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Complex Representation in Nonlinear Time Harmonic Eddy Current Problems
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Abstract—Several possibilities are presented to deal with non-
linearity in ferromagnetic media in the case of time harmonic
excitation in steady state, without loosing simplicity in
describing the potentials by means of complex peak values. The
main idea is to introduce a fictitious time independent and
inhomogeneous material to take into account the nonlinear
relationship between the field quantities. Four methods are
shown and investigated on a 3d time harmonic eddy current
problem, using the T,D-® finite element formulation. The
vector potential is represented by means of edge elements and
the scalar potential by nodal elements. The results obtained are
compared with transient computation.

Index terms—Eddy currents, 3D, nonlinear media, frequency
domain analysis, fictitious material, effective magnetization
curve, edge element representation.

1. INTRODUCTION

In linear media, the potentials can be described by their
complex peak values assuming that the excitation is time
harmonic and steady state is reached. To make use of this
complex representation in nonlinear media, too, it is either
necessary to regard the fundamental harmonics only (see
{13]) or to introduce an effective material. This fictitious
material is isotropic and inhomogeneous. It is constant
throughout a period and takes into account the nonlinear
relationship of the field quantities. It can be described by
means of an effective curve. This effective curve shows the
nonlinear relationship of the field quantities. In nonlinear
magnetic field problems this will be an effective
magnetization curve, which originates from the nonlinear B-
H curve.

Some methods to create effective magnetization curves
are already known from the literature [1]-[6], but for A-
formulations (based on a magnetic vector potential) and for
1d and 2d field problems only. A review of the different
methods to create effective magnetization curves on the basis
of the magnetization curve of a ferromagnetic material has
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been presented by the authors in [7]: it is shown that
analogous relations for T-formulations (based on a current
vector potential) and for A-formulations (see [8]) can be
obtained for the fictitious material describing the nonlinear
behavior of the ferromagnetic material. They are extended to
3d field problems and for T-formulations, too and new
methods are added. The advantage of all these methods is the
very low computation time in comparison to the
straightforward transient computation. Both A-formulations
and T-formulations describe with sufficient accuracy the
eddy currents in ferromagnetic conducting media and,
therefore, the time average of the power losses.

The aim of the authors is to investigate these methods on
a highly saturated 3d time harmonic eddy current problem,
using the complex formalism and the T,®-® potential
formulation [8], [11]. The current vector potential T is
approximated by means of second order edge shape functions
and the magnetic scalar potential ® by means of second order
nodal shape functions. The mapping of the geometry into
curvilinear co-ordinates is established with nodal shape
functions. The nonlinear, algebraic equations system with
complex coefficients, obtained from the differential equations
by means of the finite element Galerkin method, is solved by
nonlinear iterative techniques [9], [10] and by the conjugate
gradient method [15].

II. FICTITIOUS MATERIAL

Introducing a fictitious time independent, inhomogeneous
material the field quantities can be represented by complex
peak values. This means that the corresponding time
variation of the components is sinusoidal and hence the peak
of the vector representing the physical quantity lies, in
general, on the surface of an ellipsoid. The magnitude of the
magnetic field intensity, H, is given in general as a function
of space and time as

Hr,t) = [H2 (1) -cos? (@t + 0, (1)
+H  (r)-cos’(wt + @, (r)) -
]]/2‘

&)

+HX(r)-cos’(wt+ @, (1))
In order to create the effective magnetization curve it is
sufficient to regard the time dependence H(¢) only. H(¢) is
periodical withT/2 and varies between an uppet and a lower
bound, which depend on the phase angles ¢, and ¢, for
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fixed H ,H and H,. This means that there are six free

parameters for the approximation of H(f) and a family of
characteristics of the effective magnetization curves is
obtained. However it is sufficient to approximate (1) by

H(r,t)= H (r)|cos(a)t)j @
arising if @, =¢, =¢,. The magnitude of B is then non-
sinusoidal

B(r,1) = B(H(r,1)). , ©)
With (2) and (3) several possibilities exist to create the
effective magnetization curves on the basis of the B-H curve.

In this paper the methods are shown only for T-formulations.
For A-formulations analogous relations exist.

A. Methods to Construct the Effective Magnetization Curves

1) RMS Method: Assuming (2) to be valid, the effective
permeability can be calculated as

lT
, — |B*(t)dt
hus VT

@ = - ~ (4)

T H RMS H / V2

where B(r)is obtained from the magnetization curve with (3).
2) DC Method: Similarly to (4),

7

1T
— | B(t)dt
B, Tg'- @
Hg =5 =75 &)
0 —H
Vs

where the time averages (DC values) of the field quantities
have been used.

3) Simple Energy Method: The following constitutive
relation is introduced for T-formulations

By =u,H. (6)
By means of the magnetic coenergy density, the effective
permeability is obtained with (2) and (6) as

p ——2—?&1}1 (7
eff f"Iz ;

4) Average Energy Method: The time average coenergy
density is defined as

(o, @) = 4" HT}SdHJdtI ®)
co T

0\ H(0)
and with (2) and (6) the effective permeability is
4. <ww (t)) @
Heg = T 9)
The effective magnetization curves are constructed by
means of the pairs (HRMS,BRMS), (HO,BO) or (ﬁ,Bcﬁ).

