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On the 3-D Inhomogeneous Induction Heating of a Shell

L. Gong, R. Hagel, and R. Unbehauen
Lehrstuhl fiir Aligemeine und Theoretische Elektrotechnik, Universitit Erlangen-Niirnberg
Cauerstr. 7, D-91058 Erlangen, Germany

Abstract—To overcome the difficulty of discretization due to a very
small penetration depth, the 3-D eddy current field problem is solved
by the longitudinal component method together with a discrete Fourier
transform (DFT) in cylindrical coordinates. Galerkin’s FEM is ap-
plied to calculate the 3-D heat transfer in a conducting and permeable
moving shell. Numerical results are presented.

I. INTRODUCTION

A moving steel shell is heated by an eccentric inductor
idealized as a circular line current as shown in Fig. 1. Be-
cause the shell moves with a low velocity along its longitu-
dinal direction, the influence of the velocity-dependence on
the constitutive relations can be neglected. The elec-
tromagnetic field due to the inductor current is considered
as the incident field which will be calculated in region III
(Fig. 1) by means of Biot-Savart law. The total field in re-
gion III is represented as the superposition of the incident
field and the scattered field. The scattered field in region
III as well as the total field in regions I and II satisfy the
homogeneous Helmholtz equations. For time harmonic
fields with frequency w = 271f , the phasors B and E (ie.,
the vectors of complex quantities associated to the
sinusoidal field components in usual manner) are intro-
duced so that the source-free Helmholtz equations read as

V:B +k’B =0 ®
and
V2E +k’E =0 2

with k2 = w? 14y &, in air and k? = ~jwu (0 +jwe, ) in the
permeable and conducting material of the shell, where t4 is
the permeability, o is the electric conductivity, &, is the va-
cuum permittivity. To avoid the difficulties of discretization
owing to a very small penetration depth and the open
boundary in numerical methods, separation of variables is
preferred. In cylindrical coordinates r, ¢, z only the longi-
tudinal components can be solved by separation of the vari-
ables. Since the transverse components and the longitudi-
nal ones are related to each other, the transverse com-
ponents can be expressed in terms of the longitudinal ones
[1]. The governing equation of the steady heat transfer
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where T is the temperature, « is the thermal conductivity,
¢, is the thermal capacity, 0 is the mass density and g
represents the heat source which results from the eddy
current loss. To solve the steady heat transfer, a 3-D calcu-
lation is performed inside the shell and a convenient

method is Galerkin’s FEM [2].

II. ALGORITHM
A. 3-D eddy current field

The components of both the magnetic field and the elec-
tric field can be expanded into Fourier series with respect
to ¢. Due to the symmetry of the problem (Fig. 1), the n-th
order harmonics B,,, B,, and E,, are of even symmetry
with respect to ¢ while B,,, E,, and E,, are of odd sym-
metry with respect to ¢. Assuming the shell is infinitely
long, we apply the Fourier transform (FT) with respect to
the z -variable:

B, = [B,e ™dz, E,=[E,e ™dz. (4ab)

Applying the FT and the separation of the variables to the
longitudinal components of (1) and (2), we obtain Bessel
equations for the transformed Fourier coefficients of the
longitudinal components:
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Fig.1. Shell and inductor Fig.2. Boundary conditions

for the heat transfer

0018-9464/94$4.00 © 1994 IEEE



8*B,, 1 OB, n2y ~

—— 2———— =
a2  r O +[A 2 ]B’" 0, ®
d*E, 1 OE,

ar? * r Oor

" [AZ— 1:21]5 0. (6

In regions I and III, we have A? = w? 1 &, — k.2 and in re-
gion I A= —jou (o +jwe,) — k2 . The solutions of the
above Bessel equations for the three field regions can gen-
erally be written as

B, = Cy,J,(Ar) + C,, HA(Ar), M

Ezn = Dln‘,n(Ar) +D2an(2)(Ar) (8)

where J, and H,® are Bessel functions with integer order
n. In region I, C,,=D,,=0 and in region III, C,, =
D,, = 0 must be set. Thus for every n, 8 quantities are to
be evaluated. The transformed Fourier coefficients of the 4
transverse components can be expressed by §m and EZ,,
[3]. The boundary conditions based on the continuity of the
4 tangential components (Appendix) are established at
r=ry:

1 5 n nin
_Bz[: |r=r3 = leglr=r3 + an Ir=73 ) (9)
M’
EL ), n=ENl, s, (10)
1 = N R in
751«{" |r:rg =Bg111 Ir=13 + B(an r=r3 3 (11)

