective
surface current density, which equals the discontinuity in
tangential at the interface, is . Then the volume
current density magnitude within this skin depth thick layer is

. The time average power dissipated
per unit length is then approximately

(39)

in agreement with (37).
Similarly, (38) can be verified by approximately computing

the Lorentz force on the surface current in the weak gradient
magnetic field of (14)

(40)

When (40) is added to the magnetization force of (34), the
total time average force per unit length agrees with (38).

2) Large Skin Depth Limit, : When , the
zero and first order Bessel functions approximately reduce to
[2, Sec. 4.8]

(41)

It is necessary to expand to order in order to properly
calculate the first order force per unit axial length which varies
as , as in some cases the higher order terms integrate to
zero. The dimensional and nondimensional magnetic field and
current density distributions then reduce to

(42)

(43)
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The approximate dimensional and nondimensional power per
unit length and force per unit length in a weak gradient
magnetic field are then

(44)

(45)

These results can also be checked with a simple approximate
model. If the skin depth is much larger than the cylinder radius,
the internal magnetic field approximately equals the imposed
field, , and the induced magnetic field due to
induced eddy currents is small. Applying the integral form of
Faraday’s Law to a circular contour of radiusapproximately
gives

(46)

which can be solved for the induced current density as

(47)

which approximately agrees with the predominant term in (43).
The time average power dissipated per unit length is then

(48)

in agreement with (44). Note that the time average of the
Lorentz force density term of (29), , would be zero
using (47). This is why higher order terms are needed in (42)
and (43).

IV. TRANSVERSE MAGNETIC FIELD

IN THE SINUSOIDAL STEADY STATE

A. Exact Solution for Magnetic Field and Current Density

Fig. 1 also shows a uniform transverse magnetic field in the
direction varying sinusoidally in time with angular frequency
. The resulting magnetic field then hasand components

while the induced current has only acomponent. Because
the direction of varies with position, the vector Laplacian in
cylindrical coordinates in (4) is different and more complicated
than the scalar Laplacian. However, with the direction of
constant with position the vector Laplacian in (5) equals the
simpler scalar Laplacian, so we choose to solve (5) for the

Fig. 6. Magnetic field lines of (58) witĥHo real at various values of!t
given at upper left during the sinusoidal cycle for~� = 0:5 and�=�o = 1.

Fig. 7. Magnetic-field lines of (58) witĥHo real at various values of!t
given at upper left during the sinusoidal cycle for~� = 0:5 and�=�o = 3800.

current density. We take the current density to be of the form

(49)

so that (5) becomes

(50)

with solution of the form

(51)

where is a complex constant to be determined from bound-
ary conditions. The magnetic-field distribution inside the cylin-
der is found from (51) using Faraday’s law of (1)

(52)

while outside the cylinder the magnetic field is the uniform
applied field plus a line dipole field due to the induced current
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which results from solutions to Laplace’s equation for a scalar
magnetic potential or a directed vector potential, as shown in
(53) at the bottom of the next page, whereand are found
from the boundary conditions of continuity of tangential
and normal at

(54)

The general solutions for the constants and are
shown in (55) and (56), found at the bottom of the page.
Note that for and greatly simplify,

and
.

B. Magnetic-Field Lines

The magnetic-field lines at any instant of time are the lines
of constant magnetic vector potential defined as

(57)

The vector potential is then obtained from (53) as

(58)

Figs. 6–7 take to be real and plot the magnetic-field lines
at various times during the sinusoidal cycle for and
values of and as representative for
nonmagnetic and magnetic materials in Table I. Self-magnetic
field contributions due to the induced current result in closed
magnetic-field lines that do not terminate at . This is
most easily seen at when the applied magnetic field
is instantaneously zero.

Fig. 8. Nondimensional dissipated power from (59),h ~P i = hP i�=�j ^Hoj2;
versus nondimensional skin depth,~� = �=R, and magnetic permeability in a
lossy magnetizable cylinder placed in a uniform transverse magnetic field.

