
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 5, May 2008, p. 1208 - 1212 
 

Eddy-current melting of ferromagnetic bodies 
 
 
F. I. HANTILA*, M. MARICARU, O. DROSU, S. MARINESCUa 

Department of Electrical Engineering, Politehnica University of Bucharest, Spl. Independentei 313, 
Bucharest, 060042, Romania 
aResearch and Development Institute for Electrical Engineering, Spl. Unirii 313, Bucharest, 030138, Romania 
 
 
 
Applying the fixed point polarization method to the nonlinear eddy-current field, with the magnetization dependent on the 
magnetic flux density and on the temperature, allows the field computation for each harmonic separately. Since the fictitious 
permeability can be chosen to be everywhere within the free space, the matrices of the linear systems to be solved at each 
iteration remain unchanged even when the nonlinear B-H characteristic changes with the temperature and the integral 
equation of the eddy currents may be used. The inversion of the matrices corresponding to the harmonics is performed only 
once, before the beginning of the iterative process. The time discretization of the heat conduction – diffusion equation is 
done by Crank-Nicholson technique and, at each time step, the temperature is obtained by the finite element method. The 
thermal conductivity and the specific heat capacity depend by the temperature. For the solid-liquid transition, a fictive 
specific heat capacity is adopted. An illustrative example is presented. 
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1. Introduction 
 
The eddy-currents heating of ferromagnetic materials 

are frequently used for hardening the surface of various 
objects or for their casting in a controlled thermal 
environment. In both processes, high values of magnetic 
flux density are needed which requires to take into account 
the nonlinearity of the material B-H characteristic and its 
dependence on temperature. 

 The nonlinear time-periodic eddy-current problems 
are usually solved by pseudo-linear procedures where the 
nonlinear relationship B - H  is linearized and the material 
permeability is corrected in terms of the magnetic flux 
density B , based on various criteria [1]. The main 
advantage consists in the usage of the complex 
representation for computing the electromagnetic field at 
each iteration. The convergence of the computational 
process is not always guaranteed and, for strong 
nonlinearities, this method could yield unrealistic results. 
A direct “brute force” analysis follows accurately the 
nonlinearity of the B-H relationship, but the time 
necessary to reach the periodic steady state could be 
prohibitive. Sometimes, especially when the “time 
constant” is large, the stability of the “brute force” 
procedure could be a problem. The Harmonic Balance 
Method employs a Fourier series expansion of the 
unknown quantities and yields large systems of nonlinear 
algebraic equations whose solution requires a huge 
computational effort [2]. An efficient method for the 
solution of nonlinear eddy-current problems was presented 
in [3], where the magnetic nonlinearity is treated 
iteratively by the Polarization Fixed Point Method (PFPM) 
[4]. Permeability value is chosen so that the PFPM 
convergence is guaranteed. It is constant during the 

iterative process, the nonlinearity being taken into account 
by a fictitious magnetization which is corrected in terms of 
the magnetic flux density at each iteration step. Thus, in 
the numerical computation, the system matrix remains 
unchanged during the entire iterative process. In a periodic 
regime, the magnetization is expanded in Fourier series 
and each harmonic of magnetic flux density is determined 
separately from the distribution of magnetization and 
electric current by solving only one linear system whose 
number of unknowns is given by the space discretization 
employed. The instantaneous value of the magnetization is 
corrected in terms of the corresponding value of the 
resultant magnetic flux density. 

Modelling the electromagnetic heating of 
ferromagnetic bodies is performed in [5] by employing a 
harmonic balance procedure and a hybrid finite element-
boundary element formulation which requires the solution 
of a large system of nonlinear equations. An improved 
method is presented in [6], where a coupled system of 
nonlinear equations is constructed at each thermal time 
step which contains simultaneously the distribution of 
temperature and electromagnetic field quantities. 

In the present paper, the eddy-currents melting of 
ferromagnetic bodies is treated by using an  extended 
formulation of the method in [3], with the magnetization 
depending on B and the temperature. The time-periodic 
magnetization is expanded in Fourier series. For each 
harmonic, eddy-current problems are solved, using 
complex representation. The matrices associated to each 
harmonic remain unchanged when the B-H characteristic 
is modified in terms of temperature. Only the 
magnetization is adjusted as the temperature varies. Thus, 
the strong variations of the actual permeability in the 
neighbourhood of the Curie point do not interfere directly 
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in the proposed procedure. The convergence of PFPM is 
guaranteed if the fictitious permeability is chosen to be 
everywhere within the free space. Consequently the 
integral equation of the eddy currents may be used [7]. 
The inversion of the matrices corresponding to the 
harmonics is performed only once, before the beginning of 
the iterative process. The time discretization of the heat 
conduction – diffusion equation is done by Crank-
Nicholson technique and, at each time step, the 
temperature is obtained using the finite element method. 
The thermal conductivity and the specific heat capacity 
depend on the temperature. For the solid-liquid transition, 
a fictive specific heat capacity is adopted. 
 