E{;{n Ir=r3 = Elq{{l lr:r:; + E’:n lv:r3

(12)

where the incident field is developed into a Fourier series
and then transformed. Together with the four analog boun-
dary conditions at r =r, the above 8 coefficients can be
determined. Performing the inverse FT, finally the com-
ponents E,, E, and E, of E are obtained. The electric
power density in the shell is then calculated by

p=0(E*EZ+E}. (13)

Atr=r; and z = 0 (Fig.1) | B | has its maximum value
and the nonlinear w1 has to be adapted to this value.
Therefore an initial value 1 is set to calculate the eddy
current field problem, the maximum value of the magnetic
flux density and the corresponding 1. If the relative error
of w, is less than 5%, then go on to calculate the heat
transfer problem, otherwise an under relaxation formula of
iteration p© = 0.5(u¢ ™+ u®) is applied and the eddy
current field has to be computed again.

B. Heat transfer

According to Galerkin’s FEM we discretize the shell
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and choose prisms as finite elements. Therefore 3-D
Cartesian coordinates are utilized instead of 3-D cylindri-
cal coordinates. Eq. (3) is multiplied by a shape function ¥
and integrated by parts:

oT oT 0¥ oT 0¥
4‘,6_8—;11/“ + {[’Cﬁ— + =

& o &
oT 8¥ or _
+ K,'-a;--—(,;] dQ) + prpUa—Zq,dQ = ‘[q ‘I,dQ (14)

Q

where v = e,v is the velocity of the shell. The finite ele-
ment algebraic equation corresponding to (14) can be ex-
pressed as the matrix equation

[SIT]=[Q] (15)
where [ T] is the vector of the node temperatures, [S] is
the stiffness matrix and [ Q] is a vector whose entries are
the power densities of the prism elements used. Because
the shell moves along the z -axis, the v -dependence makes
[ S] non-symmetric. However, due to the low speed of the
shell, (15) can be solved by Gauss elimination without nu-
merical oscillations.

To consider the T-dependence of «, £®, i=1,
2,..., m, are set, where m is the number of elements of
the shell. After the described computation step of the heat
transfer problem, according to the distribution of the tem-
perature obtained and the piecewise-linear property of «,
we calculate 0, i=1,2,..., m and the average error

L m ,Ci(l) - 'Ci(o)

A= ) —_—
m ;- Ici(l)
value, the results are printed, else the iteration procedure
and the relaxation formula are recalled. According to the
movement of the shell (Fig. 1), we denote the temperature
of the part of the shell far in front of the inductor by T,
while 7,,, denotes the temperature of the part of the shell
far behind the inductor. The behaviour of ¢ with respect to
T, can be expressed in piecewise-linear form as

out
0 = 0,(1-¢; AT)

. If a is less than some permissible

(16)

where 0, is the electric conductivity at the ambient tem-
perature T, ¢, is a constant and AT =7, — T,. In the
same time, the increase of ¢ leads to a rise of 7, that may
be approximately described as a linear function:

(17

The two constants ¢, and c, are determined by choosing
two values 0, and 0,. The above nonlinear eddy current
problem and the nonlinear heat transfer problem are
solved for 0, and @, to obtain the two corresponding T,
and 7,,,,. From (0,, T,,,) and (G,, T,,,) one gets ¢, and
¢, from (17). In this case, 0 can be solved from the two
linear simultaneous equations (16) and (17) to get T,

T,,=C+C30.
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III. EXAMPLE

A conducting and permeable shell heated by an inductor
(Fig. 1) where I = 200 A, f = 100 kHz, the radius of the
inductor r,= 10 mm, the inner radius of the shell
r, =4 mm while the outer radius is 7, = 6 mm and v = 1
m/s, has been considered. For the calculation, only n =0
and n = 1 of the Fourier series are taken since the error of
neglecting the higher harmonics is less than 5%. The na-
tural boundary conditions for the 3-D heat transfer prob-
lem with c,= 464 J/kg'K, p= 7800 kg/m*® and
T,,=20°C are shown in Fig. 2. In order to solve the eddy
current field problem, the origin of the coordinate system
is chosen at the center of the shell in the plane of the in-
ductor where the eccentric distance is 2 = 3.5 mm (Fig. 1).
To solve the heat transfer problem in the case of a moving
shell, the lower end of the shell is placed at z = O (Fig. 2).

The piecewise-linear descriptions used are:
u,=100, B=02T; pm,=120-¢,B, c,=100/T,
02T<B=1.0T; ;,=20, B>1.0T, where B is the rms
of B. 0,= 5x10°S/m, ¢, =0.0021/°C, T,=20°C,
T<200°C and «=554(1-¢,T)W/K'm, ¢,=
0.0235/°C, T <200°C.

