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the  detector output are presented.  The chevron linewidth in 
particular  is  shown to be a design parameter that  has a strong 
influence on  the signal. Optimized  detectors using  2.1-pm 
chevron linewidth patterned in 0.44-pm  thick Permalloy at 
0.82-pm spacing on 3.37-pm epi films have a dV/V figure of 
merit  of 0.5% for  35-40 Oe  drive fields. 
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Induction  Heating for Case Hardening  Applications 
FREDERICK J. YOUNG, SENIOR MEMBER, IEEE 

Abstract-It is observed that  the  equations describing induction  heat- 
ing in ferromagnetic  materials are  rather nonlinear.  Although the  ther- 
mal properties  are nonlinear, the  greatest  nonlinearity arises from  the 
ferromagnetic  behavior  of the material. A way of circumventing this 
difficulty while retaining the  important magnetization curve is pre- 
sented. A numerical solution accounting for  temperature variations in 
the  saturation magnetization, electrical and  thermal conductivities, and 
specific heat is presented. It is found  for case hardening  applications 
that  only a narrow near  surface region heats to the vicinity of the Curie 
temperature, and  a simple theory describing this region is derived. Just 
beyond  the near surface region a  sharp temperature gradient  results 
which is of  importance  in case hardening. A simple expression  for the 
gradient is developed.  These expressions, verified by a complete  nu- 
merical analysis, aid in the choice of an induction heating  excitation 
system for case hardening  applications. 

I 
INTRODUCTION 

NDUCTION heating  is used for  melting, forging, hardening, 
brazing, welding and  many  other  applications  amounting to 

a multimillion dollar business each year. Powers  ranging from 
a new hundred  watts to almost 100 megawatts at frequencies 
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ranging from 50 hertz  to several megahertz are utilized. Many 
of these processes  are described by  Tudbury [ 11 , [2] . 

Induction  heating  problems involving paramagnetic mate- 
rials,  e.g., copper, silver, brass, etc.,  can  be solved by  the 
straightforward  application  of Maxwell’s electrodynamic equa- 
tions  and  the  heat flow  equations.  The  solutions are complex 
but can be  handled  by digital computation.  The same ap- 
proach to induction  heating in ferromagnetic materials leads to 
difficulties not amenable to digital computation. These are 
the same difficulties encountered  in  the analyses of shielding 
by  ferromagnetic materials [3] . Computational difficulties 
are encountered because of the marked variation in permeabil- 
ity as a function  of  magnetic field intensity.  Fortunately these 
difficulties  are circumvented by  the use of the limiting non- 
linear methods set forth  in earlier works [4] , [5] . The solu- 
tions to the limiting nonlinear  theory are actually simpler than 
those  obtained  for paramagnetic substances by  the aforemen- 
tioned straightforward solution of  Maxwell’s equations. 

It is the goal of this paper to establish a method  for  the pre- 
diction  of the transient  temperature  distribution in a ferro- 
magnetic material being heated  by electromagnetic induction. 
The  prediction,  obtained by  the application of the limiting 
nonlinear theory  and  the  equation  of  heat  transfer, is  based on 



YOUNG: INDUCTION HEATING FOR CASE HARDENING 1 I71 

the  applied  magnetic field intensity, its frequency,  the  physical 
properties  of  the  ferromagnetic  material (electrical and  ther- 
mal conductivity,  heat capacity, density, saturation  induction), 
geometry,  and surface cooling. This  information is to be  used 
to determine the values of the applied  magnetic  intensity  and 
frequency necessary for  controlled  induction heating. 

THE BASIC EQUATIONS O F  INDUCTION HEATING 
Because alternating electromagnetic fields are  used to pro- 

duce  heat in the work pieces, the  solution to the  induction 
heating  problem is  derived from  the  simultaneous  solution  of 
Maxwell's equations  and  the  equations  of  heat transfer. Be- 
cause of  the wide  range of  temperatures present, the physical 
properties  of  the  material do  not remain constant  and  must be 
considered as functions of local temperature.  The Maxwell 
equations are 

V X H = u E  ( 2 )  

where E is electric field intensity, B is the  magnetic  induction, 
H is the  magnetic field intensity,  and u is electrical conductiv- 
ity. The  equation of heat transfer is  given by 

a result of  the law of  conservation  of energy  and Fourier's law 
of  heat  conduction. Here T is the  temperature, p is  the  den- 
sity, c is the  heat  capacity, K is the  thermal  conductivity,  and 
p is the  instantaneous  volumetric  power  density. The density 
is sensibly constant,  but c and K vary strongly  with  tempera- 
ture.  The power density is  given by (V X H)2/u,  and is a 
strong  function  of  temperature also. Equations (1) and (2) 
can be  combined to eliminate the electric field intensity. 
There results 

which  is  highly nonlinear. Here pinc = aB/aH, the incremental 
permeability.  To solve the  induction  heating in general, (3) 
and (4) must be solved simultaneously in three  dimensions in 
work piece, exciting coil, and in all the rest  of space. In this 
paper  only  one-dimensional spatial variations are considered, 
namely the case of semi-infinite slabs or sheets. In that case 
(3) and (4) become 

