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Power Dissipation and Magnetic
Forces on MAGLEV Rebars

Markus Zahn,Fellow, |IEEE

Abstract—Concrete guideways for proposed MAGLEYV vehicles x
may be reinforced with electrically conducting and magnetizable
steel rebars. Transient magnetic fields due to passing MAGLEV ¢
vehicles will then induce transient currents in the rebars leading
to power dissipation and temperature rise as well as Lorentz

and magnetization forces on the rebars. In order to evaluate
if this heating and force on the rebars affects concrete life
and performance, analysis is presented for an infinitely long
conducting and magnetizable cylinder in imposed uniform axial

or transverse magnetic fields. Exact and approximate solutions
are presented for sinusoidal steady state and step transient
magnetic fields inside and outside the cylinder, the induced . A .
current density, the vector potential for transverse magnetic ®H="'z Re[Hy eJ®t]
fields, the time average dissipated power in the sinusoidal steady
state, and the total energy dissipated for step transients. Forces
are approximately calculated for imposed magnetic fields with a fo
weak spatial gradient. The analysis is applied to representative
rebar materials. A ,
o H=1i, Re[H, eJ®t]
Index Terms—Eddy currents, MAGLEV, magnetic fields, mag-
netic forces, rebars. Fig. 1. A cylinder of radiusR, ohmic conductivitys, and magnetic perme-
ability p is placed in a uniform magnetic field that is either para(llHIor_i;)
or transverse{HJx) to the =z directed cylinder axis and varies sinusoidally
|. BACKGROUND with time at angular frequency.

ONCRETE guideways for proposed MAGLEV vehicles

may be typically reinforced with steel rebars which arat most a weak gradient, so that the magnetic-field distribution
electrically conducting and magnetizable. In the presence afn be taken as if the imposed field was uniform. The gradient
transient magnetic fields due to passing MAGLEV vehiclefield analysis is necessary to calculate the force on the rebar
transient currents will be induced in the rebars leading thue to field gradients. In a purely uniform magnetic field,
electrical power dissipation and local temperature rise. Thigere is no net force on the rebar due either to the Lorentz
induced currents in the presence of a time-varying magnefirce on the induced currents or to magnetization. The analysis
field will also cause a transient Lorentz force on the rebaeparately considers the imposed magnetic field to be purely
in the direction of weaker magnetic field and thus in thaxial or purely transverse to the cylinder axis as shown in
direction away from the vehicle. If the rebar is magnetizabl&jg. 1. The analysis separately considers the sinusoidal steady
there is also a magnetization force in the direction of strongstate, applicable when many sinusoidal cycles occur, and to
magnetic field and thus in the direction toward the vehiclstep time transients. The analysis is specifically applied to the
The relative strength of these opposing forces are time varyirgpresentative rebar materials listed in Table I.
and depend on the magnetic permeability of the rebar, the skin
depth, the magnetic diffusion time, the magnetic-field gradient,
and the bar radius. The heating and transverse force make
it necessary to study if the concrete strength is maintained )
over the usual life in the presence of time-varying magnetfe Maxwell's Equations
fields. In order to develop engineering guidelines, the rebarMaxwell’s field equations in the magnetoquasistatic limit for
magnetic problem is idealized by considering an infinitelg material with constant magnetic permeabilitand constant
long cylinder with constant ochmic conductivity and constardhmic conductivitys are [1, p. 437]
magnetic permeability with the imposed magnetic field having
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TABLE |
ELECTRICAL PROPERTIES,REPRESENTATIVE SKIN-DEPTHO = /2/(wuo) AT 60 Hz, AND REPRESENTATIVE
MAGNETIC DIFFUSION TIME 7 = g R? WITH R = 1 cm oF VARIOUS METALS AT 20°C

Material /o o (Siemens/m) 68t 60 Hz (mm) rwithR=1cm
Copper 1 5.80x 107 8.5 7.3 1ns
Aluminum 1 3.53x107 10.9 4.4 ns
Steel: mild 5000 8.47x 108 0.316 5.3 ps
stainless 1 1.10x 106 62.0 0.14 ns
13 Mn 1.01 1.41x 108 54.5 0.18 ns
Grade 50 Rebar 3800 4.46%10°8 0.499 2.1 ps
Grade 60 Rebar 3800 4.35x10° 0.505 2.1 s

These can be combined into diffusion equations for the mage treated here, the magnetic permeability is uniform within a

netic field  or the current density’ cylinder and within the surrounding free space. The magnetic
- permeability varies with position only as a step when crossing

V2H = /w% (4) the r = R interface where the tangential componentsﬁﬁf

82 Hy, andH , are continuous, while the normal componenﬁ)f
vij = uaﬂ' (5) B,., is continuous. Since the magnetic permeability is constant

ot everywhere except at the = R interface whereu (i) and

M(lf) take steps, we have that

B. Boundary Conditions

Boundary conditions at interfaces of dissimilar materials are  Vp(7) = (j1, — p1)6(r — R)i,
the continuity of tangential = (1o — 11)8(r — R)[ir cos ¢ + 7, sin ] (12)
U A R 1 1 1 -
i x [Hy - Hy] =0 (6) VCF0:<__—5@—mu
and continuity of normalB = pH a ulo lf
. . o === 2)8(r—R)[iycosd+i,sing|. (12
i+ [ Hy — piaHo] = 0. (7) <No N) \ b ¢+ iysingl (12)
C. Dissipated Power The spatial impulse at = R, §(r — R), indicates that the

magnetization force is a surface force. With,, H., and B,

The instantaneous power dissipated per unit axial ledth, -ontinuous through the interface, (10) reduces to

in the lossy cylinder of radiug is

o o R 27
R 27 |72 _ _ H2%(r = H?(r =
P= / / FE, g, ® M7 Azo [(“ Ho) [HE(r = R) + HI(r = R)]
=0 J ¢=0 g 1 1
o +K@:RK———H
D. Force Per Unit Axial Length Mo M
1) Lorentz Force: The magnetic force per unit axial length X [iq cOs ¢ + iy sin ¢lde (13)

on the cylinder due to the Lorentz force on the induced currents . . . R
in the magnetic field is where it was convenient to replace the radial unit vectdey

its Cartesian components to explicitly show thelependence

> e T x plrdrde ) of i,.. If |[H(r = R)|? is an even power trigonometric function
L= =0 J =0 a ' of ¢, the integration of (13) is zero. This will be the case if the
2\ M tization F Th tization f i applied magnetic field, whether axial or transverse, is uniform.
) Magnetization Force:The magnetization force on lin- To approximate a realistic magnetic field configuration with a

ear magnetizable material with magnetic permeability thgﬁght nonuniformity over the cylinder, we take the applied
depends on space is magnetic field to be of the form

