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the detector output are presented. The chevron linewidth in
particular is shown to be a design parameter that has a strong
influence on the signal. Optimized detectors using 2.1-um
chevron linewidth patterned in 0.44-um thick Permalloy at
0.82-um spacing on 3.37-um epi films have a dV/V figure of
merit of 0.5% for 35-40 Oe drive fields.
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Induction Heating for Case Hardening Applications

FREDERICK J. YOUNG, SENIOR MEMBER, IEEE

Abstract—It is observed that the equations describing induction heat-
ing in ferromagnetic materials are rather nonlinear. Although the ther-
mal properties are nonlinear, the greatest nonlinearity arises from the
ferromagnetic behavior of the material. A way of circumventing this
difficulty while retaining the important magnetization curve is pre-
sented. A numerical solution accounting for temperature variations in
the saturation magnetization, electrical and thermal conductivities, and
specific heat is presented. It is found for case hardening applications
that only a narrow near sutface region heats to the vicinity of the Curie
temperature, and a simple theory describing this region is derived. Just
beyond the near surface region a sharp temperature gradient results
which is of importance in case hardening. A simple expression for the
gradient is developed. These expressions, verified by a complete nu-
merical analysis, aid in the choice of an induction heating excitation
system for case hardening applications.

INTRODUCTION

NDUCTION heating is used for melting, forging, hardening,
brazing, welding and many other applications amounting to
a multimillion dollar business each year. Powers ranging from
a new hundred watts to almost 100 megawatts at frequencies
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ranging from 50 hertz to several megahertz are utilized. Many
of these processes are described by Tudbury [1], [2].

Induction heating problems involving paramagnetic mate-
rials, e.g., copper, silver, brass, etc., can be solved by the
straightforward application of Maxwell’s electrodynamic equa-
tions and the heat flow equations. The solutions are complex
but can be handled by digital computation. The same ap-
proach to induction heating in ferromagnetic materials leads to
difficulties not amenable to digital computation. These are
the same difficulties encountered in the analyses of shielding
by ferromagnetic materials [3]. Computational difficulties
are encountered because of the marked variation in permeabil-
ity as a function of magnetic field intensity. Fortunately these
difficulties are circumvented by the use of the limiting non-
linear methods set forth in earlier works [4], [5]. The solu-
tions to the limiting nonlinear theory are actually simpler than
those obtained for paramagnetic substances by the aforemen-
tioned straightforward solution of Maxwell’s equations.

It is the goal of this paper to establish a method for the pre-
diction of the transient temperature distribution in a ferro-
magnetic material being heated by electromagnetic induction.
The prediction, obtained by the application of the limiting
nonlinear theory and the equation of heat transfer, is based on
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the applied magnetic field intensity, its frequency, the physical
properties of the ferromagnetic material (electrical and ther-
mal conductivity, heat capacity, density, saturation induction),
geometry, and surface cooling. This information is to be used
to determine the values of the applied magnetic intensity and
frequency necessary for controlled induction heating.

THE Basic EQuATiONS OF INDUCTION HEATING

Because alternating electromagnetic fields are used to pro-
duce heat in the work pieces, the solution to the induction
heating problem is derived from the simultaneous solution of
Maxwell’s equations and the equations of heat transfer. Be-
cause of the wide range of temperatures present, the physical
properties of the material do not remain constant and must be
considered as functions of local temperature. The Maxwell
equations are

VX E=-9B/ot
VX H=¢E

@

where F is electric field intensity, B is the magnetic induction,
H is the magnetic field intensity, and o is electrical conductiv-
ity. The equation of heat transfer is given by

aT
V- kVT+p=pc—

o’ 3)

a result of the law of conservation of energy and Fourier’s law
of heat conduction. Here T is the temperature, p is the den-
sity, c is the heat capacity, k is the thermal conductivity, and
p is the instantaneous volumetric power density. The density
is sensibly constant, but ¢ and k vary strongly with tempera-
ture. The power density is given by (V X H)?/o, and is a
strong function of temperature also. Equations (1) and (2)
can be combined to eliminate the electric field intensity.
There results
1 oB oH
VXGVXH or  Mine
which is highly nonlinear. Here ;. = 9B/0H, the incremental
permeability. To solve the induction heating in general, (3)
and (4) must be solved simultaneously in three dimensions in
work piece, exciting coil, and in all the rest of space. In this
paper only one-dimensional spatial variations are considered,
namely the case of semi-infinite slabs or sheets. In that case
(3) and (4) become

