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Analysis of an Induction  Heating  System by the 
Finite  Element  Method  Combined  with 

a  Boundary  Integral  Equation 

Abstract-The method,  based  upon  the  finite  element  technique,  is 
presented  for  the  analysis  of an induction  heating  system in unbounded 
free  space. In the  induction  system,  a  quasistatic  magnetic  field  prob- 
lem with  cylindrical symmetry is  solved.  First,  a  mathematical  bound- 
ary is defined arbitrarily in free  space to contain  an  induction  system 
inside. An integral relation is derived on the boundary surface  using 
the  response  function  excited by a  circular  line  current.  The boundary 
relation  gives  a  constraint to the  finite  element  analysis in the  interior 
region. In the  finite  element  discretization,  first-order  elements  are 
used,  and  constant  elements  are  assumed  for the discretization of the 
boundary equation. To couple  the  finite  element  analysis  to  the  bound- 
ary integral  equation,  only  the  potentials  differently  approximated on 
the boundary are matched reasonably.  After the accuracy of the method 
is verified €or a single  coil,  load  characteristics of a  practical  induction 
heating  system  are  analyzed. 

I. INTRODUCTION 

I N  THE BASIC arrangement of an induction heating 
system consisting of an exciting coil and a conducting 

circular  plate,  the boundaries are not always closed but 
unbounded in free  space.  We proposed before the field 
analysis based upon the finite element method (FEM) to 
model exterior open regions satisfactorily [ 13. The basic 
technique of the method was to draw a mathematical 
sphere  to  enclose an induction heating system. The exte- 
rior energy functional was given in a simple form by ex- 
panding exterior fields in terms of the solutions of a dif- 
ferential equation governing exterior empty spaces.  The 
interior and exterior potentials were matched at the nodal 
points on the spherical interface.  The magnetic flux leak- 
age from an induction heating system and its reduction by 
a conducting ring were discussed using the method pro- 
posed [2]. 

In this paper,  the  alternative method is presented to 
analyze the unbounded field problem based upon FEM. It 
would give more freedom in the  choice of mathematical 
boundaries and hence make the interior region to which 
the  FEM is applied smaller.  First,  an arbitrary mathe- 
matical boundary is defined in free  space to contain an 
induction heating system inside. An integral relation is 
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derived on the boundary 'surface using the response func- 
tion excited by a  circular  line  current. The boundary re- 
lation gives a constraint to the  FEM analysis in  the inte- 
rior region. The method similar to this approach was 
presented first  by McDonald and Wexler in [31, [4] and 
modified in [5 ]  for  the two-dimensional electromagnetic 
field problems, although a different way of boundary con- 
straint was formulated to cope with the singularities of 
Green's functions. The general principle to combine the 
finite eletnent and the boundary integral formulation has 
been developed by Salon et al. in [6]-[8]. Our paper is 
an application of the general principle to a problem of 
practical importance. 

In the analysis of the induction system,  the  axisym- 
metric problem of quasistatic magnetic fields is solved. 
For  the discretization of the boundary integral equation, 
constant elements [9] are used in this paper, where both 
the potential and the flow on the boundary are assumed to 
be constant over  each section between the nodal points. 
On the other  hand, in the  FEM  discretization, first-order 
elements are  used.  Since the approximate functions of po- 
tentials are different in two  discretizations,  the matching 
process of potentials is necessary to  combine  two solu- 
tions. The flow is guaranteed to be continuous across each 
section in the  above approximation because first-order 
FEM elements give constant flows on the boundary. 

After the accuracy of the method described above is 
verified for  a  single  coil,  load  characteristics of a practical 
induction heating system are  analyzed. 

11. ANALYSIS 

The basic system of an induction heating to be analyzed 
in  this paper is illustrated in  Fig. 1 . In  the  system, alter- 
nating magnetic fields produced by an exciting coil induce 
eddy currents in a conducting circular plate above the coil. 
Eddy currents flow in circular paths and give rise to a 
heating effect in the  plate. 

To analyze the system in free  space, we  first draw a 
mathematical boundary S to enclose  the system as shown 
in dashed lines in Fig. 1 .  Because of the cylindrical sym- 
metry of the  structure,  the  surface of a  cylinder is taken 
as the boundary. The  FEM is applied only inside the cyl- 
inder. 
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Fig. 1. Basic  arrangement of induction  heating system and  mathematical 
boundaq. “1” is the  ferromagnetic  circular plate, and “2” is the ex- 
citing coil. 

