1238

IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 3, MARCH 2009

Efficient Analysis of the Solidification of Moving Ferromagnetic Bodies
With Eddy-Current Control
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A new procedure for the study of the evolution of the solid phase in a moving solidifying ferromagnetic metal is proposed. The tem-
perature distribution is controlled using eddy currents induced by a coil that covers partially the crucible surface and by cooling the rest
of it, with an imposed crucible velocity. Analysis of the thermal field requires the solution of the time-periodic eddy-current problem
coupled with the thermal diffusion problem. The nonlinearity of the B—H relation within the ferromagnetic material of the yoke and
inside the solidified material cooled below the Curie point, as well as its dependence on temperature, are taken into consideration. Ap-
plication of the polarization fixed point method allows the construction of an integral equation for eddy currents and always ensures the
convergence of the iterative solution. At each time step, the heat diffusion equation is solved through a standard finite element technique,
with the thermal conductivity and the specific heat capacity dependent on temperature.

Index Terms—Coupled eddy current—heat diffusion problems, nonlinear periodic fields, polarization fixed point method.

1. INTRODUCTION

N numerous applications, the electromagnetic heating by
I eddy currents is recommended for casting melted con-
ducting material in a controlled thermal environment. In the
case of ferromagnetic material solidification, the decrease of
temperature below the Curie point in some regions requires
taking into account the nonlinearity of the B—H characteristic
and its dependence on temperature. When employing a ferro-
magnetic yoke for the concentration of the magnetic flux, it is
necessary to consider the nonlinearity of its B—H characteristic
as well. The distribution of eddy currents is modified by the
displacement of the crucible, which also changes the thermal
boundary conditions.

The analysis of a time-periodic electromagnetic field in non-
linear magnetic media can simply be done by linearizing the
B-H relationship and by correcting iteratively the material per-
meability [1], but the convergence of the computational process
is not always guaranteed. On the other hand, a time-domain so-
lution to this problem can be obtained by following accurately
the nonlinear B—H characteristic. However, the time necessary
to reach the periodic steady state could be prohibitive, especially
for systems with large “time constants”; also, the strong depen-
dence on temperature of the B—H relation diminishes the ad-
vantages of optimally initializing the field values with the final
values from the preceding step. The harmonic balance method
employs a Fourier series expansion of the unknown quantities
and yields large systems of nonlinear algebraic equations whose
solution requires a huge computational effort [2]. An efficient
method for the solution of nonlinear eddy-current problems was
presented in [3], where the magnetic nonlinearity is treated iter-
atively by the polarization fixed point method [4].

Modeling of electromagnetic heating of ferromagnetic bodies
is performed in [2] and an improved method is presented in [5],
where a coupled system of nonlinear equations is constructed at
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each thermal time step which contains simultaneously the dis-
tribution of temperature and of electromagnetic field quantities.

In this work, an extremely efficient iterative algorithm [6]
based on the polarization fixed point method is redesigned and
adapted for the analysis of the evolution of the liquid—solid
transition surface in moving solidifying ferromagnetic bodies.
Namely, in the entire field region, the permeability is taken to
be the permeability of free space, and the magnetization is cor-
rected iteratively in terms of the magnetic flux density which
depends on temperature. As a consequence, the electromag-
netic field solution at each iteration can be obtained by using
an eddy-current integral equation simply formulated for an un-
bounded homogenous space with the unknown eddy currents
only localized within the region occupied by the solidifying ma-
terial. Thus, the effect of the motion of the crucible is taken into
account by only modifying the localization of the field sources,
i.e., the given currents in the inducing coil and the magneti-
zation in the ferromagnetic yoke. The dicretization mesh is,
therefore, constructed only in the solidifying material and the
yoke and remains unchanged during the crucible displacement.
However, the crucible motion requires the adjustment of the
boundary conditions in the thermal diffusion problem. Since
we consider a periodic regime, the magnetization is expanded
in a Fourier series and for each harmonic, separately, the mag-
netic flux density is derived from the distribution of magnetiza-
tion and of electric current, the latter being obtained by solving
only one linear system of algebraic equations, the number of un-
knowns involved being determined by the space discretization
employed. The phasor representation for computing the electro-
magnetic field quantities is used at each iteration. The instanta-
neous value of the magnetization is corrected in terms of the
corresponding value of the resultant magnetic flux density. At
the beginning of the iterative process, one may only consider
the fundamental harmonic, when the convergence is more rapid
than that when employing more harmonics. Once the error cri-
terion for the fundamental is satisfied, in order to improve the
overall accuracy, the iteration can be continued by considering
an increasing number of harmonics. The convergence of the iter-
ative procedure is always ensured. It should be pointed out that,
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when the magnetic circuits employed have very large airgaps,
the fundamental harmonic is, in general, sufficient to achieve a
reasonable accuracy and now the proposed method constitutes
a much more efficient alternative as compared with methods
based on correcting the permeability.