“)

i(l{ B_T)+_1_<§_[Z)2_ C_a_T. (5)
oy oy o \dy .y
and

0 (1 0H oH

ay. (0 ay ) = Minc '57 (6)

Even without considering the variation of o and py,. with
temperature, (6) is highly nonlinear because y;,. varies so
strongly with H. In this paper the limiting nonlinear analysis
of McConnell [4] and Agarwal [S] is modified to include ther-
mal effects and combined with (5). For the purpose of com-
parison (5) first is assumed to have constant values to , 9, o,
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and ¢ so that an analytical solution can be obtained. Later
0, K, ¢, and B; (the saturation induction) are allowed to vary
with temperature, and a numerical solution is obtained. The
purely linear thermal solution, the first to recognize the in-
herent nonlinearity of the ferromagnetic material, only pro-
vides some insight to the nature of the more accurate numer-
ical solution.

Basic ELECTROMAGNETIC PHENOMENA IN
FERROMAGNETIC MEDIA

Consider the induction heating of a thick ferromagnetic slab
by the application of a tangential magnetic field of intensity
Hyy sin wt. In the steady state (which exists after a few cy-
cles), regions of saturation form at the surface early in each
half cycle of magnetization and travel inward (in the y direc-
tion) till they reach the depth of penetration §. A typical

 positive half-cycle configuration is shown in Fig. 1. Whilst sin

wt is positive, the positively saturated region of width { propa-
gates in the y direction, annihilating the region of negative sat-
uration left by the previous half-cycle. When sin wr reverses,
a region of reverse saturation forms at the surface and travels
toward y = §, annihilating the region of positive saturation in
the process. McConnell [4] and Agarwal [5] show that a
spatially constant current density in the x direction is induced
in the growing region of saturation. The induced current
causes the ferromagnetic material to heat. The depth of pene-
tration § is given by [31, [4], [5]

& = VHy[nofB; ©))

where f is frequency, Hyy is the maximum value of the applied
magnetic field intensity, B is the saturation induction, and ¢
is the electrical conductivity. The distribution of current den-
sity, magnetic field intensity, and magnetic induction in the
limiting nonlinear approximate theory of magnetization is
given in Fig. 2. As the positive half-cycle of excitation pro-
gresses, the regions of positive saturation and constant negative
current move from the origin toward their-ultimate limit §, the
depth of penetration. When the applied magnetic intensity be-
comes negative, saturation forms at y =0 and progresses from
the origin to y =8. In this analysis, it is assumed the work
piece is much thicker than the ferromagnetic skin depth 8 so
that the regions of saturation originating from each material
face never meet at center. The location of the boundary be-
tween the regions of positive and negative saturation is given
by Agarwal as

=6 sin(%{)

which is valid for 0 < ¢ < 7/w or during any positive half-
cycle of excitation. A similar expression can be written for
the negative half-cycle of excitation, during which { behaves
the same as during the positive half-cycle. The electric field
in the x direction is given by

8

2H
E,=-—M

coswtf2, O<y<¢

=0, y>g )
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Fig. 2. Field distribution in skin region of limiting nonlinear model of
the ferromagnetic material ( at some time during the positive
half-cycle of excitation, ——— at a slightly later time).

during the positive half-cycle of excitation. During the nega-
tive half-cycle of excitation, the sign of the electric field re-
verses but the waveform remains identical to that existing in
the positive half-cycle. The magnetic field in the x direction
is given by

H, =(1-y/8)Hys sin wt,
= 0,

O<y<y)
y>% (10)

during the positive half-cycles of excitation. During negative
half-cycle of excitation the space distribution and waveform
remain the same, but the sign of 7, reverses. A good portrayal
of these fields is given in Figs. 6 and 7 of Agarwal [5]. Ac-
cording to Agarwal [5] the average power per unit volume
generated by the uniformly distributed time varying current
density in the skin region is

_ 8 Hf
(Py= 37 052" (11)
or by making use of (7)
8
(P)=§HMBsf. (12)

From (12) it is clear that the average power density is a func-
tion of the applied field, frequency, and saturation induction.