. 1 R 27 . N N
fu=-3 / / |H >V u(7yrdrde H = H,[1 + asin¢] (14)
r=0J¢=0

1 B e ) ) . where ¢ iS a measure gf the magnetic-field gradientﬂ. The
= —5/7:0 AZO [Hg + HZ] V() magnetic field is(1 + «)H, at ¢ = x/2 and is(1 — a)H,

at ¢ = — /2. With a positive, the field is bigger for positive

_ B?V(L) }Tde(/)- 10) Y tha_n for neg_ativg. If |a| < 1,_the magnetic fiel_d and current
! w(7) density solutions are approximately correct if the imposed
uniform field is replaced by (14). For our numerical case

We separately write terms of tangentiﬁl and normalB at studies we take: = 0.1, corresponding to a maximum of
the cylindrical interface at = R because in the problems to+10% magnetic-field variation at the left and right hand
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cylinder edges compared to the top and bottom of the cylind€or our problemn = 1 so that (22) reduces to
ato = 0,7 in Fig. 1. 7r|ro|2R

(P) = L
n. A M = o6|Jo[(1 — J)R/E]]
e SNUSOIDAL Sreany St < R{( — DAL = )R+ )R/61). (24)

A. Exact Solutions for Magnetic Field and Current Density C. Nondimensional Solutions

It is convenient to use dimensionless variables by normal-

With an applied uniform axial magnetic field in the . . . . o A
direction varying sinusoidally in time with angular frequenc;'/Zlng all variables to the applied magnetic field amplitude

w, as shown in Fig. 1, the total magnetic field within th(glnd to the cylinder radiugt

cylinder remains purely directed and is of the form . ﬁ]z(r) - . N -
. . L H.(F) = ——, Ju(F) = Ju(r)R/H,, T =7r/R, 6 =6/R;
H(r,t) = R{H.(r)e**}1.. (15) H,
py= bl 25
The diffusion equation of (4) then becomes (P)= 7r|fI 2 (25)
1d{ dH, . i
laf, — jouoH. (0<r<R) (16) so that the solutions of (20) and (21) are
rdrdr o B[ - )i/
- : H ()= 25 = === (26)
Defining the skin depth as H,  J,[(1-4)/9]
5=\ (17) Jury = 2R QoD A= )
wHo H, 6 Jo[(1 = 5)/0]
(16) is Bessel's equation [2, Sec. 4.8-4.10], [3] Foré > 1 the magnetic field is fairly uniform over the cylinder
5 N Ly cross section, and the current density is approximately linear
7,2d H. dH. _Zjr 7. =0 (18) Wwith radius with peak amplitude &@t= 1. As 6 becomes much
dr? dr 6 less than unity, the magnetic field and current density decrease
with solutions that satisfy the boundary condition exponentially fromy = 1 with penetration depth about equal

to 6. As 6 becomes small, the current density becomes very

H.(r=R)=H, (19)  |arge at7 = 1 approaching a surface current &s- 0.

as . . The nondimensional power per unit length from (24) is
HZ(T) — HOJO[(]' _J)7/6] (20) N <P>O’
Tl =R/ Py=— s
The current density is obtained from Ampere’s law as 1 0~
S N = | |l
TV x = Jy(r) = - - Ho0=5) KL =5)r/8] o . .
dr 6 Jol(1=J)R/8] _ R = DA[A = 5)/6] [+ 5)/41} (28)
(1) 81Jo[(1 = /8] '

Fig. 2 plots the nondimensional dissipated power per unit

) o ) length in (28) versus nondimensional skin depth= §/R.
The time average power dissipation per unit length aftqﬂ;g' 3 applies (24) to the materials in Table | and plots

B. Exact Solution for Dissipated Power Per Unit Length

integrating overs in (8) is then dimensional dissipated power per unit length versus frequency
R |j¢|2 fin hertz, f = w/2m, for a representative cylinder radius of
(P)y = / rdr R = 1.0 cm with an applied peak magnetic field strength of
r=0 7 lnoH,| = 0.5 T.
B 27| H,|?
062 Jo[(1 = j)R/6]|? D. Force Per Unit Length
R

% / I = )r /8l [(1 + j)r/8]rdr.  (22) 1) Lorentz Force Per Unit Lengthin a perfectly uniform
r=0 applied field, the Lorentz force of (9) would integrate to zero.
The last integral is a Lommel integral [3, pp. 102-104], [4We thus assume that the applied magnetic field has the slight

Appendix B], [5, p. 199] which is exactly integrable nonuniformity over the cylinder given by (14). The Lorentz
volume force density [Nn?] is

R
/ (14 5)r/81n[(1 = 5)r/éldr Fp = JxpH = plsH.0, = pJyH.[cos ¢l +sin i) (29)
r=0

_Ré . p where we convert to Cartesian coordinates to explicitly show
2 R = DIl = ) BE/8 [+ DR/ (23) the ¢ dependence af.. Substituting (29) into (9) gives the time
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Fig. 2. Nondimensional dissipated power of (285) = (P)c/[r|Ho|?],
versus nondimensional skin depth= 6/, in a lossy magnetizable cylinder

Log[non-dimensional Skin Depth, delta/R]

placed in a uniform axial magnetic field.

mild steel

Grade 50 and 60
Rebar Steel

or 13 Mn steel 4~~~

stainless steel

Log[Power Dissipation (watts/meter)]

-2 0 2
Log [Frequency (Hertz)]

Fig. 3. Dimensional dissipated power per unit length (W/m) of (24) for

Fig. 4. Magnitude of nondimensionaty directed Lorentz force per unit
length of (32),(fLy) = (fLy)/[mapR|H,|?], versus nondimensional skin
depth,6 = 6/R, of a lossy magnetizable cylinder placed in a uniform axial
magnetic field.

so that (30) becomes
<fL' > — <fLy> — 1
Y mapRIH 2 81,1 - ) /8

cn{@ =) [ Rl -/ + v

(32)

The integration over is done numerically and gives the
nondimensional plot in Fig. 4.

E. Magnetization Force Per Unit Length

an axial magnetic field versus frequency in hertz for materials in Table | The time average of the magnetization force in (13) with
for representative radiu® = 1.0 cm with peak magnetic field strength the weak gradient magnetic field of (14) is

loHo| = 0.5 T.

average Lorentz force per unit length as purely directed
({frz) = 0), in the direction of weak magnetic field

1 R 27 A
(fry) = §§R / / pd o HY sin grdrde
=0 J ¢=0

plH,[?
26]J,[(1 = 5)]R/6]?

R 27
X §R{(1 =) /:0 Azosin¢[1 + asin ¢

% Jol(L+ /8l - j)r/é]rdrm}

_ rapliLp
8] Jo[(1 = §)R/8]|2

R
% m{ | a-paia-praia +j>w/61rdr}.