C. Exact Solution for Dissipated Power Per Unit Length

The time average power dissipation per unit length is

(59)
where we use the Lommel integral formula of (23) with .
Note that for , the dissipated power in (59) for a
transverse magnetic field is twice that for an axial magnetic
field given by (24). Using the nondimensional definitions of
(25), Fig. 8 plots (59) versus for various values
of , while Fig. 9 plots the dimensional dissipated power
per unit length versus frequency for materials in Table I for
representative cylinder radius cm with a peak applied
magnetic field strength of T.

D. Force Per Unit Length

1) Lorentz Force Per Unit Length:For the Lorentz force
density, it is convenient to write cylindrical unit vectors in

(53)

(55)

(56)
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Fig. 9. Dimensional dissipated power per unit length (W/m) of (59) in a
transverse magnetic field versus frequency in Hertz for materials in Table
I for representative radiusR = 1:0 cm and peak magnetic field strength
j�oĤoj = 0:5 T.

Fig. 10. Magnitude of the nondimensional�y directed Lorentz force per
unit length of (61),h ~fLyi = hfLyi=[�a�RjĤoj2], versus nondimensional
skin depth, ~� = �=R, for various magnetic permeabilities of a lossy
magnetizable cylinder placed in a uniform transverse magnetic field.

terms of Cartesian unit vectors

(60)

The total Lorentz force per unit length is obtained from (9)
by integrating (60) over the cylinder cross sectional area.
Again using the weak-gradient approximation of (14), the
nondimensional time average Lorentz force per unit length
becomes after integration over

(61)

Evaluating by numerical integration for various values of
, we find the Lorentz force is directed with positive

and varies with frequency as shown in Fig. 10.

E. Magnetization Force Per Unit Length

The time average magnetization force per unit length is
obtained by substituting (53), (55), and (56) into (13) to yield

Fig. 11. Magnitude of the nondimensional+y directed magnetization force
per unit length of (62),h ~fMyi = hfMyi=[�a�RjĤoj2], versus nondimen-
sional skin depth,~� = �=R, for various magnetic permeabilities of a lossy
magnetizable cylinder placed in a uniform transverse magnetic field.

and

(62)

where . This directed
nondimensional magnetization force is plotted versus in
Fig. 11.

Fig. 12 shows the magnitude of the sum of nondimensional
Lorentz and magnetization forces.

The total dimensional magnetic force per unit axial length is
plotted versus frequency in Fig. 13 for materials in Table I for
representative radius of cm in a peak magnetic field
of T with weak gradient parameter
Note that for the nonmagnetic materials, the total force is
due only to the Lorentz force and is directed, that is
in the direction of decreasing magnetic field, while for the
magnetizable steels the force is directed at low frequencies
where the magnetization force dominates and isdirected
at high frequencies where the Lorentz force dominates.

F. Approximate Limits

We again see breakpoints in the plots of Figs. 8–13.
1) Small Skin Depth Limit, : Using the approxi-

mate small skin depth Bessel function approximations in (35),
approximate forms for the nondimensional transverse field
solutions can be found. However, because some of the Bessel
function terms in (55)–(56) are divided by which can
be very large for ferromagnetic materials, it is necessary to
expand some terms to higher powers of. The effects of large
magnetic permeability can be seen in Figs. 8 and 10 where
the transition from small to large skin depth limits becomes
less sharp as becomes larger. The approximate solutions
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Fig. 12. Magnitude of the sum of nondimensional�y directed Lorentz
force per unit length and+y directed magnetization force per unit length,
h ~fLyi + h ~fMyi = hfLy + fMyi=[�a�RjĤoj2] of (61) and (62), versus
nondimensional skin depth,~� = �=R, for various magnetic permeabilities of
a lossy magnetizable cylinder placed in a uniform transverse magnetic field.