and 

Even without  considering the variation of u and pinc with 
temperature, ( 6 )  is highly  nonlinear because pinc varies so 
strongly  with H. In  this  paper  the limiting nonlinear analysis 
of McConnell [4] and Agarwal [5] is modified to include  ther- 
mal effects and  combined  with ( 5 ) .  For  the  purpose  of  com- 
parison ( 5 )  first is  assumed to have constant values to K ,  u, p ,  

and c so that an analytical solution can  be obtained.  Later 
u, K ,  c, and B, (the  saturation  induction) are  allowed to vary 
with  temperature,  and  a  numerical  solution is obtained.  The 
purely linear thermal  solution,  the first to recognize the in- 
herent  nonlinearity  of  the  ferromagnetic material, only  pro- 
vides some insight to the  nature  of  the  more  accurate  numer- 
ical solution. 

BASIC ELECTROMAGNETIC PHENOMENA IN 
FERROMAGNETIC MEDIA 

Consider the  induction  heating  of  a  thick  ferromagnetic slab 
by the  application of a tangential magnetic field of intensity 
H k  sin wt. In the  steady  state  (which exists after a few  cy- 
cles), regions of  saturation  form  at  the surface early in each 
half  cycle of  magnetization and travel inward  (in  the y direc- 
tion) till they reach the  depth  of  penetration  6.  A typical 
positive half-cycle configuration is shown in Fig. 1. whist sin 
wt is positive, the positively saturated region  of width f propa- 
gates in the y direction, annihilating the region  of negative sat- 
uration left by  the  previous half-cycle. When  sin at reverses, 
a region of reverse saturation  forms  at  the surface and travels 
toward y = 6,  annihilating the region of positive saturation in 
the process. McConnell [4] and Agarwal [5] show that  a 
spatially constant  current  density in the x direction is induced 
in the growing  region of  saturation. The induced  current 
causes the ferromagnetic  material to  heat.  The  depth of  pene- 
tration 6 is  given by [3], [4], [ 5 ]  

6 = dH"/n~fB,  (7) 

where f is frequency, HM is the  maximum value of  the  applied 
magnetic field intensity, B, is the  saturation  induction,  and u 
is the electrical conductivity.  The  distribution  of  current  den- 
sity, magnetic field intensity,  and  magnetic  induction in the 
limiting nonlinear  approximate  theory  of  magnetization is 
given in Fig. 2. As the positive half-cycle of  excitation  pro- 
gresses, the regions of positive saturation  and  constant negative 
current move from  the origin toward their ultimate limit 6 ,  the 
depth of  penetration. When the  applied  magnetic  intensity be- 
comes negative, saturation  forms  at y = 0 and progresses from 
the origin to y = 6.  In this analysis, it is assumed the  work 
piece is much  thicker  than  the  ferromagnetic skin depth 6 so 
that  the regions of  saturation originating from  each  material 
face never meet at center. The location  of the boundary  be- 
tween  the regions of positive  and  negative saturation is  given 
by  Agarwal  as 

which is valid for 0 < t < n/w or during  any positive half- 
cycle of excitation.  A similar expression  can be written  for 
the negative half-cycle of excitation,  during  which f behaves 
the same  as during  the positive half-cycle. The electric field 
in the x direction is  given by 

E, = - cos o t / 2 ,  
06 

O < y < {  

= 0, Y > f  (9) 
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Fig. 1.  Geometry considered. 
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Fig. 2. Field distribution  in skin region of limiting  nonlinear model of 
the ferromagnetic  material (- at some  time during the positive 
half-cycle of excitation, --- at a slightly later time). 

during the positive half-cycle of excitation. During the nega- 
tive half-cycle of excitation,  the sign of the electric field re- 
verses but  the waveform remains identical to  that existing in 
the positive half-cycle. The magnetic field in the x direction 
is  given by 

Hz = (1 - y /6)HM sin ut, (0 < y < 5 )  
= 0 ,  Y > 5  (10) 

during the positive half-Cycles of excitation. During negative 
half-cycle of excitation the space distribution  and waveform 
remain the same, but the sign of Hz reverses. A good portrayal 
of these fields is given in Figs. 6 and  7 of Agarwal [ 5 ]  . Ac- 
cording to Agarwal [ 5 ]  the average power per unit volume 
generated by  the uniformly distributed  time varying current 
density  in the skin region is 

or  by making use of (7) 

8 
3 

(P) = - H M  B, f. (1 2 )  

From  (12) it is clear that  the average power density is a  func- 
tion of the applied field,  frequency,  and  saturation  induction. 