~=()

It is also convenient to nondimensionalize all forces per unit

length as

N
N R

(30)

(31

1

<ﬁw> = Z(N - No)|ﬁ0|2R

27
X / [1 + asin ¢]?[i, cos ¢ + Zy sin ¢p|d¢ (33)
¢

=0

which has{fns») = 0 and

(St} = 500 = 00) Ho P (34

Fig. 5 plots the magnitude of the dimensionakcomponent

of the total time average force per unit axial lengtliy) =
(fry)+{fny), versus frequency for materials in Table | taking
R to be 1.0 cm,a = 0.1, and |z, H,| = 0.5 T. Note that

for nonmagnetic materials and for magnetic steel materials at
high frequency when the Lorentz force dominates, the force
is always—y directed, that is, in the direction of decreasing
magnetic field. For magnetic steel materials, the force-is
directed at low frequencies due to the cylinder magnetization
being attracted to strong magnetic field regions. The dips in
the force curves of magnetizable steels show the force passing
through zero as it reverses sign on the log-log plots.

F. Approximate Limits

It is clear from the breakpoints in dissipated power and
force plots of Figs. 2-5 that the solutions have approximate
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depth thick layer at the; = R surface. With the magnetic
field at» = R equal toH, dropping to approximately zero
within the small distancé from the interface, the effective

+y Force

2.5 lumin . . . . . .
> ! F surface current density, which equals the discontinuity in
13 Mn steel +y Force ~y Force -y Force . A~ . oA A~
0 — mild steel tangentialH at the interface, ig(, ~ —H,. Then the volume
Grades 50 . . . . . . . .
a6 current density magnitude within this skin depth thick layer is
ebar ee.
-2.5

|Js| ~ |K,/8| ~ |H,|/8. The time average power dissipated
per unit length is then approximately

stainless steel

Log [Abs [Force] (newtons/meter) ]

1 |J¢| |H,*rR

lim (P) =~ 5
o

§/RK1

2 RS ~ (39)

-2 0 2 4 6
Log [Frequency {(Hertz)]

in agreement with (37).
Fig. 5. Magnitude of the total dimensional force per unit length (N/m) in  Qjmi i ; ;
the y direction versus frequency in hertz due to the sum of Lorentz an Slmllarly’ (38) can be verified by appr0>.<|mately computlrlg
magnetization forces of (30) and (34) from an axial magnetic field with §1€ Lorentz force on the surface current in the weak gradient
weak gradientz = 0.1, in the y direction given by (14) for representative magneu(; field of (14)
radiusR = 1.0 cm W|th peak magnetic field strength pf, H, |=05T.

—

lim (fr)
limiting expressions for skin depth large or small compared ¢/R<1
to cylinder radius. 1 EL .
1) Small Skin Depth Limiti/R < 1: Whens/R < 1,the  ~ 3% [, FKxpH R
zero and first order Bessel functions approximately reduce to 1 2
[2, Sec. 4.9] = —§R/ Ky H* i, Rdg
47 Jumo
_ i\ o(L+)r/8 R -Ho 2 27 . .
L1 = )]~y =) € _ _MRIAF / [1 + asin ¢]*[i, cos ¢ + i, sin ¢]d¢
T 2 4 $=0
§(L — ) ettt/ pRmalH,y|?
ACERIOES e @y o el (40)

Then the dimensional and nondimensional magnetic field apghen (40) is added to the magnetization force of (34), the

current density distributions approximately reduce to

total time average force per un

it length agrees with (38).

2) Large Skin Depth Limity/R > 1: Whené/R > 1, the
zero and first order Bessel functions approximately reduce to

Ay~ A, / L+ =R)/5

[2, Sec. 4.8]
HZ(7)N AN (1+J)(7—1)/5 .,
}{ Jo[(l—j)r/6]~1+@
Jo(r) = o \/» (L) (r=R)/6 Gy )
ACETOIS P*@} 1)
AGES J¢1(LI)R - (15 \/7;]) G-V (3p)

It is necessary to expand to ordefs® in order to properly

The dimensional and nondimensional time average d|55|paﬁ§”dCU|ate the first order force per unit axial length which varies
power per unit length and time average total force per urié1/6*, as in some cases the higher order terms integrate to

length in the weak gradient magnetic field of (14) are then Zero. The dimensional and nondimensional magnetic field and
current density distributions then reduce to

TR|H,|?
(P THH0L
Po 1 B ~ B, 2]
= o1 (37) [1+526]
miH|* o 7.(r) 1+ i
pomalt - H.(7) = A 20 42
(o)~ =P A O="h, "1 L “2)
e <fy> Ho . I;[ iR2 22
)= —"Y P2 38 N oy _dHe 1y I A
Vol TapR[H, 2 2p %) Tolr) ~ =g {1 252} {H 452}
T e Y a2
To approximately verify (37) we realize that for small skin Jy(7) = ‘]‘?5(])R _{_7[ — %} {1 i } (43)
depth, all the current is approximately confined to a skin H, 62 202 462
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The approximate dimensional and nondimensional power p w4
unit length and force per unit length in a weak gradient \

magnetic field are then

_ TRYH,|?

(P)~ 4064

o (Pl 1 H
<

R4
()~ |50 = ) = s |t

<f > 3r/4
~ : 1 o 1
(fy) = — 50— =~ —<1 — ’“‘—) - (45
mapR|Hy |2 2 I3 206
These results can also be checked with a simple approximat
model. If the skin depth is much larger than the cylinder radius,
the internal magnetic field approximately equals the imposed
field, H.(r) ~ H,, and the induced magnetic field due to

induced eddy currents is small. Applying the integral form of

\

|

Faraday s Law to a circular contour of radmapprox|mate|y Fig. 6. Magnetic field lines of (58) withl,, real at various values abt
glveS

0 4
j{ E.dl _i / B.da= E2mr = —7”’2#@ (46)
c dt Jg dt ) \\\' [

given at upper left during the sinusoidal cycle for= 0.5 andg/po = 1.

which can be solved for the induced current density as

) J l\h

o N our N Iir

Jo(r) = oEu(r) = =22 julH, = -2 H,  (47)

2 52

which approximately agrees with the predominant term in (43).
The time average power dissipated per unit length is then

" el
lim (P) = 5/ 2mrdr

§/R>1 r=0 O
N R N
= —W|HO|2 r3dr = —W|HO|2R4 (48) 3
T g4 N T 4oét Fig. 7. Magnetic-field lines of (58) witlH, real at various values abt

given at upper left during the sinusoidal cycle foe= 0.5 andp /., = 3800.
in agreement with (44). Note that the time average of the
Lorentz force density term of (29%(J,uH? ), would be zero current density. We take the current density to be of the form
:?]L;lg(ég)?) This is why higher order terms are needed in (42) T(r, ) = S%{jz(r) sin et} (49)

so that (5) becomes

IV. TRANSVERSE MAGNETIC FIELD d*J. 1dJ _ jz{ 1 2J} -0 (50)
IN THE SINUSOIDAL STEADY STATE drz v dr 62
with solution of the form
A. Exact Solution for Magnetic Field and Current Density jz(T) — CL[(1 = j)r/d] (51)