Fig. 13. Magnitude of the total dimensional force per unit length (N/m) in
the y direction from (61) and (62) versus frequency in hertz due to the sum
of Lorentz and magnetization forces from a transverse magnetic field for
materials in Table I with a weak gradient magnetic field in they direction,
a = 0:1, for representative radiusR = 1:0 cm, with peak magnetic field
strength ofj�oĤoj = 0:5 T.

are then

(63)

We can approximately check these results by realizing that for
small skin depth, the magnetic field just outside the cylinder
is approximately the same as if the cylinder were perfectly
conducting. Then the predominant magnetic field should be
tangential

(64)

and the current density is

(65)

The time average dissipated power unit length is then

(66)
in agreement with the dominant power term in (63).

Similarly, the time average Lorentz force per unit length
with an effective surface current at , is

(67)

Then on the time average, using the weak gradient expression
of (14) with (64)

(68)

in agreement with the predominant term in (63).
1) Large Skin Depth Limit, : Using the approxi-

mate large skin depth relations in (41), the nondimensional
transverse field solutions approximately reduce to
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(69)

These results can be checked by realizing that when
the predominant magnetic field in the cylinder is

, with negligible contribution from the induced current.
Then applying the integral form of Faraday’s law to a
directed rectangular contour atand angles and we
obtain

(70)

which is the dominant current density term in (69). The time
average dissipated power per unit axial length is then

(71)

in agreement with the power in (69). Note again that using
(70) in the time average directed Lorentz force density term

gives zero force. This is why higher order terms
in the magnetic field and current density are needed in (69).

V. STEP CHANGE IN AXIAL MAGNETIC FIELD

A. Turn-On Transient

We now consider an axial magnetic field that is instanta-
neously stepped on at time to an amplitude . The
magnetic field in the cylinder is also axially directed for all
time and can be expressed in the form

(72)

where we recognize that in the steady state, , the
magnetic field in the cylinder approaches the applied magnetic

field . The magnetic field diffusion rate is not yet known.
Substituting the assumed form of solution of (72) into the
magnetic diffusion equation of (4) gives

(73)

with solution that is finite at

(74)

At , the tangential component of must be continuous
so that , which then requires that

This requires that

(75)

where is the th zero of the zeroth order Bessel function,
, for which the first 20 values are given in the left

most column of Table II.
Thus, there are an infinite number of’s, and we can write

the most general form of solution as

(76)

where

(77)

To find the amplitudes , we use the initial condition at
that the magnetic field in the cylinder is zero

(78)

Using the orthogonality condition for Bessel functions that [6,
p. 485]

(79)
we solve (78) for as

(80)

so that the magnetic field and current density are

(81)

where is a representative magnetic diffusion time.
The steady-state uniform magnetic field in the cylinder is
approximately reached for as the induced current
density becomes small. At early times, , the current
density is largest near the interface, , as the initial
surface current at , diffuses into the cylinder.

The dissipated power per unit length is then

(82)
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TABLE II
ROOTS TO THE MODAL EQUATION FROM (108): �o�nJo(�n) + (� � �o)J1(�n) = 0

A general Bessel function orthogonality relation that extends
(79) is [6, p. 485]

(83)

where and are positive zeros of

(84)

with and real constants. Note that (79) is obtained for
with . To evaluate (82) we must integrate the

square of the infinite series of first order Bessel functions with
parameters that are the zeros of the zeroth order Bessel
function. Expanding the square of the infinite series in (82)
term by term results in integrals like that on the left side of
(83) with . Recognizing that

(85)

lets us rewrite (84) with as

(86)

If we set , then (86) reduces to finding the zeros of the
zeroth order Bessel function, which are thein the left-most
column of Table II. Thus with and , (83) reduces to

(87)

Applying (87) to (82) gives

(88)

and the total dissipated energy per unit length is

(89)

Using the left-most values of in Table II, we obtain
. The magnetization and Lorentz forces per

unit length for a slightly nonuniform magnetic field as given
by (14) are obtained from (9) and (13) as