A. Formulation of FEM 
In the above system only the  angular components of the 

current density and the magnetic vector potential are  con- 
sidered and denoted by J and A ,  respectively. They are 
all assumed to have  the conventional exp ( j u t )  harmonic 
time dependence. For the axisymmetric problem of quasi- 
static magnetic fields, the following form of equation 
holds in cylindrical coordinate system ( r ,  13, z ) :  

where p denotes the permeability of the conducting plate. 
J is given by -juuA in the plate with the conductivity u 
and by zero in empty spaces.  For simplicity the normal 
derivatives of A on the boundary are represented from now 
on as 

aA 
an 
- = q. 

Then the energy functional Z, which is the variational rep- 
resentation of (l) ,  is given by ’ A 1 2 ]  dV - 1 V (JA* + P A )  dl/ 

where the  asterisk means a complex conjugate and 

a  a 
ar  az V = - i, + - i,. 

q(F)  will be shown to satisfy the integral relation between 
q  and A on  the boundary in the next section. 

For  the discretization of the functional Z, the interior 
region is subdivided into axisymmetric triangular ele- 
ments. Let Ai be the nodal potential of the ith vertex and 
t i  the first order approximate function in the kth element, 
then an approximate solution in this element is con- 
structed by the equation 

3 

A = c &Ai (4) 
i =  1 

where by definition ti takes on the values of one only at 
node i and zero at other nodes. The functional Zk for the 
kth element is approximated by using (4) as 

3 3  3 

3 

- c (A;Dikqy) + AiDi,qy’*} ( 5 )  
i = l  

where 

S, = 2n - VEi * V& dr dz + 2a s: 
* 1 5 ti E j  dr dz + 2n jour& t; dr dz (6) s 

1;: = 2n Jr t i  dr dz s 
PO 

Here Ti take values oniy for  the elements inside the coil. 
Dik is not zero only for  the nodal points on the  boundary. 
Further, it should be noted that both the vector potentials 
and their  noimal derivatives on  the central axis always 
vanish due  to  the cylindrical symmetry of the structure. 
The total functional I is approximated by the sum of Zk in 
( 5 )  for every element.  The stationary points of Z can be 
selected by evaluating the equations aZ/ aAF for every no- 
dal point. This immediately gives the following matrix 
equation: 

where the nodal vector potentials are divided into two 
parts and written as ( A  } y’ and {A} bF’. { A }  y) denotes 
the vector for  the nodes inside the  region, and { A  } 7’ 
denotes the  vector  for  the nodes on  the boundary. 

B. Boundary Zntegral Equation 

equation as explained in (1) 
The  vector potential in free  space satisfies the following 

We now introduce the response function G satisfying 

G 
V2G - - - -S ( r  - ro, z - G ) .  

The  free space response function that is the vector poten- 
tial at ( r ,  z )  excited by a  circular  line current at ( ro, 20) 
is known as [lo] 

r2 - (11) 
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Fig. 2. Path of integration  around  a  singular  point  on  the  boundary 

where K ( k )  and E ( k )  denote  the  complete  elliptic inte- 
grals of the first and second kinds, respectively, and k is 
given by 

k2 = 4rro/[ (r  + r0f  + (z - z0,”l. (13) 

Multiplying (10) by G, (1 1) by A,  subtracting the result- 
ing equations,  and integrating over  the  exterior region, we 
obtain 

ss ( G g  - AE) an dS = 2nroA(ro, zo) (14) 

where Green’s  theorem  is  applied.  Further, considering 
that A and G are constant in  the  angular  direction, (14) is 
rewritten as 

Jc ( G g  - A F )  r ds = roA(ro, Q) (15) 
an 

for any point (ro,  zo) in  the  exterior region on the r-z 
plane. 

When we apply (15) to  the point ( ro, zo) just on the 
boundary, a little algebra i s  required because of the sin- 
gularity of the  response  function. A minute  semicircle C1 
with radius R is now described having the center  at ( r o ,  
ZO) as  shown  in  Fig. 2. On  the  semicircle, because k k 1 
from (13), using the approximations of K (  k )  % In, 
( 8ro / R )  and E( k )  k 1 ,  the response function and its 
normal derivative are approximated by 

Then, the integration along C1 in (15) are obtained as fol- 
lows: 

aG 1 
2 

r ds = -- roA(ro, zo) 

Next, when R tends  to  zero,  the right side of (1 8 )  vanishes 
and  hence (15) results  in the following integral equation 
in terms of A and aA/an: 

f, ( G g  - A”) r d s  = 5 roA(ro, zo). (19) 
1 

an 

i‘ i i’+l 

Fig. 3 .  Approximate  functions of vector  potentials  on  the  boundary. 0 
denotes  the  nodal  point  used  in  the FEM, and 0 is the  sampling  point 
used  in  the  boundary  integral  equation. 