If the temperature of any portion of the work piece ap- 
proaches or exceeds the Curie temperature, the material in 
that region becomes paramagnetic and the solutions become 

easy to obtain when spatial temperature variation is not in- 
cluded. The solutions  found in most electrodynamics texts 
are 

Hz = f f M  exp (-y/6J sin (ot - y/6,) (131 

4 f f M  

06 C 

E, = ___ exp (-y/6,)  cos (ot - 

where 6, is the  depth of penetration at which the fields are 
attenuated  to I / E  of their surface values.  Here  6, = d m ,  
which has the same form as (7). These expressions are iden- 
tical if one lets p = B S / H ~ .  By comparing (9)  and (10)  to (14) 
and (13), it is clear that  the limiting nonlinear and the conven- 
tional  theory yield similar results. However, the limiting non- 
linear theary is the simplest because all the variation of field 
quantities occurs within the  depth of penetration 6 .  Beyond 
the  depth of penetration E and H are zero. The conventional 
theory of (13) and (14) yields a power dissipation per unit 
volume of 

Here the  total power dissipated in the region 0 < y < 00 is 
found and divided by 6, to  obtain (15) [5]. This yields an 
estimate of the power density in the skin region which is about 
15.7% high. The remaining power is dissipated beyond the 
skin region in contrast to  the limiting nonlinear case where no 
heating occurs beyond the  depth of penetration, 

AN APPROXIMATE  SOLUTION 
It is  assumed that  the period of the electrical excitation is 

much smaller than  the thermal  time  constant of  the ferro- 
magnetic material. Then the effective or average power is  as- 
sumed to be applied in the whole skin region. Because the 
total thickness of the ferromagnetic material is much greater 
than  the skin depth 6 ,  it is assumed that  the temperature is 
only  a  function of time in  the skin region and that  the heat ca- 
pacity and thermal conductivity are constant (see Table I). 
This is consistent with the relatively high thermal conductivity 
of ferromagnetic materials. The skin region is denoted as 
region 1 on Fig. 1. In the skin region the temperature is not 
a  function ofy  under this assumption. In region 2 the temper- 
ature varies with both position and time. The  temperature in 
region 2  obeys the diffusion equation 

where T 2  is the temperature in region 2, K is the thermal con- 
ductivity, p is the density, and c the specific heat of the  ferro- 
magnetic material. Region 1  obeys the same diffusion equa- 
tion with the power generation term  added. It is  given by 

which is averaged  over the thickness of region 1. There results 
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TABLE I 
PHYSICAL PROPERTIES OP SOME FERROMAGNETIC MATERIALS AT ROOM TEMPERATURE 

Material  Saturation  Coercive  Curie Densjty  Electrical Thermal Specific 
Induction  Force Tern erature plcm 
&-(Kilogauss) H?(oersted) 8, 

Conductivity 
EIHOIYETER 

Conductivity 
callsq  cm/crn/O~/sec c a l / g P i :  

Heat 

~ ~- 

Cobalt  18.7 8.9 1 1 1 5  8 . 9  1 . 6 ~ 1 0 ~  0 . 1 6 5  0.099 

Iron 2 1 . 7  0 . 1 4 - 0 . 5 4  770 7.88 1 . O 3 X 1 O 7  0.18 0.11 

Nickel  6.1 0 . 4 2  6 8 0  8.89 1 . 4 6 X 1 0 7  0 . 2 2  0 . 1 0 5  

From Newton's Law of Cooling, 

"Y l y = o  

where h is the cooling  or film coefficient and T 1  and T 2  are 
the  temperature rises  above ambient. By the use of Newton's 
Law of Cooling (1 8) becomes 

where it is  assumed T I  ( y  = 0) = ( T I  ) is the average tempera- 
ture in  region 1 .  Equation (19) can  be verified by  applying  the 
law  of  conservation  of energy to the smali part of region 1 be- 
ing situated between y and y t Ay . It is interesting to observe 
that  the power  entering  an x - z surface area heats  the entire 
ferromagnetic material. That power is  given by 

which is a  strong  function of applied field and  a weaker func- 
tion of  frequency  and  material properties. Equations (16) and 
(19) are  solved simultaneously  subject to the  conditions  that 
before HM is applied, ( T 1  = T2 = 0 for all 

y>O, T2(y=m,t)=O,  (T) l Iy=6 =T21y=6 

and 

The average temperature in region 1 derived in the appendix is 
given by 

b f i )  (1 - ea2' erfc a f i )  
( T I ) =  a I 

(21) 

where 

and 

Equation (21) can be  written in dimensionless  form  by using 
the following  substitutions: 

a* =a/-, b* = b/- 

t* = t / m ) ,  H* = h6/K. 

Because the assumed magnetic  behavior  of  the  material dis- 
appears as the  Curie  temperature is approached,  temperature 
is normalized  with  respect to  the Curie temperature.  Then 
T* = ( T)/Tc where Tc is the Curie temperature  and  the aster- 
isks denote dimensionless quantities. Under  these  substitu- 
tions  the  dimensionless  form  of (21) becomes 

.[ b* 
1 - eb*2t* erfc b * f l  1 - ea*2t* erfc a*@] 

a* 

(22) 
For H* = 114 (22) becomes  indeterminate  but  has  a definite 
limiting value which is 

(P)S2 
(TT(t*)) = - (1 - et* erfc p), for H* = 0.25. (23) 

4 K  T, 

The heady state  dimensionless  temperature  of  the  skin  layer is 
obtained  from (22) by  letting t* + =. It is 

( P ) 6  p lim <TT(t*)= - = - 
t* -+ m T,h Tch '  

The temperature in region 2 is  given by 

(25) 

where y* = y /6 .  It can be shown that  asy* + 1 (25) becomes 
identical to (22). 
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Fig. 3. Plot of variation of temperature  in surface region as function Of 
time for various values of k* .  

