
IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 3, MAY 2003 1535

Coupling Between Finite Elements and Boundary
Elements for the Numerical Simulation of Induction
Heating Processes Using a Harmonic Balance Method

Romain Pascal, Philippe Conraux, and Jean-Michel Bergheau

Abstract—For the modeling of induction heating processes,
strongly coupled magnetodynamic and thermal problems can
be solved together within the same finite element. This is called
the direct method. In this case, the electromagnetic quantities
are expressed through Fourier series according to the harmonic
balance method. In this paper, each harmonic is calculated in the
whole space by using the coupling between finite elements and
boundary elements. Especially suitable when moving parts are
involved and because the mesh of air is unnecessary, it is shown
that this coupling is still successful if the direct method is used.
At the end, the efficiency of this approach is illustrated with an
example.

Index Terms—FEM-BEM coupling, harmonic balance, induc-
tion heating, numerical simulation, strong coupling.

I. INTRODUCTION

T HE numerical simulation of induction heating rests on the
modeling of both magnetodynamic and thermal nonlinear

phenomena. These phenomena are strongly coupled because
of the temperature dependency of the electric conductivity
and nonlinear magnetization curves and the heat source due to
Joule effect. Time constants associated with magnetodynamic
and thermal phenomena differ considerably. Then, transient
simulations for each problem are performed alternatively. The
strong physical coupling is achieved with several loops back
between both analyses at each thermal time step. Unfortunately,
such a staggered method is very time consuming.

The direct method has been introduced in [1]. In this paper,
magnetodynamic problem is solved considering only one har-
monic of the electromagnetic unknowns and a modified mag-
netization curve [2]. The alternative method proposed in [3] is
to take into account several harmonics according to the har-
monic balance method [4]. In [5], comparisons between stag-
gered and direct methods lead to the conclusion that a good com-
promise between time consumption and accuracy of results can
be obtained.

In this paper, we deal with the numerical coupling between
finite- and boundary-element methods (FEM and BEM) to solve
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the magnetodynamic problem in the whole space, each one com-
bined with the harmonic balance method. This coupling tech-
nique is especially useful for the modeling of unmeshed air be-
tween moving parts involved in heating processes [6].

This paper is divided into four main parts: magnetodynamic
analysis, thermal analysis, direct method, and application
example.

II. M AGNETODYNAMIC ANALYSIS

A. Magnetodynamic Problem Solved With the Harmonic
Balance Method

Even if the source currents are perfectly sinusoidal,
the induced field inside the piece contains other higher
harmonics due to the nonlinear electromagnetic prop-
erties. Instead of performing a transient analysis, the
harmonic balance method can be used. This method
consists in calculating the first terms of Fourier series
of the different electromagnetic quantities as follows:

where is the fundamental angular frequency that is the
angular frequency of the source currents.

From Maxwell’s equations, neglecting displacement currents
and introducing the magnetic vector potential, the magneto-
dynamic problem can be written as follows:

with div (1)

where is the electric conductivity, the magnetic reluctivity,
and the source current density.

For an axisymmetrical geometry around an axis, the source
current density and the magnetic vector
potential present only one nonzero com-
ponent depending on radial and axial coordinates. In this case,
the second equation in (1) is automatically satisfied and first the
equation in (1) only has to be solved in direction.

By using the harmonic balance, (1) is now replaced by the
following equations, with :

(2)

(3)
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B. Harmonic Balance and Boundary-Element Methods

The method coupling finite elements in the nonlinear conduc-
tive media and boundary elements in air has been successfully
applied in [6] for induction heating simulation. By the way, the
electromagnetic problem is perfectly solved in the whole space
without any mesh of air. This approach is particularly well suited
when moving parts are involved.

We assume that the whole space is subdivided into conduc-
tive regions , possibly containing source currents, and air
region , free of any source current. represents
the common FEM-BEM boundary, and and

are the unit outside normals to from
and respectively.

In , is the solution to the following equation:

x (4)

with boundary conditions

to infinity (5)

Continuity to and div on (6)

on (7)

The vector Laplace equation with boundary conditions has to
be solved for each sine and cosine part of the har-
monics of the magnetic vector potential. Therefore, it leads to
the resolution of the following equations for :

and (8)

where and represent the cosine and sine parts of the
harmonic of order.

Both equations in (8) give rise to the following boundary-
element equations:

(9)

(10)

where ( for the cosine part and for the
sine part) is the unknown vector containing the nodal value of

the part of the harmonic of the magnetic vector potential in
. In the same way, corresponds to the elec-

tromagnetic variable defined in (7). Refer to [6] to get matrices
and .

C. Coupling Between FEM and BEM

Let us consider a mesh of ( nodes) and a compat-
ible mesh of ( nodes). The whole space is
subdivided in elements . All elements are connected between
them with nodes. In each element, the spatial approximation
of is the following:

(11)

where represents the number of nodes connected to element
, the unknown value at nodeof element , and the

shape function associated with nodeof element .
Equations (2) and (3) give rise to the resolution of the fol-

lowing equations for :

(12)

(13)

Each of the residual vectors has compo-
nents. The total number of degrees of freedom is then equal
to in this problem. Residual vectors are obtained
through assembling the element residual vectors given at the
bottom of the page, with for example

(16)

Since compatible meshes are used for and ,
the conditions defined in 6 are automatically fulfilled. More-
over, is now a subset of limited to the nodes

(14)

and

(15)
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belonging to . Let us now suppose that the term
is defined from nodal values contained in a vector
( components) by using shape functions of the elements lying
on the boundary of . Then, equation (7) leads to the fol-
lowing relation:

(17)

By considering the vectors:

we obtain the following vector:

(18)

Matrix is obtained by assembling the element quantities:
. The vector (18) can then

be replaced by the following one:
thanks to (17) and (9) or (10). This matrix term represents
the contribution of air to the resolution of magnetodynamic
nonlinear problem by using the FEM inside conductive media.