II. THERMAL DIFFUSION PROBLEM

The temperature distribution in the solidifying material is ob-
tained by solving the thermal diffusion equation
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where A is the thermal conductivity, ¢, is the specific heat
capacity, both depending on temperature, and p is the specific
power loss obtained by solving the nonlinear eddy-current
problem. For the liquid—solid transition layer, a fictitious spe-
cific heat capacity is adopted, i.e.,

d =s/Af 2)

where s is the melting specific latent heat and A# is a tempera-
ture difference assumed across the transition layer.
The boundary condition imposed is

)\g—g + a(f —
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where 6, is the external temperature and « the thermal convec-
tion coefficient which, due to the crucible motion, depends on
time. Employing a Crank—Nicholson time-discretization tech-
nique, from the temperature distribution at a time ¢ one obtains
the temperature distribution at ¢ + At¢, the thermal conductivity
and the heat capacity being corrected iteratively. The finite ele-
ment method is applied to solve (1) at each time step.

III. ELECTROMAGNETIC FIELD MODELING

At each time step, we have for each point inside the solid-
ifying material a nonlinear relationship H = F(B,#) that is
obtained by interpolation from the B—H characteristics known
for some discrete temperatures. We replace this relationship by

H=B/uy-M )

where p is the permeability of free space and the nonlinearity
is hidden in the magnetization pz,

M = B/uy — F(B,0) = G(B,0). (5)
The time-periodic M is expanded into a Fourier series in the

form

(M, sin(nwt) + M, cos(nwt)) . (6)

The numerical computation is performed by retaining a finite
number /N of harmonics. For each harmonic n of the magneti-
zation M, we use a phasor representation

M, =M, +jM, @)
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and compute the corresponding magnetic flux density phasor
B, =B, +jB,. ®)

We first determine the eddy-current density distribution by
using for each harmonic n, of angular frequency w, = nw,
n = 1,3,...,2N — 1, the eddy-current integral equation for
an unbounded free space. For two-dimensional structures, it has
the form

: 1
pdo(r) + g—;jwn / Tu(')In - ds’

o
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v

__.jwn/k
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where p and J,, are, respectively, the resistivity and the electric
current density induced in the conducting regions €2, Jy, is the
given current density in the nonferromagnetic coil regions 2,
2y is the region occupied by ferromagnetic materials, i.e., the
solidifying material and the magnetic yoke, r and ' are the po-
sition vectors of the observation and the source points, respec-
tively, R = |r —7'|, k is the longitudinal unit vector, and C = 0
for a zero total electric current carried by the material in the cru-
cible. From each harmonic M,, of magnetization, we obtain the
nth harmonic of the induced current density by solving (9) and,
then, the nth harmonic of the flux density is calculated from

I J.(rR Jon ()R
B(r)=3" kx/ 522 dS’ +k x / Oéz) ds’
Q Qo
V' x M, ()
+/T X RdS'
Q
=W(J,) + Wo(Jon) + V(M,,). (10)

From B,,, we obtain the time-domain expression of the flux den-
sity

(B, sin(nwt) + B, cos(nwt)) (11)

which is used to upgrade the magnetization with (5). The
discretization meshes for the regions {2 and Q; are shown in
Figs. 1, 2 and 4, 5. Equations (9) and (10) are converted into
matrix forms by integrating their terms over each mesh cell of
(2 and )¢, respectively, with each cell integral transformed into
an integral over its contour and with the values of J,, and M,
considered to be their mean values over the cell. The matrix
entries are calculated by using their exact analytic expressions.
Details regarding the numerical solution of (9) can be found
in [3]. The crucible motion determines the modification of
only the right-hand side of (9) and, thus, the associated system
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Fig. 1. Positioning and field line sketches at (a) t = 216 s and (b) t = 468 s.
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Fig. 2. (a) Isotherms at t = 468 s. (b) Evolution of the 1300 °C change-of-
phase surface.

matrix remains unchanged during the entire iterative process
and for all the positions of the crucible. The operators Uy and
U in (9) and W, Wy, and V in (10) are the same for all the
iterations; the components of U, W, and V associated with the
solidifying ferromagnetic material also remain unchanged for
various crucible positions.