Fig. 1 also shows a uniform transverse magnetic field in the

« direction varying sinusoidally in time with angular frequency?"ereC is a complex constant to be determined from bound-
w. The resulting magnetic field then hasaind ¢ components ary conditions. The magnetic-field distribution inside the cylin-
while the induced current has only -acomponent. Because d€T i found from (51) using Faraday’s law of (1)

the direction ofA varies with position, the vector Laplacian in J dH
cylindrical coordinates in (4) is different and more complicgted V x <—> =P (52)
than the scalar Laplacian. However, with the directionJof

constant with position the vector Laplacian in (5) equals thehile outside the cylinder the magnetic field is the uniform

simpler scalar Laplacian, so we choose to solve (5) for tlapplied field plus a line dipole field due to the induced current

g
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which results from solutions to Laplace’s equation for a scalar
magnetic potential or a directed vector potential, as shown in g 1o00. 1
(53) at the bottom of the next page, whe&feand D are found
from the boundary conditions of continuity of tangentﬁl
and normalB atr = R

i

Hy(r = R_) = Hy(r = Ry);

non-dimensional Power Dissipat

Wito
B.(r=R)=puH(r=R_)=pu.H-(r = Ry). (54) w0t :
5000 é%

1207 0.001 0.01 0.1 1 10. T

The general solutions for the constanfs and D are
shown in (55) and (56), found at the bottom of the page.

_ P Fig. 8. Nondimensional dissipated power from (59) = (P)o /7| H.|?,
Note that f9r /“L//“LO 1’. ¢ and D great[y 32|mpI|fy, versus nondimensional skin depth= 6/ R, and magnetic permeability in a
C = 4H,/[(j + 1)6J[(1 = j)R/é]] and D = HoR*[~1+  |ossy magnetizable cylinder placed in a uniform transverse magnetic field.

261[(1 = J)R/8)/[(1 = 5)RI[(1 = 5)R/6]]-

non-dimensional Skin Depth, delta/R

C. Exact Solution for Dissipated Power Per Unit Length

B. Magnetic-Field Lines The time average power dissipation per unit length is
The magnetic-field lines at any instant of time are the lines RO\G 02
of constant magnetic vector potentidl defined as (P) = g / ﬂn{r
r=0 g
mlCP /R T = )/ + J)r/Slrds
- . S . =5 L =g)r 1 Jrrojrar
B=VxA= i,,l 04, _ i aA‘. (57) 20 Ji=o0
T 8(7) or 7T|C|2R(5 ] ] ]
=y MU = DA =) R/LIL +5)R/8]}

(59)
where we use the Lommel integral formula of (23) with= 1.
Note that foru/u, = 1, the dissipated power in (59) for a

The vector potential is then obtained from (53) as

Ax(r,¢:1) G , transverse magnetic field is twice that for an axial magnetic
_ {éR{’“TJl[(l —j)r/8lsinge’t}, 0<r <R (58) field given by (24). Using the nondimensional definitions of
R{ p1o [Hor + L] sin gpe?t }, r > R. (25), Fig. 8 plots (59) versus = /R for various values

. of 1/, while Fig. 9 plots the dimensional dissipated power
Figs. 6-7 takef, to be real and plot the magnetic-field lineger unit length versus frequency for materials in Table | for
at various times during the sinusoidal cycle for= 0.5 and representative cylinder radiug = 1.0 cm with a peak applied

values of/p, = 1 and 11/, = 3800 as representative for magnetic field strength o, H,| = 0.5 T.
nonmagnetic and magnetic materials in Table I. Self-magnetic

field contributions due to the induced current result in closed ,

magnetic-field lines that do not terminaterat> co. This is D Force Per Unit Length

most easily seen att = /2 when the applied magnetic field 1) Lorentz Force Per Unit LengthFor the Lorentz force
is instantaneously zero. density, it is convenient to write cylindrical unit vectors in

{% [0 2700 = j)r/8] cos ¢ — iy [T, [(1 = j)r/6] = L1[(1 = j)r/6]) sing] 0<r <R

] X (53)
[HO + 722] oS iy — [HO - 122] sin d)fqg r> R
_ 2u.R [H,+D/R* _ 4y, RH, (55)
b ML= DR/ s A1~ )R/6) + e [SDE (1 )R/6] — (1 - H)R/]]]
D A= R0 = B[S0 - )R/ = KL= )R/ )
R (1 - ) R/6] + 2 [US2R 0,11 - )R/6] - (1 - j)R/6]]



1028

sf T Grade 50 and 60
Rebar Steel

Log[Power Dissipation (watts/meter)]

Log [Frequency (Hertz}]

Fig. 9. Dimensional dissipated power per unit length (W/m) of (59) in &ig. 11.
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magnetizable cylinder placed in a uniform transverse magnetic field.

<f]\la;> = 0 and

(i BYpe=op] e

(el

where B,.(# = 1) = B.(r = R)/u.H,. This +y directed

Fig. 10. Magnitude of the nondimensionaly directed Lorentz force per nondimensional magnetization force is plotted versyg in
unit length of (61),(fLy) = (fLy)/[7apR|H,|?], versus nondimensional Fig. 11.

skin depth,é = 6/R, for various magnetic permeabilites of a lossy

magnetizable cylinder placed in a uniform transverse magnetic field.

terms of Cartesian unit vectors
Fr=Jx pH = pJ.[H iy — Hyiy]
= puJ [H,(—sin ¢ty + cos iy ) — Hy(cos i + sin ¢iy ).
(60)

Fig. 12 shows the magnitude of the sum of nondimensional
Lorentz and magnetization forces.

The total dimensional magnetic force per unit axial length is
plotted versus frequency in Fig. 13 for materials in Table | for
representative radius @t = 1.0 cm in a peak magnetic field
of |ueH,| = 0.5 T with weak gradient parameter = 0.1.
Note that for the nonmagnetic materials, the total force is
due only to the Lorentz force and isy directed, that is

The total Lorentz force per unit length is obtained from (9} the direction of decreasing magnetic field, while for the
by integrating (60) over the cylinder cross sectional aredpagnetizable steel_s th_e forcefig dlref:ted at low f_requenmes
Again using the weak-gradient approximation of (14), thy_yhe_re the magnguzanon force dominates and—ysdwected
nondimensional time average Lorentz force per unit leng@ high frequencies where the Lorentz force dominates.

becomes after integration over
< ~L' — <fLy>
"' mapR|H,?

_ m{ / LO ij; (P HL(F) 3@(;)1;&}. (61)

F. Approximate Limits

We again see breakpoints in the plots of Figs. 8-13.

1) Small Skin Depth Limitj/R < 1: Using the approxi-
mate small skin depth Bessel function approximations in (35),
approximate forms for the nondimensional transverse field

Evaluating by numerical integration for various values ofo) tions can be found. However, because some of the Bessel

1/ 1o, We find the Lorentz force is-y directed witha positive
and varies with frequency as shown in Fig. 10.