III. T HERMAL ANALYSIS

For the thermal analysis, the following equations have to be
solved:

div in (19)

on (20)

on with (21)

where , , , and are the temperature, the density,
the specific heat, and the thermal conductivity, respectively, and

is a bounded domain (boundary ) representing all the con-
ductive media.

represents the power losses through the Joule effect. The
mean power over one periodof the source current is equal to

. Considering the expression of
through a Fourier series, can be written as follows:

(22)

IV. DIRECT METHOD

The finite-element approximation uses degrees
of freedom at each node ( being the order of the highest
harmonic considered), namely the temperature and the sine and
cosine parts of the harmonics of the magnetic vector
potential.

The application of the FEM then leads to the resolution of a
system of coupled nonlinear equations for each node and
at each thermal time step

(23)

The first equation in (23) corresponds to the thermal problem.
The other equations correspond to the finite-element for-
mulation associated with (2) and (3). These equations are solved

Fig. 1. Mesh of the device — steel part and inductor.

using the Newton-Raphson method. Iterations are performed
until either the maximum absolute value of the nodal residual
[see (23)] or the maximum variation of degrees of freedom be-
tween two successive iterations become less than prescribed
thresholds. In our case, these thresholds are defined propor-
tionally to the values obtained at the beginning of the iteration
process using the coefficient .

V. APPLICATION

We consider the heating of a steel piece using a static
single-turn copper inductor. The simulation is performed under
an axisymmetric assumption and, for symmetry reasons, only
half of a meridian section is considered (Fig. 1). The whole
mesh (component + inductor) includes 1340 elements and 1323
nodes. Air is not meshed and treated with boundary elements.

The electromagnetic properties of the component are tem-
perature-dependent. The electric conductivity m is
defined as a piecewise linear function defined by a series of

values where the temperature is C . The following
couples of values are used: , ,

, , ,
, , ,
. The magnetization curves are defined by

the formula: (
in Tesla and in A m ) where m and
the coefficient depends on the temperature. Temperature
and coefficient are related by a piecewise linear function:
(0,1.6), (200,1.588), (400,1.552), (500,1.522), (600,1.474),
(650,1.432), (700,1.360), (735,1.240), (740,1.120), (745,1.0),
(768,0.0). The following thermal properties have been
considered: kg m , J kg K and

W m K . For the inductor, m ,
, kg m , J kg K and
W m K . A sinusoidal voltage V is

applied to the inductor during 2.6 s and its frequency is equal
to 50 kHz.

The finite-element software SYSWELD is used for all calcu-
lations. Two simulations are performed with the direct method
considering only one harmonic for the first one and two har-
monics for the other one. A third simulation has been performed
with a staggered method considering a strong coupling between
both phenomena and three periods of the source current. This
simulation is considered as the reference because it fully ac-
counts for all the nonlinear phenomena. For all simulations, the
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Fig. 2. Characteristics of the different simulations.

Fig. 3. Temperature profiles between A and B at different instants.

thermal time step is equal to and the accuracy
associated with the Newton-Raphson solution procedure is the
same for all. Fig. 2 summarizes the characteristics for all simu-
lations that have been realized. Fig. 3 gives temperature profiles
between nodes A and B (see Fig. 1) at different time steps from
0.2 to 2.6 s every 0.2 s for simulations 3 and 2. At the end of the
process simulation, the temperature has reached a maximum of
about 1347 C in B and 571 C in A (simulation 3). If now both
profiles are subtracted, it is calculated that the maximum tem-
perature difference is found maximum at node (0.0088,0.0) at
time . This quantity is equal to C and the tem-
perature at this node is equal to 623C (simulation 3). It means
that the maximum temperature difference between the staggered
and direct (two harmonics) simulations is less than 7% (checked
for all nodes at any time) whereas the total elapsed time is ap-
proximately reduced by a factor 3.5 with simulation 2. If now
the same comparison is made for simulations 3 and 1, it leads
to a very high maximum temperature difference equal to 30% at
node (0.009 22,0.0), , C and C
(simulation 3).

In Fig. 4, the evolution of the temperature as a function of
time, from s till s, is represented at different
points of the heated surface i.e., B, F, G, H, I, J, and K. The
curves highlight the fact that the properties of material are non-
linear. The comparison between simulations shows that, for the
operating conditions of this simple example, the direct method
with two harmonics gives quite accurate results compared to
the reference. The advantage of the direct approach is that the
total elapsed time is reduced in comparison with the staggered
method which requires a lot of savings and readings on the phys-
ical disk of the computer.

Fig. 4. Evolution of the temperature in differents nodes as a function of time.

VI. CONCLUSION

The paper presents only comparisons between numerical for-
mulations as no experimental measurement concerning the ex-
ample presented above is available. Comparisons with other
numerical methods such as the one using a modified equiva-
lent reluctivity is in progress. The presented results prove that
the coupling between finite elements and boundary elements
is successful when the harmonic balance method is associated
with. Combined with the direct method which strongly couples
magnetodynamic and thermal nonlinear problems, it represents
an interesting tool for the numerical simulation of induction
heating processes. The direct method is easier to use and is com-
patible with the use of boundary elements which avoids any
meshing of air and simplifies the treatment of moving parts. It
gives also accurate and faster results than a staggered method. It
could be very simple to apply the direct method to an example
including moving parts.
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