TABLE 11 
USEFUL QUANTITIES DERIVED FROM TABLE I 

Xaterial (seclmeter ) (meter 
P C / <  2 h / K  -,* 

C o b a l t  5 .  34*104 0.0822-0.329 

I r o n  4 . 8 2 ~ 1 0 ~  0.0754-0.302 

Nicke l  4 . 2 4 ~ 1 0 ~  0.0617-0247 

*h is assumed to  be between 1 to 4 Btu/ft2hr F or 1.357 X to 
5.43 X cal cm-2 s-'K. 

In Fig. 3, a plot of the variation of the  temperature of the 
surface region as a function of dimensionless time for various 
values of cooling coefficient, or the Nusselt number H*, is 
shown. More precisely the log,, T C k (  TT)/(P)6' is plotted 
against log,, t*. Here it is observed that  the size  of the Nusselt 
number  exerts  little influence on the initial heating  transient. 
Indeed,  the role of ff* is to limit the ultimate  temperature that 
can be attained. From Table I1 it can be  seen that  the  depth 
of penetration would have to be more than  1/3  meter for the 
Nusselt number to exceed 0.1, and most likely the Nusselt 
number is of the order of to 

In Fig. 4, (T:(t*, y*))/C T',*(t*, y* = 0)) versus y* for var- 
ious values  of t* to show the spatial temperature  distribution 
as a  function of time is plotted. For tm = 0.1  the complete 
thermal disturbance is confined to a region which hardly ex- 
tends  beyond  two skin depths, that is, one skin depth  for 
region 1 and less than one for region 2. For t X  = 5 the normal- 
ized interior  temperature is less than l ie  of the temperature of 
region 1 at all distances from the surface greater than  about 
1.8. Only for the large  values of t* does the temperature dis- 
turbance reach large values of y *. 

From  this very approximate linear analysis which properly 
accounts for ferromagnetic heating, it is concluded that a 
Nusselt number of zero can be assumed in the more  exact cd-  
culations that follow. This is true over a very  large  range of 
values  of dimensionless time t*. The neglect of Newton sur- 
face cooling will not influence the results obtained because 
the  heat leaving the surface is  small compared to  the  heat be- 
ing conducted to the work piece interior. In addition,  it is 
concluded that the ferromagnetic skin depth should be ad- 
justed to embrace the region where large temperatures are 
desired, because only by an extended application of power can 

Fig. 4. A plot of normalized  interior temperature as function of posi- 
tion  at various  times for H' = 0.0001. 

TABLE 111 
PROPERTIES OF IROK AS A F~~NCTION OF TEMPERATCRE 

Temperature S p c c i f i c  'Xiernal Clcc t r i ca l  s a tu ra t ion  

400 
500 

600 

700 

800 
900 

1000 

1100 

1200 
1300 

0.0925 
0. LO2 
0.109 

0 .113  

0.118 

0.123 
0.127 

0.133 

0.141 

0.150 
1400  0.160 

1500 O . l i 0  

1600 0.183 

1700 0 .205  

1750 0.220 

1800 0.243 
1850 0 .320  

1875 0.230 

1900 0.210 

2000 0.182 
2100 0.157 

2200 0.130 

2300 0.137 

21100 0 . 1 4 3  

2500 0.148 

1.08 

1.03 

0.987 

0.941 
0.896 

0 .851  

0.806 

0.761 

0.716 

0.670 
0.625 
0.580 

0.535 

0.490 

0.467 
0.444 

0.422 
0 . 4 1 3  

0.413 

O.i.15 

0.417 
0.419 

0.420 

0 . 4 2 2  

0.424 

16.2 

12.0 
9.0 

6.91 
5 . 4 4  

4.37 

3.57 
2.97 

2.50 

2 . 1 '  

1.84 

I. 61 
1 . 4 1  

1.25 

1.18 

1.11 

1 .05  

1.01 

0.999 
0.926 

0.881 

0.869 
0.862 
o . 8 h 0 

0.857 

2.17 
2.17 
2.15 

2.13 

2.11 

2 . 0 8  

2.05 
2.01 

1.98 

1 . 9 2  

1.84 
1.71 

1.57 
1 .30  

1.11, 
0.329 

0.500 

0.104 

0. 
0. 

0. 
0. 

0. 

0 . 
0. 

interior regions beyond the ferromagnetic depth of penetra- 
tion be heated significantly. In applications where a high tem- 
perature, perhaps the Curie temperature, is desired in a near 
surface region, the electrical excitation  must be adjusted so 
that t* is  less than unity. Then the temperature will be high 
in  region 1 and will decay very rapidly in region 2, a distribu- 
tion favorable to case hardening. 