(90)

(91)

To evaluate (91) it is necessary to take a sufficient number of
terms in the infinite series so that the remaining terms give
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Fig. 14. The nondimensional Lorentz force,fLy=(4�a�RH2

o ), versust=�
using the first 20 terms in the series expressions for a step imposed axial
magnetic field of time durationT . The Lorentz force for the step turn on
transient in the time interval0 < t < T of (91) is shown as the negative
force. The Lorentz force during the turn off transient fort > T is shown
as the stepped positive forces for various values ofT=� and is obtained by
substituting (96) and (97) into the top expression of (91).

a negligible contribution and then numerically integrate over
. The result is shown in Fig. 14 which plots the negative

nondimensional Lorentz force of (91) versus nondimensional
time using the first 20 terms in the series. The force becomes
negligibly small for .

B. Turn-Off Transient

After a time , the magnetic field is turned off. The initial
and boundary conditions are then

(92)

For we thus take a solution of the form

(93)

where the steady-state magnetic field ( ) is zero. The
solution form is again given by (74) and (75)

(94)

The amplitudes are found using (92) and the orthogonal
Bessel function relations of (79)

(95)

The magnetic field and current density for are then

(96)

(97)

At , the magnetic field amplitude instantaneously
drops from to zero, causing a surface current in the
opposite direction to the volume current flowing just before
the magnetic field was turned off. This surface current then
diffuses into the cylinder as a volume current, decreasing to
near zero in a time of order.

The dissipated power and dissipated energy per unit length
are then

(98)

(99)

This dissipated energy per unit length includes contributions
from the turn on of the magnetic field at and from
the turn off of the magnetic field at time. This dissipated
energy per unit length is plotted versus in Fig. 15. Note
that as becomes greater than one, the dissipated energy
approaches , which is twice that computed
for the stepped on field with . Thus for , as
much energy is dissipated in turning on the magnetic field as
for turning off the magnetic field.

The magnetization force is zero for as the magnetic
field at the interface is zero. The Lorentz force for

is shown as the stepped positive forces in Fig. 14 by
substituting the magnetic field and current density of (96) and
(97) into the top expression of (91).

VI. STEP CHANGE IN TRANSVERSEMAGNETIC FIELD

A. General Solutions

A transverse directed electric field is instantaneously
stepped on at time to an amplitude . The solutions
have a steady-state part and a transient part that dies out with
time. The steady-state current density is zero so the general
form for the current density is

(100)
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Fig. 15. Nondimensional dissipated energyW=(4��H2

o
R2) from (99) for

a stepped on axial magnetic field of durationT as a function ofT=� .

which when substituted into (5) gives

(101)

The general product solution that is finite at is

(102)

However, the uniform directed magnetic field only excites
the solution with so that the current density
is of the form

(103)

The magnetic-field solution in the cylinder for is
obtained from Faraday’s law of (1)

(104)

while the magnetic field outside the cylinder for is
obtained from a magnetic scalar potential or equivalently with
a directed magnetic vector potential, both obeying Laplace’s
equation. The radial and components of for steady state
and transients are thus of the form shown as follows and in
(106) shown at the bottom of the page

(105)

where it is necessary in time integrating (104) to include the
steady-state solutions as constants of integration.

B. Boundary Conditions

The steady-state solutions already satisfy continuity of tan-
gential and normal at . The transient solutions must
also obey these boundary conditions for which we obtain

(107)

which for nonzero values of and require that

(108)

This relation then determines allowed values ofwhich we
denote as with corresponding amplitudes and
related through either of the relations in (107). Note that
because

(109)

that (108) can be rewritten as

(110)

which is in the form of (84) with and .
If , (108) shows that the are the zeros of the zeroth
order Bessel function listed in the left-most column of Table
II while as becomes very large, the are the zeros of
the first order Bessel function listed in the right-most column
of Table II. Table II also lists the first 20 solutions to (108)
for magnetic permeabilities that include materials in Table I.
Note that as the become large, the Bessel functions can be
approximated as [2, Sec. 4.9]

(111)

which when substituted into (108) gives

(112)

For , this gives solution so that
. For , the solution is and

.