 

2. Polarization fixed point method 
 
The nonlinear relationship H = ),BF( θ  is written as  

 
 MBH −=ν         (1) 

 
where μν /1≡  is a constant, θ  is the temperature and 
the non-linearity is hidden in the fictitious magnetization 
M  that has a nonlinear dependence of B  and θ ,  
 

),F( θν BBM −= ),G( θB≡ .     (2) 
 
In particular, μ can be chosen to be the permeability of 
free space. At any value of θ , G is a contraction with 
respect to B, i.e.  

μ)"()'( BB GG −  ≤ νλ "' BB −    (3) 

 
for any B’ and B”. The norm is given by 
 

 νU = ∫ ∫
Ω

Ω⋅
T

dtd
T

0

1 )( UU ν      (4)  

 
where T is the period and fΩ  the region occupied by 

nonlinear media which may contain conducting bodies. 
Starting with an arbitrary B, M and then B are updated 
iteratively. The time-periodic M has a Fourier series 
expansion in the form 
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For the numerical computation, we retain a finite 

number N of harmonics,  
≅M )Y(MM ≡a         (6) 

 
where the truncating function Y is nonexpansive, i.e. 
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For each harmonic n of the magnetization M we use 

the complex representation 
 

 nnn j "' MMM +=       (8) 
 

and compute the complex magnetic flux density  
 

nnn j "B'BB += .        (9) 
 

From nB , we obtain  
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It can be shown that L  is also non-expansive. At 
each step 1≥k  of the proposed iterative process, we 
perform the chain of operations 
 

 1+⎯→⎯⎯→⎯⎯→⎯ kk
a

kk BMMB LYG ,    (11) 
 
with 1B  arbitrarily chosen. The composed function 

GYL  is a contraction and therefore kM  (or kB ) is a  
convergent Picard-Banach sequence. 

 Instead of systems of equations corresponding to 
each time step in time-domain methods, in the above 
method one has to solve only N linear complex systems at 
each iteration. In order to further reduce the amount of 
computation, we start with a small number  N of 
harmonics (even with N=1). Since the inequality (6) is 
stronger when the number of harmonics is smaller, the rate 
of convergence is now higher. When an imposed accuracy 
is reached, we increase the number of harmonics until the 
resultant field is accurately determined. 

 
3. Eddy-current integral equation 
 
An advantageous feature of the proposed method 

consists in the fact that the constant μ  can be chosen to 
be the permeability of free space, 0μμ = . This allows the 
construction of an integral equation for the current density 
to be solved at each iteration. For two-dimensional 
structures, this integral equation can be written, for each 
odd harmonic of angular frequency ωω )( 1212 −≡− nn , 
in the form 
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where ρ and J are the resistivity and the current density in 
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the conducting regions Ω, respectively, 0J  is the given 
current density in the nonferromagnetic coil regions 0Ω , r 
and r’ are the position vectors of the observation and the 
source points, respectively, || ,rr −=R , k is the 
longitudinal unit vector, and lC  is a constant for each 
disjoint conducting region l which is determined by 
specifying its total current. From each harmonic n of the 
magnetization, we obtain the n-th harmonic of the induced 
current density by solving (11) and, then, the n-th harmonic 
of the magnetic flux density is calculated from  
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Using equation (10), we obtain the time depending 

value of the magnetic flux density and we may upgrade 
the magnetization with (2). 

 
 
4. Numerical approach 
 
To illustrate the formulation we choose only one 

conducting region Ω with a zero total current, when C=0. 
Ω is divided in I subdomains iω and 0Ω  in Q 
subdomains q0ω . Equation (12) is discretized as 
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where mρ , mS , and mJ  are, respectively, the resistivity, 
the area, and the average value of the current density of 
the subdomain mω , qJ 0  is the imposed current density 

in the subdomain q0ω , iM  is the magnetization in iω , 

and 
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iω∂  is the boundary of the subdomain iω  and in  is the 

outward normal unit vector on iω∂ . The system (14) can 
be written for each harmonic n in a matrix form as 
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where β  is the matrix of miβ , δ  is a diagonal matrix 
with the entries ωρδ /mmmm S= , Im ,...,2,1= , nJ '  and 

nJ"  are the column vectors of the real and imaginary 
parts of the complex current density nJ , nA 0' , nA 0"  and 