IV. ILLUSTRATIVE EXAMPLES

A coil of 15 x 60 mm in cross section, carrying a 50 Hz si-
nusoidal current of density 7.5-A/mm? rms value, induces eddy
currents in a long 20 x 60-mm body of solidifying ferromag-
netic material, as shown in Fig. 1. At 20 °C, the material has a
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TABLE I
TEMPERATURE DEPENDENCE OF THE RESISTIVITY, THERMAL CONDUCTIVITY
AND SPECIFIC HEAT CAPACITY

\\% J
6cC)| pao’a-m) | 4 (—j cv(106 —3)
K-m K-m
100 1.04 40 3.97
500 1.2 35 3.8
1000 1.45 30 3.63
1300 1.6 27 3.5
1500 1.72 25 3.34
1800 1.89 22 3
2000 2 20.6 2.86
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Fig. 3. H-B characteristic for various temperatures.

resistivity of 10~7 2-m, a thermal conductivity of 46 W /(K-m),
and a specific heat capacity of 4 x 10° J/(K-m?), all depending
on temperature, as shown in Table I. A thermal convection co-
efficient of 0.2 W /(K - m?) has been considered underneath the
thermal insulation of the coil and of 200 W/(K - m?) for the
lower section facing the cooling system. The melting point is at
1300 °C and the melting specific latent heat is 2.142 x 10° J/m>.
The liquid-solid transition is assumed to take place in a tempera-
ture interval of Af = 2 °C. Bellow the Curie point, i.e., 780 °C,
the relation B—H is nonlinear and depends on temperature as
specified in Fig. 3. The crucible is moving down with a velocity
of 0.1 mm/s.

The field lines are sketched for two different times in Fig. 1.
One can notice the distortion of the original field in the region
where the temperature has decreased below the Curie point.
A few isotherms inside the solidifying ferromagnetic material
at t = 468 s are plotted in Fig. 2(a), while the evolution in
time of the liquid-solid transition surface is shown in Fig. 2(b).
To obtain reasonably accurate results, it has been sufficient to
only consider the fundamental harmonic, the contribution of the
higher harmonics being smaller than 1%. At each time step, the
iterations were continued until the relative error [3] decreased
below 2 x 10~

In Fig. 4, a more efficient system is shown, which contains
a supplementary magnetic circuit, with only 5 A/mm? in the
coil. The B—H characteristic of the circuit material is practically
the same as that of the ferromagnetic material in the crucible at
20 °C. Two field line sketches, various isotherms and the change
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Fig. 4. Positioning and field line sketches at (a) ¢t = 304.2 s and (b) ¢ = 570 s.
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Fig. 5. (a) Isotherms at # = 570 s. (b) Evolution of the 1300 °C change-of-
phase surface.

of the liquid-solid transition surface are presented in Figs. 4 and
5, respectively.

V. CONCLUSION

A new method is proposed for the determination of the evolu-
tion of the change-of-phase surface in the case of the ferromag-
netic material solidification controlled by eddy currents. In the
solution of the thermal diffusion problem, it has been necessary
to take into account the change in the boundary conditions due
to the crucible displacement. For the numerical stability of the
Crank—Nicholson procedure, the time step has been adjusted in
the proximity of the melting point and also of the Curie point,
where the B—H characteristic changes abruptly. This time-step
modification is performed by imposing sufficiently small tem-
perature variations at all the discretization nodes and takes an
important part of the computation time. However, in the pro-
posed method, this computation time is substantially reduced
since the time-step correction only requires the solution of the
thermal problem, without being necessary to also solve each
time the eddy-current problem. With a 2.1 GHz processor per-
sonal computer, the necessary computation time was about 45
min in the case of the absence of the magnetic yoke and about
180 min in its presence.

For the solution of the problem of time-periodic electromag-
netic field in nonlinear media with moving bodies, a very ef-
ficient procedure has been developed based on the fixed point
polarization method. The nonlinear media, as well as all the
other magnetic parts of the structure considered, are replaced by
free space, with the nonlinearity transferred to the magnetiza-
tion vector. Various physical quantities are expanded in Fourier
series and a convenient number of harmonics is retained, the
field problem being solved for each harmonic separately em-
ploying a phasor representation. The procedure is always con-
vergent, for any number of harmonics. An eddy-current inte-
gral equation is formulated for a free-space permeability every-
where, with significant advantages in the modeling of the cru-
cible displacement.
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