Fig. 1 shows the different effective magnetization curves
obtained by the above methods. Different characteristics of

the source field quantity are shown on the axes of the
diagram.

B. Finite Element Computation

The above methods suggest a general constitutive relation

By (r) = g (1) H 5 (1) (10)
which approximates the nonlinear relationship of the field
quantities. H ,(r) and B (r) are fictitious field quantitics
in the effective material which is described by the effective
magnetization curve. H . (r) stands for the RMS value, the
DC value or the maximal value of H(r,?) in (1) respectively.

They are calculated during the finite element computation
from (1) as

T
H o (r) = {% sz(r,t)df (RMS method),

(11)

T
Hoy(r)= —;- [H@,nde  (DCmethod), (12)
H (r)=max, H(r,?) (Energy methods). (13)

III. POTENTIAL FORMULATION

The field quantities are derived in the T,®-® formulation
in the eddy current region (Q, ) as

J=Vx(T,+T), (14)

H=T,+T-V® (15)
and in the nonconducting region (2, ) as

H=T,-Vo. (16)

T, is the impressed vector potential assumed to be given,
which models either the current density in the exciting coil or
a given total current in a skin effect problem. Several
possibilities to choose T, are given in [12]. T is the reduced

current vector potential and @ is the reduced magnetic scalar

- potential. T is approximated by means of edge elements as
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Fig. 1. Effective magnetization curves originated from the magnetization
curve in TEAM problem 10.



N,
T=> 1N, (17)
k=1
t,= [T-ds
edgey,
in the eddy current region and @ is represented .by means of
nodal elements as
N,+N,
O=D,+ Y DN,

k=N, +1

(18)

(19)

in the whole domain. N, denotes the global number of edges
and N, the global number of nodes. N, are the edge shape
functions and N, the nodal shape functions.

The differential equations for the potentials are

Vx(pV xT)- V(v -T)+%(#T)—%(ﬂv®)=

P 20)

=Vx(pV T, )-— (4T, )
V(T - uy®)=-V-(uT,) inQ, @1
-V (iV®)=-V-(uT,)  inQ, (22)
The Coulomb gauge V-T=0 is incorporated in these

equations.

IV. NUMERICAL INVESTIGATIONS

An iron choke with air gaps in the middle core, driven by
an exciting coil with a sinusoidal total current of

I1=513-10°4 at f =50Hz was modeled. An iron plate

with  conductivity o =4.5-10°Sm™ and thickness
d =0.015m is attached on both sides of the yoke. The
material of the choke and the plate are nonlinear. The
magnetization curves used are shown in Fig. 3. The curve
with the larger slope is valid in the iron choke. In the
conducting plate the lower curve, the modified curve of
TEAM Problem 10 [16], is used. Fig. 2 shows one eighth of
the geometry of the choke with the exciting coil and the finite
element mesh of the problem.

CONDUCTING
IRON PLATE

Fig. 2. Finite element model with exciting coil of one eighth of the choke
coil.
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Fig. 3. Magnetization curves of the choke and the conducting plate.

Additionally to the four methods presented above another
possibility to deal with the nonlinearity is to use the original
magnetization curve in combination with max, H(r,?)
which is obtained from (1) with (13). These five methods are
compared to each other and to a transient computation. Time
stepping was carried out over one period with time steps
At=T/40. In Table I, the computational efforts of the
different methods are compared. Table II shows the time
average of the power losses in the conducting plate.

TABLE I: COMPARISON OF CPU TIMES (S) AND NUMBER OF NONLINEAR
ITERATIONS (205 810 UNKNOWNS)

“Transient RMS DC Energy Average Hipax
685 790 84 397 79 633 59229 53 697 162 301
1202 1t. 271t 211t 15 It. 121t 112 It.

TABLE II: TIME AVERAGE OF POWER LOSSES IN THE PLATE (W)
Transient - RMS DC Energy Average Hpax

107.20 - 98.63 93.35 84.53 7591 116.52

Fig. 4 shows the distribution of the current density on the
outer side of the iron plate at the time instant ot =0
calculated by the RMS method. The same distribution
obtained by a transient nonlinear analysis at ¢ =0.02s is
shown in Fig. 5.
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Fig. 4. Distribution of the current density on the conducting plate.
RMS method at ¢ =0.
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Fig. 5. Distribution of the current density on the conducting plate.
Transient computation: 7= 0.02s . :

In Fig. 6, the time functions of the power losses are
shown. The RMS method is compared with the solution
obtained by the time stepping method. The DC parts of P are
P =107.20W for the transient computation and P =98.63W
for the RMS method, see Table I1.
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Fig. 6. Power losses during one period in the conducting plate.
Transient and approximate sinusoidal time function-obtained by the RMS
method.

V. CONCLUSION

All the methods presented show excellent agreement for
the power losses and the electric currents with the time
consuming transient results. The magnetic fields fit also well.
Earlier investigations on a simple eddy current problem, see
[7], and the above results give rise to the following
conclusion: the RMS and the DC methods work better with

T-formulations and the energy methods work better with A-
formulations. The big advantage of all these methods is the
substantially lower computational effort.
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