MnA' , MnA"  are, respectively, the column vectors of the 
real and imaginary parts of the complex vector potentials 
integrated over the respective subdomains mω , nA0  due 
to the imposed current density and MnA  to the 
magnetization, i.e. 
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nA0  is the same for all iterations, while MnA  is to be 

corrected at each iteration.  
 After solving the system (18), the complex flux density 
is obtained from 
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The average value of the complex flux density in the 

subdomain mω is computed as 
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where mn,0B  is the flux density due to the imposed 

current density, the same for all the iterations, 
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the latter being expressed in terms of the dyads 

)'( imdd ll . The numerical approximation of mn,B  due to 
the averaging is non-expansive and, thus, preserves the 
convergence of the iterative process, while the system (17) 
corresponding to the integral equation (12) could perturb 
the convergence in the case of large differences in 
differential magnetic permeability. At any time t, the flux 
density is obtained with (10), the magnetization is 
corrected with (2) and, then, used for computing the new 
complex expression in(7), with 
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5. Thermal diffusion equation 
 
The solution of the nonlinear eddy-current problem 

allows the determination of the specific power losses p. 
Then, the temperature distribution is obtained by solving 
the thermal diffusion equation 
 

( ) p
t

cv =
∂
∂

+∇⋅∇−
θθλ        (24) 

 
where λ  is the thermal conductivity and vc  is the specific 
heat capacity of the ferromagnetic material. The mixed 
boundary condition imposed is  
 

0=−+
∂
∂ )( en

θθαθλ ,       (25) 

 
where α is the thermal convection coefficient and eθ  the 
external temperature. Employing a Crank-Nicholson time-
discretization technique, from the temperature distribution 
at a time t one obtains, step by step, the temperature  
distribution at tt Δ+ . The corresponding new 
characteristic B-H, thermal conductivity and specific heat 
capacity are obtained. For the solid-liquid transition, a 
fictive specific heat capacity is adopted: 
 

 
δθ
sc =' ,           (26) 

 

where s is the latent heat and δθ  is a temperature 
difference assumed for the transition. Finite element 
method is applied to solve (2) at each time step. 

 
 

6. Numerical examples 
 
We consider a long coil of 15× 40 mm in cross 

section, carrying a sinusoidal current  of  5,000  A-turns   
(effective value)  at  a  frequency  of 5 kHz, which induces 
currents in a long ferromagnetic bar of rectangular cross 
section of 20× 40 mm, as shown in Fig.1. The initial 
temperature is 0 C° , where the bar has  

6104×=vc )( 3mKJ ⋅  )( mKW46 ⋅=λ , 
m10 7 ⋅Ω= −ρ , )( 2mKW20 ⋅=α  on its top and bottom 

surfaces, and )(. 2mKW40 ⋅=α  on the vertical 
surfaces. The Curie temperature is 780 C°  and the H-B 
characteristics are given in Fig.2. The melting temperature 
is 1300 C°  and the latent heat is 39 J/m102.142 ⋅=s . A 
field line sketch at t= 0.9s, corresponding to a 90° phase of 
the fundamental harmonic, is shown in Fig.1. The 
temperature across the bar’s horizontal plane of symmetry is 
plotted for various times in Fig. 3. The increase with time 
of the minimum, maximum and average temperatures of 
the bar is given in Fig. 4. The time evolution of the solid-
liquid transition zone is given in Figs.5. 

 
 

 
 

Fig. 1. Cross section of a the bar 
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Fig. 2. H-B characteristic for various temperatures. 
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Fig. 3. Temperature for y= -1.7mm. 
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Fig. 4. Minimum, maximum and average temperatures 

 
 

  
Fig.5a. t=180s Fig.5b. t=220s 

 
 

  
Fig.5c. t=270s Fig.5d. t=430s 

7. Conclusions 
 
An efficient method is proposed for the analysis of the 

eddy-currents melting of ferromagnetic objects.  The 
proposed method requires a computational effort which is 
substantially reduced as compared to existing methods. 
We needed only a CPU time of 3 min to compute the time 
evolution of the temperature given in Fig. 4, using a 2.128 
GHz processor personal computer. The method may be 
used for the analysis of the casting in a controlled thermal 
environment. In this case, the magnetic potential nA0  and 
the magnetic flux density  mn,0B  due to the imposed 
current density are time depending values, because the coil 
moving. The thermal boundary condition is also time 
depended. 
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