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Abstract - This paper describes the application of a 
magnetic field computation software (based on boundary 
element method), to the determination of eddy currents 
in very thin plates. The thin character of the plate and its 
magnetic and conducting properties are taken into 
account by using special integration methods. The 
technique is applied to an induction oven (aspect ratio of 
the plate 1/500). 

INTRODUCTION 

The determination of eddy currents in very thin structures is 
often essential in the design of electrotechnical devices, or in 
applications such as induction heating. This can be coupled to a 
thermal analysis which will lead to better design and performance. 

MODELIZATION 

The modelization of the two-dimensional magnetic field is 
based on integral methods 1 . Materials are linear and characterized 
by their relative magnetic permeability p and electric conductivity 0. 

Excitations are sinuso'idal with a pulsation w. A complex formalism 
is adopted. Magnetic materials are taken into account by the direct 
boundary element method : 

(where G is the Green function = 5 In rPQ ). 2n 

Eddy currents are computed using the local Ohm's law : 

J (P) = - cr (j w A(P) + grad V) 

The unknowns of the problem are values of A and aA/an 
(which is in fact the tangential flux density) on the boundaries of 
magnetic material, and current density J inside the conductors. 

The discretization of the magnetic materials boundaries (first 
order linear element) and of the inside of the conductors (first order 
triangle) leads to a linear system of algebrdic equations. 

In this two dimensional problem, grad V terms are in fact the 
terminal voltages of conductors (for one unit of length). Thus, one 
extra condition is required for the conductor to determine its value. 
In our case, the total c m n t  in the conductors is specified : 

(2) 

I =/, J dS 
(3) 

(In the example, no current is imposed (that is a null current) in the 
plate). 

NUMERICAL INTEGRATION 

Difficulties arise in the numerical evaluation of expression (I) 
because integrands G and aG/an are integrable but become singular 
when points P and Q are the same. For the linear element and 
triangle, an adaptative method is used in order to get good accuracy 
for integration (relative precision 104). 

For the boundary element, an adaptative version of the 
Gaussian integration rule developed by Patterson 2is used. The idea 
is to use already computed values of the function and add new points 
optimally. Given an n points formula, n+l interlaced points can be 
added. The degrees of freedom for the new formula are the n+l 
positions of the new points and the 2n+l weights of all the points. 
With these 3n+2 degrees of freedom, a 3n+l order polynomial can 
be integrated exactly. This is not so far from Gauss' rule 
performance which can exactly integrate a 4n+l order polynomial 
with the same number of points, but without giving any error 
estimation. Patterson's rule consists of a repetition of successive 
optimal addition of points. Starting with 1 central point, a sequence 
of formulae with 3,7 ,  15, ... points can be obtained. A formula up 
to 127 points is used. 

In addition, a change of variable is used to "smooth" 
singularity or "nearly singular behaviour" (arbitrary high peak) 
(Figure 1). 

I 

to" 

Finwe 1 : Example of the singular behaviour of the Green function. 

We pose : t - tm;l= u3 

so, 

dt = 3 U* du 
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t=O : u = u 1 = - =  

t = l  : u = u z = - w  

The integral is transformed into : 
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RESULTS 

jo ' f  (I dt = 3 1';(u3) u2du 
I 

for which the integrand has the smooth shape of Figure 2. 

Fipwe 2 : Shape of the integrand &er the change of variable. 

Practical experience shows that the method is valid for singular 
kernels (i.e. influenced point on the boundary element), and for 
nearly singular kernels (influenced point arbitrarily close to the 
boundary element). 

The basis for such integration methods is the orthogonal 
polynomial theory, which is less developed in two variables. 
Methods so powerful are not yet available for mangles. Thus, for the 
triangle, an adaptative method is used, based on mangle subdivision 
and error estimation by comparing two schemes of different 
orders. 

No change of variable is needed because the singularity is 
weaker (only G has to be integrated which is weaker for 2D 
integration than for 1D). 

The use of adaptative schemes has two advantages : economy, 
because the amount of computation is proportional to the difficulty of 
the problem, and safety, because of error control. 

THIN PLATE MODELIZATION 

Care is necessary in the numerical integration of thin plates. 
Self influence coefficients involve singular integrals but because of 
the thickness of the plate, several mutual coefficient computations 
involve nearly singular kernels. 

In triangle integration, another difficulty arises from the bad 
quality of the triangle (angle close to 0"). Fortunately, the direct 
integral method seems to be less sensitive to this than finite elements 
method if the integration is done accurately enough. The accuracy of 
coefficients is necessary since some nodes are very close together, 
so the linear system is nearly singular. 

An induction oven (Figure 3) having the following 
characteristics was studied : dimension of the plate : 0.5 x 10-3 m2; 
p = 142 ; Q = 2.5 106 S/m ; inductors : 1800 A ; frequency : 
7400 Hz. 
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:Field lines in the induction oven. 

Note that the penetration depth of the field is only 3.1 10-4 m 
and that, because of the skew symmetry of the problem, the model 
must incorporate correctly the variation of current density on the 
thickness of the plate. This plate is discretized by 52 linear elements 
and 50 mangles. 
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: Longitudinal current density on the surface of the plate. 

As a result, we present the shape of the current density along 
the plate (just on its surface) (Figure 4), and transversally (Figure 5) ,  
the energy balance of the problem (Table 1) and the field lines 
around the plate (Figure 3). 
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F S  : Tramersal current a'ensity 

CONCLUSION 

The determination of eddy currents in very thin plates by 
integral methods requires an accurate computation of integrals 
involved. As some numerical experiments have been done with 
different meshes and with different numerical integration methods, 
energy conservation seems to be a good indicator of the solution 
quality in integral methods. Adaptative integration method gives the 
best results. 

I Active Power (W/m) I Joule Effect (W/m) 
Inductor 10 I 8.36E+02 I 1.350E+02 
Inductor 9 
Inductor 8 
Inductor 7 
Inductor 6 
Inductor 5 
Inductor 4 
Inductor 3 
Inductor 2 
Inductor 1 

Plate 
TOTAL 
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