(106)



1034 IEEE TRANSACTIONS ON MAGNETICS, VOL. 33, NO. 2, MARCH 1997

If the infinite number of solutions to (110) are denoted as
, then the Bessel function orthogonality relation of (83) is

(113)

The general form of solution for the current density of (102) is

(114)

where is a representative magnetic diffusion time.
The coefficients can be obtained using the orthogonality
condition of (113) with the initial condition that at , all
the current flows as a surface current at and is thus a
spatial impulse at

(115)

Multiplying both sides of (115) by and
integrating over lets us solve for

(116)

as

(117)

C. Magnetic-Field Lines

For transient solutions, the magnetic-field lines are also the
lines of constant magnetic potential defined in (57). The vector
potential is then obtained from (105)–(106) as shown in (118)
at the bottom of the page. Figs. 16 and 17 plot the magnetic-
field lines as a function of time for and using the
first 20 terms in the series expressions. At , the magnetic
field is excluded from the cylinder. Asincreases the magnetic
field diffuses into the cylinder approaching the steady state for

. As becomes large, it requires many more
terms in the Fourier series for accurate solutions near .

D. Dissipated Power Per Unit Length

To summarize the procedure, must be found by numer-
ically solving (108). Then the are found from (117) and

Fig. 16. Magnetic-field lines of (118) using the first 20 terms in the series
for various times after a transverse magnetic field is stepped on att = 0

for �=�o = 1.

the current density is found from (114). The dissipated power
per unit length is given by

(119)

where we used (113) to perform the integrations. The total
dissipated energy per unit length is then

(120)

(118)



ZAHN: POWER DISSIPATION AND MAGNETIC FORCES ON MAGLEV REBARS 1035

Fig. 17. Magnetic-field lines of (118) using the first 20 terms in the series
for various times after a transverse magnetic field is stepped on att = 0 for
�=�o = 10.

TABLE III
NONDIMENSIONAL DISSIPATEDENERGY PER UNIT LENGTH FROM(120) DUE TO A

STEPPED ONTRANSVERSEMAGNETIC FIELD, W=(4��H2

oR
2), FOR MAGNETIC

PERMEABILITY VALUES IN TABLE I, USING THE�n VALUES IN TABLE II

where the are given in Table II for values that include
materials in Table I. Table IIIuses Table II values for to
compute (120) for various values of .

E. Magnetization Force Per Unit Length

At the interface we have from (105) and (106)

(121)

Fig. 18. Nondimensional forces of (124),fMy=(�Ra�H
2

o ), (125),
fLy=(�Ra�H

2

o ), and their sum,fT =(�Ra�H2

o ) = (fLy + fMy)=

(�Ra�H2

o ) versus nondimensional timet=� for values of �=�o = 1

and 10: For �=�o = 1; fMy = 0.

where we separate out the time anddependences and from
(107)

(122)

From (13) and the assumed weak gradient field of (14), the
magnetization force per unit length is

(123)

Performing the integration gives

(124)

At and ,
so that . As

. The magnetization
force of (124) versus nondimensional time is plotted in Fig. 18
as a positive force for . For

F. Lorentz Force Per Unit Length

From (60), the Lorentz force per unit length is

(125)

which is evaluated by numerical integration and is plotted as
a negative force in Fig. 18 for and . At ,
the Lorentz force per unit length is which
decreases to zero as time increases. The total nondimensional
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force per unit length, given by the sum of (124) and (125),
is also plotted in Fig. 18 and for is negative for
early time due to the Lorentz force, passes through zero, and
is then positive for longer time due to the magnetization force.
At the total force is .
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