E. Magnetization Force Per Unit Length

function terms in (55)—(56) are divided hy/u, which can
be very large for ferromagnetic materials, it is necessary to
expand some terms to higher powersiofrhe effects of large
magnetic permeability can be seen in Figs. 8 and 10 where

The time average magnetization force per unit length iBe transition from small to large skin depth limits becomes
obtained by substituting (53), (55), and (56) into (13) to yieltess sharp ag/p., becomes larger. The approximate solutions
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< s _ <fLy> 3

3 - A = 2

Wi | mopR|Ho 2 2[1 4 £5 4 5(£)78?)

= ) —tto) [Gpto s

E e <]?J\l > <f1\4y> (Muf )[ Z +62:|

S 100 y = 5=

g \ mapRIHo |2 4[1+ L8+ ()8

5 _a 5000 ) ) ) %& ( 4_ 0)52

(Fo) = (Fry) + (Faay) o — e
T i e ()8

%_8 We can approximately check these results by realizing that for
. 1 small skin depth, the magnetic field just outside the cylinder

o b

-2 ! 0 i is approximately the same as if the cylinder were perfectly
conducting. Then the predominant magnetic field should be
Fig. 12. Magnitude of the sum of nondimensionaly directed Lorentz tangential

force per unit length and-y directed magnetlzatlon force per unit length,

(fry) + (Fary) = (fLy + Ffary)/[apR|H,|?] of (61) and (62), versus - A

nondimensional skin depth = é/ R, for various magnetic permeabilities of H(T =R, ¢) ~ —2H, sin (7”45 (64)

a lossy magnetizable cylinder placed in a uniform transverse magnetic field.

and the current density is

Log [non-dimensional Skin Depth, delta/R]

+y Force T

_ . . H,(r =R, 2|H,|sin
il / ForZe |JZ(T =R, ¢)| ~ ‘?5( F) (/)) - | (|5 (/) (65)
% 13 Mn steel +y Force mild steel
; ] —y Force Grades 50 The time average dissipated power unit length is then
£ et , 1 [ |J.(r = R,¢)|?6Rd¢  2nR|H,|?
E lim (P) =~ = ~
= §/R<l 2 Jo o b
£ (66)
% in agreement with the dominant power term in (63).
2 stainless steel Similarly, the time average Lorentz force per unit length
3 with an effective surface current at= R, K, ~ Hy, is
-8t 4
S T o
-1 0 1 2 3 s 5 6 lim fr== K x pnHRdp
Log [Frequency (Hertz)] 6/R<<1 2 ‘?5:0
27
Fig. 13. Magnitude of the total dimensional force per unit length (N/m) in — _1 K_uH, Z,Rdd)
the y direction from (61) and (62) versus frequency in hertz due to the sum $=0 # 1l
of Lorentz and magnetization forces from a transverse magnetic field for R ox
materials in Table | with a weak gradient magnetic field in thdirection, W 217 >
a = 0.1, for representative radiu® = 1.0 cm, with peak magnetic field -9 H¢ [tz cOS ¢ + by SI Pldg. (67)
strength of|u.Ho| = 0.5 T. ) $=0 . . .
Then on the time average, using the weak gradient expression
are then of (14) with (64)
27
lim (f1) ~ —u|fIO|2R/ [1 + asin¢]?sin’ ¢
. CR —8juoe_(1+j)/‘§ §/R<1 ) quo
C= 7 A — — ) ) - X [tz COS ¢ + iy sin ¢|dep
o po*\[(1 = j)o/m[=j + po(1— j)/(nd)] e [T
. . = = —2uRa|H,|", sin® ¢d
o D im0/ R, [ s o
o2 (=5 + 1o(1 = )/ (16)] ~ B 3u7rRa|1{IO|2? 68
s Hg) | 2, I/ =TT W (68)
H(r,¢) = a ~ _u\/:‘[ St o1 = 3)/(id)] in agreement with the predominant term in (63).
i) . 1) Large Skin Depth Limity/R >> 1: Using the approxi-
X {% cos </)L, — ) gin d)i% 0<r<R mate large skin depth relations in (41), the nondimensional
" 6 transverse field solutions approximately reduce to
J.(7,¢) = ‘(}}d) (63) o CR 8 {1 _ IBuo + 1) }
PR Hy, 1=+l 402+ po)
3 ~24/{0 suﬁ)e .  0<r<R D= D (= po) __ Jbkto
POV = + po(1 = 5)/(16)] 1 R2 (4 1e) 82+ po)?
~ (P)o 2
()= i) = B ) 2

il
S
g

I

2 ~ < 2z -7 = ~
7T_|IT[o|2 6[1"‘%6"‘%(%) 62] H (I’L+I’L0)
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X {1+ ‘7—;<72 - H)} cos ¢
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field H,. The magnetic field diffusion rate is not yet known.
Substituting the assumed form of solution of (72) into the

0<r<R magnetic diffusion equation of (4) gives
g gy — Ho( @) Jro JPH | dH
H T s ¢ = ¢ = ~ _ 2 —
#(7, ¢) A, (i + 10) 72 > +r— e + aopur H=0 (73)
y [2 e <37~2 (3t —HL))} sin with solution that |§ finite at = 0
262 (1o + 1) H(r) = AJ,(\Jaopr). (74)
Flr OR 5 0<r<Ki At r = R, the tangential component ®f must be continuous
J.(7,¢) = (1, 9) Y so thatH,(r = R,t) = H,, which then requires thali (r =
H, 0% (e + fto) R) = 0. This requires that
[2 v <7~2 _ ((3“0 - ’3) )} in 6 VaoiR = (75)
20 fro 1t O<r<R where, is thenth zero of the zeroth order Bessel function,
5 (P)o 9,2 Jo(3) = 0, for which the first 20 values are given in the left
(P)=——— =~ Ko 5 most column of Table II.
T Ho[? 6%+ po) Thus, there are an infinite number @%, and we can write
(o) = (fry) 343 the most general form of solution as
y] — ~ ~ T =
wapR|H,|? 56%4(p 4 1o )2 s
H.(r,t) = H, Andy(Bar/R)e ot 76
P B por 038 = Hot 3 Ando(Pur/Re (76)
(fary) = e . (69) =l
mapR|H,|? 2p(p + o) where
These results can be checked by realizing that V\djdfl>> 1
the predominant magnetic field in the cylinder i, = an = B2/(opR?). (77)

;“0 5 , With negligible contribution from the induced current.

