
2238 EEE TRANSACTIONS ON MAGNETICS, VOL. 28, NO. 5, SEPTEMBER 1992 

I 
f - c- W 

-e wd 

J( 

SURFACE POWER DISTRIBUTION IN CROSS FIELD HEATING OF THIN 
NONMAGNETIC PLATES 

Y 

I e 

X 

PIECE 

T 
1 WORK 

d+ 

K.V.Namjoshi and P.P.Biringer 

Electrical Engineering Department, 
University of Toronto, Toronto, Ontario, 

M5S 1A4 Canada. 
Abstract - In this paper, the problem of non-uniformity of the 
induced surface power density in the workpieces of cross-field 
heating systems is analyzed. Assuming the workpiece to be very 
.thin, the induced current density and the induced power density 
are obtained using a method based on circuit theory. Calcula- 
tion of the total power agrees with the measured value. The 
results suggest that to obtain uniform current density, one may 
have to try different shapes for the exciting coils. Varying the 
distance between the coils or their lengths does not produce the 
desired effect. 

I. INTRODUC~ON 

In cross-field heating systems, which are used in the heat 
treatment of long thin plates, the exciting field is essentially 
perpendicular to the object or the workpiece to be heated[l]. 
In the past, cross-field systems have been analyzed using sim- 
ple models[2-5]. In these systems, the distribution of the 
induced current or the power is of interest because it deter- 
mines the distribution of the heat produced. This being a 
three dimensional problem, the exact solution needs large 
computer memory and is time consuming[6]. In this paper, 
we use a method based on circuit theory, which is a form of 
integral equations, to obtain the current density distribution. 
The workpiece is represented by an infinitesimally thin sheet. 
Results are presented for the induced current density for rec- 
tangular and oval shaped coils to bring out the effects of 
parameten such as the coil separation, coil length, polarity of 
the coil current and frequency. Single-sided air-cored sys- 
tems with non-magnetic loads are considered. 

II.METHOD 

The schematic diagram of the arrangement studied is shown 
in Fig.1. It has two exciting coils and a thin workpiece at a 
distance 1, from the coils. d is the distance between the coils 
and I is the coil length. If d is small in comparison with coil 
dimensions, the field produced by the coils is mostly 
transverse to the workpiece. In thin workpieces, the thick- 
ness of the workpiece is much smaller than the other system 
dimensions and the skin depth of the workpiece. Therefore, 
the variation of the field variables along the thickness of the 
workpiece can be neglected and the problem can be analyzed 
as a surface power density problem by assuming the work- 
piece to be an infinitesimally thin sheet[7]. In the method 
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Figure 2: Division of the workpiece into a square mesh showing a 
mesh current. 

The currents induced in the mesh are obtained by the solution 
of the following circuit equations which are derived from the 
integral forms of Faraday’s and Ampere’s laws[81: 

(1) 

and [Hidl = [C 1 [[MI. (2) 

[D][r,] = -k2h2[Ho] - k2h2[Hind3 

Here, [IM], [HO] and [Hid] are column vectors representing 
the mesh currents, the Z component of the incident magnetic 
field and the Z component of the induced magnetic field. [D] 
is the resistance matrix[9]. k2  = d E ,  o = 27cf the fre- 
quency, (T the conductivity and the permeability of the 
free space. In computing matrix [D 1, the resistance of indivi- 
dual cell side, Rs , is obtained by: 
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Those integral formulations were computed with the help of 

the Gaussian numerical integral method [2], which is readily 
suited for digital computation. Details are given in reference 
~41. 
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Figure 2: Geometry of the Two-Wire Twisted-Pair 
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111. RESULTS 

The resulting magnetic flux density, 3, specifically the B, 
and By components, can be computed at any cross-section as 
shown in Figure(1) for a cross-section perpendicular to the 
z-axis. Here, this calculation was performed at locations 
along the three concentric circles shown by the dotted lines in 
Figure(3). Also, depicted in Figure (3) are the x and y compo- 
nents of the resulting B field. Meanwhile, the z-components 
r>f  the resulting B field are shown in Figure (4). 
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z-axis. These B field results shown in Figures (3) and (4) are 
for the twisted-pair case with a pitch, h = 12.7cm(= 5in.), 
and at a plane with t = 0. 

The effects of the choice of the pitch, h, defined in Fig- 
ure(2), on the flux density components, &, B,, and B,, are 
documented in Figures(5) through (7) at the mid-plane point 
(z=O) for a transmission line of length 508m(= 20000In.). For 
all these cases, in Figure(2), TO is equal to 2.54cm(= lin.) .  
The above is given for a 500A DC current flowing in opposite 
direction in each conductor. 
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Figure 5: Magnitudes of Flux Density Component IBzlma: 
for Different Pitch lengths,for I = 500A 
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Figure 6: Magnitudes of Flux Density Component 
for DiRerent Pitch lengths,for I = 500A 
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Figure 6: Magnitudes of Flux Density Component 
for DiRerent Pitch lengths,for I = 500A 
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Figures (5) through (7J show the effects of varying tne ne- 
lical twist pitch on the B field resulting from a (508 m) fixed 
length transmission line. Notice that as the pitch approaches 
infinity the resulting magnetic field approaches the field pat- 
tern of a two-parallel-pair transmission line. There are no z- 
component 3 fields resulting from the parallel-pair case, while 
there are z-component B fields resulting from the twisted- 
pair case as shown in Figure(7). The results also reveal as 
expected, that shorter lengths of the helical pitch cause the 
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B fields outside the transmission line to decay more quickly 
in the radially outward direction. Thus shorter pitches lead 
to reduced magnitudes of background magnetic field, which is 
a desirable outcome from the SSF electromagnetic field com- 
patibility point of view. Examination of Figures (5) through 
(7), leads one to conclude that at locations far away from the 
transmission line, the z-component of the fields, B,, is of the 
same order of magnitude as that of the 2, and y components, 
B, and B,. 

IV. CONCLUSIONS 

The results obtained from this analytical method show the 
3D nature of the B field surrounding a two-wire twisted-pair 
transmission line in the static case. That is, the twisted-pair 
problem should be dealt with using 3D magnetic field com- 
putation methods if geometrically complicating surroundings 
such as shields and highly permeable materials are present. 
Therefore, some new methods are needed for studying shield- 
ing effects and defects surrounding those types of twisted-pair 
wires. The 3D nature of this field means that in future work 
one of the available options may be to use 3D finite element 
analysis in conjunction with ballooning techniques to evalu- 
ate the shielding problems and effects of a conducting plasma 
environment, when AC cases of interest in SSF power trans- 
mission lines are studied. 
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