The theory just presented does not account properly for  the 
variations in specific heat, thermal  conductivity, electrical con- 
ductivity, and saturation magnetization which exist over the 
temperature range from room temperature to the Curie tem- 
perature. Inspection of Table 111 indicates that electrical con- 
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TABLE IV 
THE SOLUTION TO THE IDEALLY INSULATED SKIN REGION 

i t 1  ''14 x I ( ' r )  in nmperes pcr mcter 

528 0 

566  0.126 

638   0 .378  

776 0.882 

1 0 2 6   1 . 8 9  

1241   2 .90  

1336  3 .402  

1359  3 .528 

1402  3 .78 

1444  4.032 

1520  4 .536 

1588  5 .04  

1649 5 .544  

1663   5 .67  

1676  5 .796  

1700  6 .048  

1743  6 .552 

1x09  7 .56  

1831  8 .064  

1846 8.568 

1849   8 .694  

1x55 8 . 9 4 6  

1860 9 . 1 9 8  

1863 9 . 2 9  

1868 9 .61  

1875  10.24 

1877 10.55 

1879   11 .18  

1880 1 2 . 6 0  

ductivity and especially saturation  magnetization  undergo  the 
most  change. Hence the  thickness  of region 1 changes greatly 
as the  temperature rises to the Curie point. An estimate  of 
magnetic  intensity  or  frequency to obtain  any  temperature 
and skin depth  in  a certain time  would not  be accurate or even 
correctly based on  this simplified theory.  In case hardening it 
is  desirable to confine the heating to region 1.  That is  possible 
by  maintaining values of  dimensionless  time  near  unity. If 
that is done (1 8) becomes 

where T is the time  required to raise  region 1 from TR , room 
temperature to an elevated  temperature T.  Here it is  assumed 
that no  heat  flows  out  of region 1. The value of  the integral 
I ( T )  is given in Table  IV. We note  that I ( T )  depends  only  on 
temperature  and  the  temperature variations of  heat  capacity 
and saturation  induction.  Hence,  for  any desired temperature 
rise in region 1, the  frequency,  the  magnetic  intensity,  and  the 
required  time can  be adjusted in anyway that satisfies (26). 

DETERMINATION OF EXCITATION  REQUIREMENTS 
In case hardening  applications it may be desirable to heat  a 

near surface region of  a certain thickness  up to the Curie tem- 
perature in a given amount of time.  Although the  time  may 

not be specified, the  shorter  the  heating  time,  the  higher  the 
temperature  gradients  and  the  more  confined  the  heating.  For 
example, it is assumed that  a near  surface  area of a  workpiece 
is to be heated  up to 1880'R in 0.36  seconds.  From Table 111, 
1(1880)= 12.6 X lo8 = Hm fT where 7 is the  heating  time. 
Then, if the available source  of  power  has  a  frequency of 
350 Khz, H ,  = 12.6 X 108/0.36 X 3.5 X lo5 = 10,000 am- 
peres  per  meter. Making  use of the  standard  formula  for 
electromagnetic skin depth 6 = (7rf~p,)-~.~, and using the 
value  of conductivity given in Table IV for  a  temperature of 
1880'R, 6 = 0.842  mm.  Although  the  expressions given by 
(22)  and  (25) are not accurate because of  the  assumption  of 
IC, c ,  u and B, not being functions  of  temperature,  it is still 
instructive to inspect  the values of  dimensionless variables 
obtained.  For  example,  at T = 1880'R and  for 7 = 0.36 S, 

t* = 0.048. This  seems to indicate that only region 1 will  be 
heated to the vicinity of  the Curie temperature.  Equations 
(25)  and  (26)  do not yield any  quantitative  information about 
the  transient  temperature  distribution in  region 2.  Equation 
(25)  completely  ignores  the  fact that specific heat,  thermal 
conductivity,  and  saturation  magnetization are strong  func- 
tions  of  temperature.  Equation  (26) assumes  region 2 is an 
insulator, and  properly  accounts  for the thermal variations of 
the physical  properties  of  iron. Qualitatively, (25) indicates 
that  the  temperature in region 1 falls considerably in a dis- 
tance  of  a few electrical skin  depths.  For  excitation  of H ,  = 
10 000 amps/meter  and f = 350 kilohertz  the electrical skin 
depth ranges between about 0.019 to 0.84 mm  depending 
upon  temperature,  The  normalization  of  (25)  could have been 
accomplished  another way by using the  quantity d = ( K ~ / , O C ) ' / ~  

to make y dimensionless. If T = 0.36 s then 0.2 < d < 0.4  mm. 
Hence,  from  (25) and Fig. 4 it is estimated that  the material 
several skin  depths  or in this case  several millimeters  beyond 
region 1 will attain a temperature  much  lower  than region 1 
during the heating  time T. To be more specific, a  numerical 
solution to (19)  and (5) must be executed. 