From the distribution of the magnitude of B along the
z -axis shown in Fig, 3, the skin effect is evident. The distri-
bution of the magnitude of E along the z -axis decays as
shown in Fig. 4. The distributions of the temperature along
the z -axis and in the ¢-direction are shown in Figs. 5 and
6, respectively. Obviously, an inhomogeneous induction
heating is achieved.

IV. CONCLUSIONS

1. A semi-analytical method for computation of the 3-D
eddy current field coupled to the 3-D heat transfer is
presented. The advantage is that all the formulas for the
field variables are analytically available and there is no dif-
ficulty with the discretization.

2. The 3-D steady heat transfer problem is computed by
Galerkin’s FEM considering the movement of the heated
shell whose speed is less than 10 m/s.

3. The results show that with the eccentric inductor inho-
mogeneous induction heating is clearly achieved.
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Fig. 6. Distribution of the temperature against ¢
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APPENDIX UNIQUENESS THEOREM FOR THE
BOUNDARY VALUE PROBLEM OF THE HELMHOLTZ
EQUATION IN A CLOSED REGION DIVIDED INTO
A NUMBER OF SUBREGIONS [4]

The region G is surrounded by a closed surface S, n is
the number of subregions G,, ¥, (i=1,2,...,n)and S;
(i=1,2,..., n) denote the volume and closed surface of
each subregion, respectively. S; consists of a part of the
boundary S denoted as S;, and the interfaces of neighbour
subregions i and j denoted as 5. m is the number of in-
terfaces in region G . The medium of each subregion is un-
iform and the corresponding complex constitutive parame-
ters are & =&/ -j &/, (4 =4 —j 144 and g, .

Statement of the uniqueness theorem:

For a time harmonic field, if the source current densities
J; and the source magnetic current density J,,; are given
everywhere in ¥V, (i=1,2,...,n), RXE |g, or
nXxXH | are given everywhere at S,,, and n XE | 5
and n XH | 5; are continuous cverywhere at S;;, then the
solutions E; and H, of Maxwell’s equations or Helmholtz
equations are unique.
Proof: Assume E,, ,H,, andE,,  H, (i=1,2,...,n)
are two sets of solutions. Each set must satisfy Maxwell’s
equations and the conditions imposed at the boundary and

interfaces. According to the superposition theorem, the
difference field

AE;‘ =E, -E,, AHi =H, -H,,

must satisfy Poynting’s theorem as derived from Maxwell’s
equations in V;, providing

PAE XA )-m,ds = - [(jor,)* | AE, | 2dv

Si

- Jiwiv | AH, 2o~ o, | B, |2dv. (A1)
v Vi
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Due to the sources being given everywhere in V;, A7, =0,
A, = 0, so that no term AJ; or AJ,, occurs on the right-
hand side of (A-1). There are two terms at S, of the
neighbour subregions ! and k to be considered in the sum
of the integrals with respect to the m interfaces. Both the
two normal unit vectors m,, and m,, for neighbour subre-
gions ! and k, respectively, point outwards their own su-
bregion, n,, = -n,,. Thus the left-hand side of (A-1) is

S BAE X A?)-mds = 3 [(AE,XAH): myyds

i=1 & i=1 8;0

+§ f(AEIXAHI‘ - AE X AH')-myds .

1 Sy

Because the tangential components of E; or H, are given
everywhere at the outer boundary S,

AaXAE, |5, =0 or nXAH, | =0. (A-2)

According to the continuity of the tangential components
of the electric and magnetic fields everywhere on the inter-
face S, we have

"XAEI IS]k ="XAEk |SII¢
and

nXAH, | =nXAH, |, . (A-3)

Eqns. (A-2) and (A-3) yield zero for the left-hand side of
(A-1), so (A-1) becomes

=% J(wk)t |AE, | 2dv-Y [joi, | AR, | 2dv

i=1 ¥ i=1 ¥

—ifo,»lAE,»lzdv:O.

i=1V;

)

The real and imaginary parts in (A-4) must be equal to
zero individually, i.e.,

ifm{'lAEilszZ S| AR | 2dv

i=1 V; i=1V;

+3) [0, | AE, | 2dv = 0, (A-5)

i-1 v
S [wel | AE, | 2dv-Y) ol | AH, | *dv = 0. (A-6)
i1V i-1 v

If any one of &, 1 or 0, is not zero then | AE, | 2= 0,
| AH, | 2= 0, or AE, = 0, AH, = 0. The uniqueness of the
subregion solutions is proved.