hen applymg the integral form of Faraday’s law toza To find the amplitudesi,,, we use the initial condition @t= 0

directed rectangular contour atand anglesp and ¢ + = we

that the magnetic field in the cylinder is zero

obtain 00
. . —24 . . H (r,t=0=0=H,+ Ando(Bar/R). 78
Tr.0) = 0B (r.0) = =LA g, M 2 A 8- (79
45 R ’ Using the orthogonality condition for Bessel functions that [6,
=2 P ngH (70)
T2 ° p. 48]
C . . . . R
which is the dominant current density term in (69). The t|me/ T (Bt /R Bor | R)dr = 072 m#n
average dissipated power per unit axial length is then o ot [ R)Jo(ar [ ) dr B I (Bm), m= Ez 0
27 7
lim (P) / / |J d7 d¢ we solve (78) forA,, as
6/R>>1 =0 Jgp= —2H,
= Ay =~ 80
_ 8I’LO|H |2 / /2 7 SlIl ¢d7d¢ anl(ﬁn) ( )
VY ) . . .
o0 (p+ 116)? Jr=o so that the magnetic field and current density are
o2 R H, |2 Jo (B /R
= o 7 7791 (71) nT ﬁit/‘r
6 i+ 1)’ He(r,?) 22 )
in agreement with the power in (69). Note again that using
(70) in the time averagg directed Lorentz force density term 5 (r,t) = 8H — 2H L /3"7 /R Bt/ (81)
§R(J uH*) gives zero force. This is why higher order terms

in the magnetic field and current density are needed in (69)nare, — O_NRQ is a representanve magnetic diffusion time.

The steady-state uniform magnetic field in the cylinder is

approximately reached far/7 > 0.5 as the induced current

density becomes small. At early timegs < 0.1, the current

density is largest near the interface/R = 1, as the initial

surface curreni(y, = — . at¢ = 0, diffuses into the cylinder.
The dissipated power per unit length is then

R J2
P= / "L onrdr
0 ag

87TH2 Rl Jl(/3n7/R) 32 2
= = / Z VR T BT (82)
0

V. STEP CHANGE IN AXIAL MAGNETIC FIELD

A. Turn-On Transient

We now consider an axial magnetic field that is instanta-
neously stepped on at time= 0 to an amplitudeH,. The
magnetic field in the cylinder is also axially directed for all
time and can be expressed in the form

H.(rt)=H,+H(r)e ™ (0<r<R) (72

where we recognize that in the steady stdte— o), the
magnetic field in the cylinder approaches the applied magnetic

oR2 g1 (Ba)
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TABLE 1l
RooTs 1o THEMODAL EQUATION FROM (108): 16 8r Jo(Br) + ( — po)J1(Bn) = 0

n plpe=1  p/p, =101 B/po =10 u/po = 3800 pfu, =5000  pfp, = o0
[Jo(ﬁn) =0, [Jl(ﬁn) =0,
ref.6, p. 409] ref. 6, p. 409

1 2.4048 2.4090 3.4798 3.8307 3.8309 3.8317

2 5.5201 5.5219 6.4201 7.0137 7.0142 7.0156

3 8.6537 8.6549 9.3926 10.1708 10.1714 10.1735

4 11.7915 11.7924 12.4054 13.3202 13.3210 13.3237

5 14.9309 14.9316 15.4502 16.4663 16.4673 16.4706

6 18.0711 18.0716 18.5183 19.6107 19.6119 19.6159

7 21.2116 21.2121 21.6030 22.7541 22.7555 22.7601

8 24.3525 24.3529 24.6995 25.8969 25.8985 25.9037

9 27.4935 27.4938 27.8048 29.0392 29.0410 20.0468

10 30.6346 30.6349 30.9166 32.1812 32.1832 32.1897

11 33.7758 33.7761 34.0334 35.3230 35.3252 35.3323

12 36.9171 36.9174 37.1540 38.4646 38.4671 38.4748

13 40.0584 40.0587 40.2777 41.6061 41.6088 41.6171

14 431998 43.2000 43.4038 44.7475 44.7504 44.7593

15 46.3412 46.3414 46.5319 47.8889 47.8919 47.9015

16 49.4826 49.4828 49,6616 51.0301 51.0333 51.0435

17 52.6241 52.6242 52.7926 54.1713 54.1747 54.1856

18 55.7655 55.7657 55.0248 57.3124 57.3161 57.3275

19 589070 58.9072 59.0580 60.4536 60.4574 60.4695

20 62.0485 62.0486 62.1920 63.5946 63.5986 63.6114

lim 8 =~ tan~! [EM]
F»1

© = po(l — B)

A general Bessel function orthogonality relation that extendspplying (87) to (82) gives
(79) is [6, p. 485]

2 5
R p = imo Z e 20t/ (88)
/ rJy (B | R) I (Bt | R)dr 7 =
0 m£n,y>—1 and the total dissipated energy per unit length is
_ ) a2 Cnb=0,p> -1 = >
= 1%2[ agﬂn ]2 ’ o m=n, Vv W= / Pdt — 27TLLH3R2 Z i? (89)
i 57 + 02 =2 I3 (Ba), m=nb# 00> —1 0 = 32
(83) Using the left-most values g#,, in Table Il, we obtainW =
where 3,, and 3,, are positive zeros of 2mH?2 R?(0.246). The magnetization and Lorentz forces per
unit length for a slightly nonuniform magnetic field as given
dJ,(x) :
ady(x) + bxc’l’— =0 (84) by (14) are obtained from (9) and (13) as
X
. . . 1
with ¢ and b real constants. Note that (79) is obtained for fM = (u o) HSR
v = 0 with b = 0. To evaluate (82) we must integrate the on
square of the infinite series of first order Bessel functions with X / [1+ asin (/)]Q[Zw cos ¢ + Zy sin ¢]d¢
parameters’,, that are the zeros of the zeroth order Bessel $=0
function. Expanding the square of the infinite series in (82) po) H> Rmy (90)
term by term results in integrals like that on the left side of
(83) with » = 1. Recognizing that :/ / pdo(r, ) H.(r, £)[L 4 asin ¢]?
a1 (x) = J,(x) — =) (85) X [cos ¢y + sin ¢Ly]7 drde
dx T R
lets us rewrite (84) withy = 1 as =1, / 2mapdy(r,t) H. (r, t)rdr
Ji(x)(a = b) + baJ,(z) = 0. (86) B 47rauH / Jl (Bur /R) S (Bur/R) _gz1yr
If we seta = b, then (86) reduces to finding the zeros of the N =0 | J1(Bn)
zeroth order Bessel function, which are thein the left-most s /R
column of Table II. Thus witlx = b andr = 1, (83) reduces to P12 =Bt | e, 91
[ 7 Z By () v 0D

R
: : IRy = 49 m#n
/0 1B [ R) 1 (B [ R)dr = {%zjf(/jn), m=n. To evaluate (91) it is necessary to take a sufficient number of
(87) terms in the infinite series so that the remaining terms give
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Non-dimensional Lorentz Force

0.6 0.8 1 1.2 1.4

Non-dimensional time, t/tau

0.2 0.4

Fig. 14. The nondimensional Lorentz forck,, /(4rapRH?2), versust/t P=
using the first 20 terms in the series expressions for a step imposed axial
magnetic field of time duratiod’. The Lorentz force for the step turn on
transient in the time interved < ¢t < T of (91) is shown as the negative

force. The Lorentz force during the turn off transient for> 7" is shown

as the stepped positive forces for various value§ pf and is obtained by

substituting (96) and (97) into the top expression of (91).
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Jo(rt) = ~ e _ 2Ho S5 TG /R - 0]
U9 TR & T2 (B)
x ¢~ Pn=D)/T, (97)

At r/R = 1, the magnetic field amplitude instantaneously
drops from H, to zero, causing a surface current in the
opposite direction to the volume current flowing just before
the magnetic field was turned off. This surface current then
diffuses into the cylinder as a volume current, decreasing to
near zero in a time of order.