For  the discretization of (19), we divide  the boundary 
into sections by the nodal points used in  the  FEM and set 
sampling points defined at  the  center of each section; 
When we assume  that A and aA/ an are uniform across 
each section,  the  above integral equation results in a ma- 
trix equation: 

P I  { q l ?  - [ H I  { A ) ? )  = ( 0 ) .  (20)  

The elements of the matrices [ F 1 and [HI  are given by 

I ’  z r i ,  i = j  

where ri denotes the r coordinate of the ith sampling point 
and wi is the length of the ith section. GU and ( a G / a n )  
in (21) and (22), respectively, are formulated easily by 
using (12) because aG/an takes  the values computed from 
aG/ar and aG/az,  which correspond to  the position of 
the observing point on the  boundary. 

C. Coupling of the FEM to the Boundary Integral 
Equation 

In Sections 11-A and 11-B, the different approximate 
functions of vector potentials are used in the discretiza- 
tions.  In  the FEM discretization, first-order elements are 
used and constant elements are assumed for the discreti- 
zation of the boundary integral equation. On the other 
hand, the normal derivatives  across each section on the 
boundary are guaranteed to be continuous in the discreti- 
zations because first-order FEM elements give constant 
flows on the boundary: 

Consequently,  to couple the  FEM  analysis  to  the bound- 
ary integral equation, only the  vector potentials differ- 
ently approximated on the boundary should be matched 
reasonably. It  is easy to understand from Fig. 3 that the 
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following relation must apply to make the average poten- 
tial over each section equal.  Thus 

AIB) = 4 (Ai? + A;:;,} (24) 

where the superscripts ( F )  and ( B )  correspond to the 
FEM analysis and the boundary integral equation, respec- 
tively. In a matrix form, the relations are written as 

( A ) ? )  = [C] ( A ) r )  (25 1 
where [ C ]  is constructed only by the components of zero 
or one half, Coupling the three matrix equations (S), (20), 
and (25) ,  we can finally obtain 

I 
I 

C 

I 
I 

C 

I 
1 
I 

B 

[ SIC 1 Fig. 4. Single coil with square  cross  section. a = 2 cm, b = 7 cm. and c 
= 10cm. 

X (26) 
2.5 

~ analytic solution 

The equation indicates that the vector potentials in the 
interior region are determined only if the excited currents 
of the coil are  given. 

- 
\ a ,. 

111. NUMERICAL RESULTS ’: L X 1.5 

A. Single Coil with Square Cross Section - c z 
As an example of the method described,  the magneto- 

static fields due to a single coil with square cross section 
shown in Fig. 4 are computed first to check the compu- 
tation accuracy. The current distributions are assumed to 
be of axisymmetric uniform throughout triangular the elements cross section. are used A to total divide of 240 the 0 .G f \  
interior region, and 32 nodes are set on the boundary.  The 
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computed nodal vector potentials  along  the mathematical 
boundary are shown in Fig. 5 and compared with the an- 
alytic solutions that are determined by the integration of 
(12) over the cross section of the coil. Discrepancies are 
observed around the boundary near the  coil, but the com- 
putational error is within about 3.6 percent. 

Inductance L of the coil will give another measure of 
the computational accuracy for this problem. L is known 
to  be computed from the magnetic energy functional (3) 
if it is multiplied by 2 /(total current)’. However,  since it 
is the variational representation of inductance, this method 
should not be applicable to check the accuracy of the com- 
puted potentials.  Therefore, inductance is computed here 
from the input voltage when the total exciting current is 
taken to have unity value: 

The computed inductance is found to be 0.185 pH while 
the exact inductance determined by the analytic solutions 
is given as 0.189 pH. 

B. Induction  Heating  System 
Before analyzing the practical induction heating sys- 

tem,  a simple induction heating model shown in Fig. 6 is 

0 

Fig. 5. Computed nodal vector potentials along  the mathematical bound- 
ary compared with the  analytic  solutions, A ,  B ,  C ,  and D on  the abscissa 
indicate the positions on the boundary shown in Fig. 4. 

z - 
I 

I 
Fig.  6. Simple induction heating model. rl  = 16 cm, r, = 2 cm, r, = 11 

cm, d ,  = 2 mm, d2 = 8 mm, d, = 5 mm, o = 3.61 X lo6  S/m. 