THE  NUMERICAL  SOLUTION 
It would be desirable to numerically solve ( 5 )  and (6) simul- 

taneously,  accounting  for  the  temperature variations in K ,  c, u 
and pinc. However, it is difficult to get data  on pinc, the in- 
cremental  permeability as a  function of temperature,  and pinc 
depends  upon  past heat  treatments. Also, the work of Mere- 
wether [6] indicates certain numerical difficulties which be- 
come worse as the  frequency is raised. Instead, in  region 2 the' 
nonlinear  heat  flow  equation (5) is solved simultaneously  with 
the average nonlinear  heat  flow  equation (1 9) valid in region 1. 
Here the average power  density is obtained  from  the limiting 
nonlinear analysis previously  explained.  In  addition to the re- 
lationships already  stated,  the  saturation  induction is  given by 

Bs = Po Hm + Ms (27) 

and Ms; the  saturation  magnetization is plotted as a  function 
of temperature in Fig. 5. Equation  (7) is  used at all tempera- 
tures,  and  with  the  assumption of (27) is  valid at  both room 
temperature,  any  temperature where B,/Hm >> p,, and  at  the 
Curie temperature  and  above.  The  saturation  magnetization 
drops very rapidly within  a few  degrees of the Curie tempera- 
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Fig. 6 .  Numerical solution grid. 

ture as shown by Fig. 5. In  that small temperature range this 
approximation of (7) may be somewhat inaccurate. This con- 
stitutes a  transition between the limiting nonlinear and the 
standard linear theory of eddy current  phenomena in solid 
iron. Under the approximation of (27)  the transition is a 
smooth  one. Only a small fraction of the  total heating time 
is spent in the transition regime. Equation  (11) is used for 
the average power per unit volume until the transition is com- 
pleted;  then (15) is used. Region 2 is characterized by 2N - 1 
points at which the temperature is sought as shown in Fig. 6. 
Due to symmetry only half of the geometry is considered. In 
Fig. 6 N = 5 .  The finite  difference-differential  equation  for 
point 1 is  given by (19) as 

where ( K )  is a mean value of thermal  conductivity given by 
( K ) =  [ K ( T ~ )  + K ( T ~ ) ]  /2. The finite  difference-differential 
equation for  the remaining points of interest derives from (5) 
and is given by 

Fig. 7. Plot of temperature versus time  at various values of position. 
Here H ,  = lo4 amp/meter, f = 350 kilohertz, andy, = 1.2 inches. 

valid for i = N only. The right sides of these functions are 
given elsewhere in the  notation of APL [SI. The remaining 
boundary  condition is obtained by specifying the film coef- 
ficient h. As long as k is kept within physically obtainable 
limits it has little influence on initial heating transients  and 
can be  assumed to be zero. The averaging process from 
whence (19) and (28) are derived automatically includes the 
boundary  condition on the air-iron interface of region 1. The 
initial condition on temperature depends on the situation, but 
is taken  in  this work to be Ti = 528’R for t = 0. APL func- 
tions for  the thennophysical  properties of iron corresponding 
to Fig. 5 and Table I11 are included [8]. The differential- 
difference technique of Petrov [7] is used to solve (28), (29), 
and (30). Essentially, the  method solves N simultaneous non- 
linear first order differential equations,  one at each point in 
space, by a numerical integration such as the Runge-Kutta 
method. Petrov shows this technique to be more efficient 
than most other methods,  and establishes a limit on  the size  of 
time  step which may be used to  obtain  an accurate solution. 
For an excitation of H, = 10 000 amps/m and f =  350 kilo- 
hertz, a numerical soltuion  containing 17 points for a half- 
sheet was executed. An increment of yo  = 1.2 inches was 
chosen to insure quick computation and good convergence. 
The results are shown in Figs. 7 and 8. From Fig. 7 we note 
that the Curie temperature is reached by region 1 in 0.36 sec- 
onds, as would be predicted by  (26) and Table IV. Only the 
first four points  in distance are represented in Fig. 7. In Fig. 8 

valid for i < 2 < N - 1. This equation was obtained by using 
a forward difference for the first differentiation  and  a back- 
ward difference for the second. At the middle of region 2 
there is symmetry  and no  heat flows, or dT/dy = 0 there. To 
accomplish this we set TN+ = T N - ~  to yield the equation 

plots of temperature  distribution at t = 0, 0.054,0.108,0.153, 
and  0.364 seconds after the thermal  transient is initiated are 
shown. When the  temperature of region 1 is 1880°R,  the 
“thermal skin depth” of  region 2 corresponds to the place 
where the  temperature is 1025”R. This occurs at  about 0.16 

(30) lO’R per millime~er when region 1 has reached the Curie tem- 
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Fig. 9. The thickness of region 1 as  a function of temperature for two 
different  excitations. (--- for H,  = 10’ amp/meter  and f = 3500 
kilohertz, - for H ,  = lo4 amplrneter a n d f =  350 kilohertz). 