The dissipated power and dissipated energy per unit length
are then

a negligible contribution and then numerically integrate over

r. The result is shown in Fig. 14 which plots the negative
nondimensional Lorentz force of (91) versus nondimensional
time using the first 20 terms in the series. The force becomes

negligibly small fort/7 > 1.

B. Turn-Off Transient

After a timeT’, the magnetic field is turned off. The initial

and boundary conditions are then

H(r=Rt>T)=0

Jo(Bn 7/R -B82T
H.(rt= = -2 LT/
(r Z Bud1 ()
(92)
For ¢ > T we thus take a solution of the form
H.(r,t)= fI(T)e_a(t_T) (93)

where the steady-state magnetic fietdd—¢ o) is zero. The
solution form is again given by (74) and (75)

=" A do(Bur/R)e™ =D (94)

The amplitudesd,, are found using (92) and the orthogon

Bessel function relations of (79)

9 R
R2JE(Bn) Jr=o
_2H,[1— e T/
B ﬁnjl(ﬁn)

The magnetic field and current density for> 1" are then

7t—2HZ

A, = H.(r,t =T)J,(Bor/R)rdr

(95)

Jo(Bur/R)[1 = e=7:177] P21/
Brd1(Bn)

(96)

8rH?
oR?
[=9] _g2 T 2
y /R 3 Albar/R = e P e | gy
r=0 n=1 Jl(/jn)
drH? & 2T 932 .
_ -~ z_:l[l_ 8:T/ ]2 282 (t—T)/ (98)
T (a9}
W:/ P(O<t<T)dt+/ P(t > T)dt
t=T
1 —e QBHT/T]
_ 2 R2
= 2ruH2R ;—/32
[1- G—anT/r]2
2 R2
+ 2ruH?R ;1/3—2
1 —¢ BHT/T]
=4 H2 2 T S— 99
nuH} R 2_)1 7 (99)

This dissipated energy per unit length includes contributions
from the turn on of the magnetic field at= 0 and from
the turn off of the magnetic field at tim&. This dissipated
energy per unit length is plotted versi@¥r in Fig. 15. Note
that as7’ /T becomes greater than one, the dissipated energy
approachesir ;. H2 R?(0.246), which is twice that computed
for the stepped on field witl® — oo. Thus for7/7 > 1, as
much energy is dissipated in turning on the magnetic field as
for turning off the magnetic field.

The magnetization force is zero for> 1" as the magnetic
field at ther = R interface is zero. The Lorentz force for
t > T is shown as the stepped positive forces in Fig. 14 by

aTubstituting the magnetic field and current density of (96) and

97) into the top expression of (91).

VI. STEP CHANGE IN TRANSVERSEMAGNETIC FIELD

A. General Solutions

A transversez directed electric field is instantaneously
stepped on at timeé = 0 to an amplitudeH,. The solutions
have a steady-state part and a transient part that dies out with
time. The steady-state current density is zero so the general
form for the current density is

Jo(r ¢.t) = J(r, )e™ (100)
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0.25 " - B. Boundary Conditions
§ The steady-state solutions already satisfy continuity of tan-
g 0.2y gential H and normalB atr = R. The transient solutions must
E also obey these boundary conditions for which we obtain
'50.15 C
: Hy(r=Ry)=Hy(r=R)= o
E 0.1 A
3 = ———[VauaJ,(\/auoR)
g auo
£
H0.05 1
E —EJl(\/auaR)
=4
0 . 1o C
0.2 0.4 oo 0.6 0.8 1 NoHr(T — R+) — NHT(T — R_) = ;{Q
Fig. 15. Nondimensional dissipated enefgy/ (4= H2 R?) from (99) for = A J1(\/apoR) (107)
a stepped on axial magnetic field of duratiéhas a function ofl'/ 7. acR

which for nonzero values afi and C require that

Hon/ AT RIS\ /@o R) + (1 — 1) (/alig R) = 0. (108)

10 ( ak 104, J 101) This relation then determines allowed valuescofvhich we

S\ T 2 5 = TOHT . ( ) . . .

T Or Oor 72 J¢ denote asc,, with corresponding amplitudest,, and C,,
related through either of the relations in (107). Note that

which when substituted into (5) gives

The general product solution that is finiterat 0 is because
jz(r, P) = Jm(Vapor)[Arsinme + Az cosme].  (102) Jo(B) = % + %Jl (3) (109)

However, the uniform: directed magnetic field only excitesinat (108) can be rewritten as
the m = 1 solution with A, = 0 so that the current density

s of the form W) + o =0, f=JaER (110
J.(r,¢,t) = AJy(Japor)sin ge™ . (103)

which is in the form of (84) witha = p,b = p,, andpy = 1.
The magnetic-field solution in the cylinder for < R is I 4 = po, (108) shows that th,, are the zeros of the zeroth
obtained from Faraday’s law of (1)

order Bessel function listed in the left-most column of Table
Il while as 1/, becomes very large, the, are the zeros of
oH 1 - 1[-19]. - dJ. the first order Bessel function listed in the right-most column

- = XJ:__,‘__,
ot Ho Ho o

s o0 oy (104) of Table II. Table Il also lists the first 20 solutions to (108)
for magnetic permeabilities that include materials in Table I.

while the magnetic field outside the cylinder fer> R is Note that as the#, become large, the Bessel functions can be

obtained from a magnetic scalar potential or equivalently wigPproximated as [2, Sec. 4.9]

a z directed magnetic vector potential, bth obeying Laplace’s

equation. The radial and components off for steady state lim J,(3) = 1/%(5111/3 + cos 3)
and transients are thus of the form shown as follows and in >t mf
(106) shown at the bottom of the page Ji(B) = /%(sinﬁ — cos 3) (111)
w
H,.(r, ¢, t)A o H which when substituted into (108) gives
[ Ji(Vapor)e ™ + el cos¢ 7 < R
= [“Ciflt o [1+RZ<”——“:>LF::OS¢ r>R lim tan 3 ~ 1= po(1+5) (112)
pe ) 2t po) 31>I>nl alLp ~ = uo(l - /3) )
(105)

For j. = pu,, this gives solutiontan 8 ~ —1 so thatg3, =~
where it is necessary in time integrating (104) to include tHe — 0.25)x. For o > u,, the solution istan 3 ~ 1 and
steady-state solutions as constants of integration. B = (n+0.25)7.