tested first. In the induction heating system,  since fields 
are expected to be concentrated strongly around the sur- 
face of the ferromagnetic conducting plate due to skin ef- 
fect, axisymmetric triangular elements with height about 
a half of skin depth are arranged along the inside surface 
of the conductor. In calculation,  708 elements are used in 
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Gg. 7. Computed  magnetic  field-distributions at 20 kHz. (a) Ferromagnetic  conducting  plate  with p ,  = 1270. (b) Normal 
conductor  with p r  = 1 .  

the interior region and 37 nodes are set  on  the  boundary. 
The  computed  magnetic field distributions are illustrated 
in Fig. 7(a) and (b) for ferromagnetic and  normal con- 
ducting plates, respectively. They  show  the distributions 
at the 'operating  frequency of 20 kHz. In  Fig. 7(a) for 
ferromagnetic plate with relative permeability p r  = 1270, 
the  magnetic fields are  found  to  be concentrated to the 
bottom of the plate with  the skin depth of 0.05 mm. On 
the contrary,  for the normal  conducting plate with p r  = 
1 ,  due to the relatively thick skin depth of 1.9 mm, a large 
amount of currents induced inside the plate push out the 
magnetic flux from  the  plate, cancelling the originally ex- 
cited magnetic fields. Further, there is more' leakage of 
magnetic flux over the top of the plate because of the 
weaker shielding effect of the normal conductor. 

Next,  the practical induction heating system  with  more 
complicated cross section shown in Fig. 8 is analyzed. A 
ferrite disk placed  under the coil is practically used for 
shielding strong magnetic fields produced by the exciting 
coil. In  the  analysis,  two  mathematical  bouodaries  are  de- 
fined in the induction system. One contains the exciting 
coil and  the  ferrite  disk,  and  the  other contains only  the 
vessel. When the separation between  the  two regions is 
varied to analyze the load characteristics of the exciting 
coil as a function of distance between  the vessel and  the 
exciting coil,  the numerical  method  mentioned before is 
applied without any  change of the finite elements in the 
interior regions. In  calculation, 790 elements  are  used in 
the interior region and 220 nodes  are  set  on the boundary. 

I 

I' EXCITING COIL 

FERRITE DISK 

Fig. 8. Practical  induction  heating  system. R, = 98 mm, Rb = 90 mm, R, 
= 25 mm, Ta = 1.2 mm, Tb = 3  mm, T, = 5  mm, Do = 79 mm, Db = 
10 mm, D, = 2.5 mm. Vessel: p = 6.28 X IOd4 H/m, u = 1.02 X lo7 
S/m. Ferrite: p = 1.69 X H/m, u = 0. Coil: 22 turns. 

In  order  to  determine  the input impedance 2 of the ex- 
citing coil,  the input voltage is calculated from the follow- 
ing equation when  the input current is taken to have unity 
value: 

where N b the  number of turns of the exciting coil and S 
denotes the total cross section of  the coil. If the input 
impedance  is represented simply  as 2 = R + joL, the 
variation of R and L as a function of the distance Db be- 
tween  the vessel and  the exciting coil are  computed as 
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Fig. 9. Input  impedance of the  exciting  coil  as  a  function of distance Db 

between  the  vessel and the  exciting  coil Z = R + jwL. 

shown in  Fig. 9 at 25 kHz. R is found to decrease with 
distance because  the induced current  decreases with dis- 
tance, which makes  the power dissipation in the vessel 
smaller. On the  other  hand, L increases with distance. This 
is due  to  the fact that the  original magnetic fields excited 
by the coil are cancelled less by the  smaller induced cur- 
rent in  the vessel as  the separation  increases.  In  the  limit 
of infinity of the  separation, L approaches to 74.4 pH, 
which is  the inductance of the exciting coil without any 
load in  free  space. 

A real equivalent circuit describing the induction heat- 
ing would be more complicated than that discussed here. 
A mutual coupling circuit model may be a candidate  for 
a one-port equivalent circuit to represent the load char- 
acteristics of the exciting coil. We will study this model 
further  in  order to design  the  inverter  circuits that drive 
the induction heating system. 

IV . CONCLUSION 
The  FEM combined with the boundary integral equa- 

tion has been discussed to  solve  the magnetoquasistatic 
unbounded problems with cylindrical symmetry.  The ap- 
proach described here is superior  to  the method proposed 
before  in  the  sense that the mathematical boundary can be 
defined arbitrarily. The method has been applied well to 
obtain load  characteristics of a practical induction heating 
system. The  load  characteristics of an exciting coil may 
be important in the design of the inverter circuits that drive 
the induction heating system. 
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