perature  and region 1 is 0.84 millimeters  thick.  In Fig. 9  the 
thicknesses  of region 1 under  different  conditions is shown. 
Below  1850’R both curves  are the same  because the ratio of 
H,/f is the same  in both cases. Thus,  when region 1 behaves 
as a  ferromagnetic  material the thickness of  region 1 is about 
0.0187  mm for  both  excitations. However,  raising H ,  from 
lo4 to lo5 amps/meter  and raising the frequency  from 350 
to 3500 kilohertz requires a  hundredfold increase in power 
per  unit volume dissipated in the ferromagnetic region. The 
numerical  solution for H ,  = 10’ ampsimeter  and f = 3.5 mega- 
hertz was executed  with yo = 0.1 and 0.01 meters.  The latter 
results are presented in Figs. 10 and 11. The figures are similar 
except  the abscissa  scale of Fig. 10 is 0.01 that  of Fig. 7 and 
the abscissa  scale  of  Fig. 11 is one tenth  that of Fig. 8. The 
former  observation is in agreement  with  (26)  and  Table IV. 
The latter observation indicates that  the “thermal  skin depth” 
dropped  but  one  order  of  magnitude when the Curie heating 

Fig. 11. Plot of temperature  versus  position  at  various  values of  time. 
HereH, = IO5 amp/meter,f=  3500 kilohertz,  and y o  = 0.12 inch. 

time  dropped  two  orders  of  magnitude.  The  thickness of 
region 1 at 1880’R  is 0.266  mm  and  the  temperature  gradient 
at  the interface between regions 1 and 2 is about  320”Rlmm. 
During the time  when region 1 is heating to the Curie tempera- 
ture,  the  heat being  conducted  into region 2 &small compared 
to the  heat  being  stored in region 1. Then  by  (19)  the  time 
rate of increase of  temperature is proportional to the  power 
per  volume dissipated in region  1.  Since most  of  the  heating 
occurs  when the  iron is ferromagnetic,  the  time rate of tem- 
perature increase in region 1 is proportional to the  product of 
the magnetic  intensity  and  frequency.  The  temperature at 
point 1 is the  temperature  of region 2  at  its interface with re- 
gion 1. Just  after region 1 reaches the Curie temperature  the 
power dissipated .becomes smaller by  almost two  orders of 
magnitude  than it was  when  region 1 was ferromagnetic.  This 
is illustrated in Fig. 12.  Then  by  (19)  the  term P becomes 
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Fig. 12. Plot of loglo of power in region 1 versus  temperature (--- 
for H, = IO4 amp/meter  and 350 kilohertz,  and - for H, = 
lo5 amp/meter  and 3500 kilohertz). 

small compared to 

Here 6 is the  ordinary electric skin depth  proportional to f 
Therefore,  a  good  estimate  of  the  temperature  gradient  at  the 
left  boundary  of region 2 is  given by 

where /3 is a  constant  of  proportionality.  From Fig. 8 an esti- 
mate  of /3 is found to be  1.69 X 1 0-6 or  meter secl/' /amp  mm. 
If (3 1)  is applied to  the case  where H ,  = 100 000 amps/meter 
and f = 3.5 X lo6 hertz,  it is found  that  the  temperature gradi- 
ent is 316"R/mm,  which agrees  well with  the  numerical solu- 
tion  of Fig. 1 1 .  

CONCLUSIONS 
The heat transfer between the work  piece  and the  surround- 

ing air is  negligible compared to  the  heat  conducted toward 
the interior for practical Nusselt numbers. It has  been  shown 
that  to  heat  a near surface region to any given temperature, 
the  product  of  the  applied  magnetic field intensity,  frequency 
of  excitation,  and  desired  heating  time  must  equal  a certain 
value. This value, given for  iron in Table  IV, is related to  the 
temperature  and  density  of  the  material and the way the  heat 
capacity  and  saturation  induction  of the material vary with 
temperature.  The  application  of  this criterion yields a  heated 
near surface region  whose depth is the electromagnetic  depth 
of  penetration.  Beyond  the  near surface region the tempera- 
ture diminishes rapidly. The  gradient  of  the  temperature just 
beyond  the  near surface region  is proportional to the  product 
of  the  applied  magnetic field intensity  and  the  square  root  of 
the  excitation  frequency.  In industrial practice the frequency 
of  excitation  may  not  be  easy to vary. If that is the case, the 

thickness of the  near  surface region to  be heated to near  the 
Curie point is determined  by  the fured frequency  and  the elec- 
trical conductivity  of the material at  the  elevated  temperature, 
and  the designer has no  control over this quantity. By (31) 
the  temperature  gradient  just  outside  of  the  heated region  can 
be  adjusted  by  the  proper  choice  of H,  the  applied  magnetic 
field intensity.  Then  by  (26)  the  heating  time is determined. 
Alternatively, the heating  time  can  be  chosen  and H,  can  be 
obtained  from (26). The resulting temperature  gradient  out- 
side the  heated region is predicted  from (31). When the fre- 
quency is fixed  there is not much flexibility in the design of 
near  surface  heating  apparatus. If the applied  magnetic  inten- 
sity is chosen  for  convenience or practical reasons, then  the 
resulting heating  time  and  thermal  gradient  must be tolerated. 
If it is  possible to choose the applied  magnetic field to produce 
the  desired  thermal  gradient then  the heating  time  dictated  by 
(26)  must be accepted. 