Hy(r,d,) = (S H,[1- Rzgu—uoz]] sin b, r>R (106)

r2

{ [— a‘:g [\auo Jo(/apor) — L Ji (yapar)| e — %] sing, r<R

e
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If the infinite number of solutions to (110) are denoted as: ;- t /=05

B, then the Bessel function orthogonality relation of (83) is

Loy dr

/0 (E)Jl(ﬁ,ﬂ /R)J(Bpr/R) <E>
0 m#n

= 2 113

The general form of solution for the current density of (102) is
Tr ¢ t) = > AnJi(Bar/R)e Y sing  (114)
n=1

wherer = o R? is a representative magnetic diffusion time.

The coefficientsd,, can be obtained using the orthogonality /=1 =
condition of (113) with the initial condition that &t= 0, all

the current flows as a surface currentrat R and is thus a

spatial impulse at = R

J.(r,d,t =0) = —2H,sin ¢p6(r — R)

= i A J1(Brr/R)sin ¢. (115)

n=1

Multiplying both sides of (115) by(»/R)J1(Bnr/R) and
integrating overd(r/R) lets us solve for4,

2H,r dr Fig. 16. Magnetic-field lines of (118) using the first 20 terms in the series
/0 "R J1(Bmr [R)S(r — R)E for various times after a transverse magnetic field is stepped @n=at0
for p/po = 1.
2H,J1(Bm A [ 2
=Ml S ek -1 (6 (1) - -
R 205, L1g the current density is found from (114). The dissipated power
as per unit length is given by
4/32H R 27 J2
_ nilo P :/ / —Zrdrdg
A, =— (117) =0 om0 O

R[& + 52 — 1]J1(B)

oo

2
> Apdi(Bar JR)e™ Pt/ T] sin? ¢rdrde
n=1

1 R 27
C. Magnetic-Field Lines o /,:0 /¢=0
For transient solutions, the magnetic-field lines are also the R [ o 2

lines of constant magnetic potential defined in (57). The vector—= T / l Anjl(/jnr/R)e—r@it/T] rdr
potential is then obtained from (105)—(106) as shown in (118) 7 /r=0 |,
Qt the_ bottom of the_ page._Figs. 16 and 17 plot the_ magnetic- 2 A2
field lines as a function of time fqt/;:, = 1 and10 using the = o0 ﬁ—Q
first 20 terms in the series expressionstAt 0, the magnetic n=1""
field is excluded from the cylinder. Asincreases the magnetic STH2 & BRe=20nt/7
field diffuses into the cylinder approaching the steady state for— ~ Z 12 5

: 119 1 =) s -1
t/T > 0.5. As u/p, becomes large, it requires many more Ho
terms in the Fourier series for accurate solutions nearl).  where we used (113) to perform the integrations. The total

dissipated energy per unit length is then

2
<uﬁ) + 52 - 1] J2(Bn)e™ 20T

(119)

D. Dissipated Power Per Unit Length

oo oo 1
_ _ 2 R2
To summarize the procedurg, must be found by numer- W= /0 Pdt = 4dnpH; R Z [(ﬂ)Q 4B - 1} (120)
ically solving (108). Then the4,, are found from (117) and =1\, n
oo AnR? . —B82t)7 | 2poHor] .
1 M| T J1(Bar /[ R)e™ T 4 2hezet Iging, T < R
A(r, ¢,t) = {Em i g_,l(/ M RZ(M_::;% ], (118)
Done1 No[%—i-Ho[T-i- g ]]smd), r> R
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t /10 t/1=.01 2 \
1 {Euy (WHGI=10 1
\ 0
‘; :
‘ ., _
oy =Ty W=t
-2
-3
0 0.1 0.2 0.3 0.4 0.5

Non-dimensional time, t/tau

t/7=.05 t/1=5 Fig. 18. Nondimensional forces of (124)fy,/(xRapH?), (125),
fry/(rRapHZ), and their sum,fr/(zRapHZ) = (fry + fury)/
(mRapH?2) versus nondimensional time/r for values of yu/pu, = 1
and 10. For u/po = 1, far, = 0.
where we separate out the time apdlependences and from

M W (107)
A R2T (B
C, = L‘]l(/) (122)
1032

From (13) and the assumed weak gradient field of (14), the
magnetization force per unit length is

Non-dimensional Forces

27
Fig. 17. Magnetic-field lines of (118) using the first 20 terms in the series fu == / [(u — po)H3(t)sin® ¢
for various times after a transverse magnetic field is stepped or=ad for ¢=0
/o = 10. 1 1
+ <— - —)B,Q,(t) cos? d)}
TABLE I Ho  H
NONDIMENSIONAL DisSIPATED ENERGY PER UNIT LENGTH FROM (120) DUE TO A % [1 +asin ¢]2[Z’x COS ¢ + Z’y sin (f)]d(/) (123)

STEPPED ONTRANSVERSEMAGNETIC FIELD, W/ (4mp H2 R?), FOR MAGNETIC

PERMEABILITY VALUES IN TABLE |, USING THE 3, VALUES IN TABLE Il Performing the¢ integration gives

7 Ra 1 1
oty = 2 st = 3o+ (- - ) 0| 20
Material ule W/(4nuH2R?) Ho 1
Aluminum, copper, and Stainless Steel 1 0.245 At ¢t = 0, qu(t = ()) = —2H, and Br(t = ()) = 0,
13 Mn Steel ot oo so that fary(t = 0) = 37Ra(p — po)H2. As t — o,
Grade 50 and 60 Rebar Steel 3800  1.385x107° Tay(t — 00) = TRl ”0((”+M”°)(3+”/ #o) The magnetization
Mild Steel 5000  8.000x1077 force of (124) versus nondimensional time is plotted in Fig. 18

as a positive force fop/j, = 10. For pu/pio = 1, fary = 0.

where the3, are given in Table Il foy: /1, values that include F. Lorentz Force Per Unit Length

compute (120) for various values @ff ...

27
o . / / (r,t)sin ¢
E. Magnetization Force Per Unit Length =0
At the interface we have from (105) and (106) X [By(r, ) cos (— sin i, + cos piy)
Hy(r = R, $,¢t) — uHy(r, t) sin ¢(cos ¢, + sin d)Ly)]
- [ & Cn _82 t/T 2NOHo . o . x [1 + a;in ¢]27)d7)d¢
= —5€ — ———— | sing = Hy(t)sin ¢ T
Ln=1 R (N T No) - 7@ / JZ(Tv t) [BT(Tv t) - 3/¢LH¢(T7 t)]TdT (125)
B.(r = R, ¢,t) =0
(=, C 2 H which is evaluated by numerical integration and is plotted as
= Ho T o0 | cosp = B,(t)cos¢ @ negative force in Fig. 18 for/u, = 1 and10. At t = 0,
[n=1 R (bt + po) the Lorentz force per unit length i&,, = —37 RapH?2 which

(121) decreases to zero as time increases. The total nondimensional
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