In  summary,  it  has  been  shown  how  heating  time,  applied 
magnetic field intensity, desired temperature,  heating thick- 
ness, and  temperature  gradient are related,  taking  into  account 
all  of the  complicated  thermophysical  properties  and  properly 
considering the nonlinear  magnetic  properties  of  ferromagnetic 
materials. For  any given ferromagnetic material, equations 
similar to (26)  and  (31) can be derived  as they have been  for 
iron.  From  these  equations  it is  possible to understand better 
the  induction  heating processes required in case hardening. 

APPENDIX 
Here (1 6) and  (19) are  solved to obtain  the  thermal transient 

in the magnetic  skin layer given by (21). By Laplace transfor- 
mation  with  respect to time,  (16)  and  (19) become 

(where  the last term is a consequence of Fourier's law of  heat 
conduction  at y = 6 and  the  convention that L [T(t, y ) ]  = 
t(s, y) is  used) and 

(33) 

The  solution to (33) is 

t Z ( s , y ) = A ( s ) e x p ( - y d G Z )  (34) 

where A(s)  is a  constant of integration. From  (34) 

However, at y = 6 ,  t 2 ( s ,  6 )  = ( t l  (s, 6)) and  thus 

~ ( s )  = ( t l ( s ) )  exp (6-1. (3 5) 

Then  (34)  becomes 

tz(s,y)=(tl(s))exp [(6 - y ) m l  f o r y > ~  only 

(3 6) 

where <tl(s)) must  be  found  before  (36) can  be inverted. The 
right most  member of (32), found  just  below (34), is substi- 
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tuted  into (32) to yield 

(37) 

By means of certain algebraic manipulations (37) can be cast 
in the form 

( t ,  (s)) = 
P 1 1 

S P C ~ ( K / ~ ’ ~ C )  - (4h/pc6) (---) f i +  b f i +  a 

. (38) 
where a and b are  the same  as those given in (21). Equation 
(38) is comprised of simple standard Laplace transforms, easily 
inverted to yield the  result previously stated  in (21). The 
<tl(s)> of (38) can be substituted  into (36) to yield t z ( s ,  y ) .  
The resulting tz  (s, y )  can also  be inverted and leads to a some- 
what  more  complicated  result  than (21). The  result  is given 
by (25). 
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Letters 

A True Swap Gate for Magnetic Bubble Memory Chips 

P. I. BONYHARD 

Abstract-The design of a true swap gate suitable for  incorporation 
into magnetic bubble memory chips with  16-pm to 18+m circuit 
periods is reported.  The swap operation is true  in  that  the  outcoming 
bubble  takes the position  vacated by  the ingoing bubble,  as well as 
vice versa. Swap gates of this design have  been operated successfully 
at temperatures  from 0°C to 70”C, and frequencies up  to 100 kHz. 

The design of  a swap gate, as well as other  functions, suitable for 
incorporation  into magnetic bubble memory  chips  with  circuit  periods 
of  16 Mm to 18 pmm has  been  reported [ 11 . The swap gate  reported 
did not place the bubble taken  out of the storage loop  into  the position 
vacated by the ingoing bubble. Also, the design of the storage loop 
turn  at  the swap gate was not fully  satisfactory in  that  this  turn  propa- 
gated  only over a bias field margin range  considerably less than  the 
margin range for a  propagate  along  a  straight path. 

A  superior design is shown in Fig. 1. The storage loops  are on 36 -Mm 
centers  and  the nominal  minimum feature size is 2 gm, as  in  the earlier 
design. An improved version [ 21 of the asymmetric half disk propagate 
element [ l ]  is used. The swap operation is true  in  that  not only does 
the ingoing bubble go into the position  vacated by the outcoming 
bubble, but also vice versa. The 180” storage loop  turn  incorporated 
in  this design has been found in no way to limit the bias field  margin 
range  of the  loop.  The propagate margin range  of the  write major line, 
however,  can be  the margin limiting feature on the  chip, depending on 
circuit processing, especially at  rotating drive  fields  of about  30  Oe  and 
less. 

Swap gates of this design have been operated successfully on a  largc 
number  of  chips, in wafers, and  in packages at  temperatures  from  0°C 
to 70°C, rotating drive field frequencies  of 50 kHz to 100  kHz,  and 
amplitudes  of 35 Oe to 55 Oe. Swap current  amplitudes of  30 mA ?: 

10% have been used successfully in most tests, but successful operatioa 
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Fig. 1. True swap  gate. 

at 30  mA f 33%  has  also  been  demonstrated  in  some cases. Phase mar- 
gin ranges, like  those of most  transfer  type  bubble  functions,  are very 
wide and have not been  fully  investigated. “On” phases from  270” to 
330”  and  “off”  phases  from 640’ to 700”  are  known to work satisfac- 
torily. 

Acknowledgment: The  author wishes to express  his thanks  to his 
colleagues who  produced  and helped to characterize the circuits. 

REFERENCES 
[ l ]  P. I. Bonyhard and J .  L. Smith, “68 kbit capacity, 16 pm-period 

tures,”ZEEE Trans. Mag., MAG-12, pp. 614-617, Nov. 1976. 
magnetic  bubble  memory  chip design with 2 pm minimum  fea- 

121 A.,H. Bobeck,  “The  development of bubble  memory devices,” 
to be published in the Proceedings ofElectro 77. 