If the temperature of any portion of the work piece ap-
proaches or exceeds the Curie temperature, the material in
that region becomes paramagnetic and the solutions become
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easy to obtain when spatial temperature variation is not in-
cluded. The solutions found in most electrodynamics texts
are

H, = Hyp exp (_J’/ac) sin (et - }7/50)
_ Y28y
08

4

(13}

Ey exp (-y/8.) cos (wit - y/8,) (14)
where 8. is the depth of penetration at which the fields are
attenuated to 1/e of their surface values. Here §, = /1 /afopu,
which has the same form as (7). These expressions are iden-
tical if one lets u = By/Hy;. By comparing (9) and (10) to (14)
and (13), it is clear that the limiting nonlinear and the conven-
tional theory yield similar results. However, the limiting non-
linear thegry is the simplest because all the variation of field
quantities occurs within the depth of penetration 8. Beyond
the depth of penetration £ and H are zero. The conventional
theory of (13) and (14) yields a power dissipation per unit
volume of

P.=H}[2082. (15)

Here the total power dissipated in the region 0 <y <o is
found and divided by &, to obtain (15) {5]. This yields an
estimate of the power density in the skin region which is about
15.7% high. The remaining power is dissipated beyond the
skin region in contrast to the limiting nonlinear case where no
heating occurs beyond the depth of penetration.

AN APPROXIMATE SOLUTION

It is assumed that the period of the electrical excitation is
much smaller than the thermal time constant of the ferro-
magnetic material. Then the effective or average power is as-
sumed to be applied in the whole skin region. Because the
total thickness of the ferromagnetic material is much greater
than the skin depth §, it is assumed that the temperature is
only a function of time in the skin region and that the heat ca-
pacity and thermal conductivity are constant (see Table I).
This is consistent with the relatively high thermal conductivity
of ferromagnetic materials. The skin region is denoted as
region 1 on Fig. 1. In the skin region the temperature is not
a function of y under this assumption. In region 2 the temper-
ature varies with both position and time. The temperature in
region 2 obeys the diffusion equation

3T, 3T,
— C —_—
oy? e ot

v

K (16)
where T, is the temperature in region 2, « is the thermal con-
ductivity, p is the density, and ¢ the specific heat of the ferro-
magnetic material. Region 1 obeys the same diffusion equa-
tion with the power generation term added. It is given by

+P=pc — 17
Ko7 pc — an
which is averaged over the thickness of region 1. There results
aT a{T
kAN KA pym e BT (18)
8 yiy=s 8 0 ly=0 dt
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TABLE 1
PHYSICAL PROPERTIES OF SOME FERROMAGNETIC MATERIALS AT ROOM TEMPERATURE
Material Saturation ° Coercive Curie Densjty Electrical Thermal Specific
Induction Force Temgerature g/cm Conductivity Conductivict)y HeatO
B, (Kilogauss) Hc(oersted) MHO/METER | cal/sq cm/em/ K/sec  cal/g/ K
Cobalt 18.7 8.9 1115 .9 1.6x107 0.165 0.099
Iron 21.7 0.14-0.54 770 7.88 l.03><107 0.18 0.11
Nickel 6.1 0.42 680 8.89 1.46‘107 0.22 0.105

From Newton’s Law of Cooling,

aT,
K —

| =0

y=0

where A is the cooling or film coefficient and 7', and 7', are
the temperature rises above ambient. By the use of Newton’s
Law of Cooling (18) becomes

d(T1>+h<T1>=(P)6 +K%Z‘1

19
- i (19)

pcd

where it is assumed T, (y = 0) = (T, ) is the average tempera-
ture in region 1. Equation (19) can be verified by applying the
law of conservation of energy to the small part of region 1 be-
ing situated between y and y + Ay. It is interesting to observe
that the power entering an x ~ z surface area heats the entire
ferromagnetic material. That power is given by

7f By
o

. :
p=(P)s = 3-11;/2 (20)
which is a strong function of applied field and a weaker func-
tion of frequency and material properties. Equations (16) and
(19) are solved simultaneously subject to the conditions that
before Hyy is applied, (7> =T, = 0 for all

y>0, To(y=20,8)=0, (T |y=5 = T2l y=s
and

AT, | AT,

s B s

The average temperature in region 1 derived in the appendix is
given by

(P [(1 - terfe byD)  (1- ¥ erfc a\/E)]
pc(a - b) b a

' <T1>=

(1)

where

WS
/'[ 4h81|.

and

oal"‘

Equation (21) can be written in dimensionless form by using
the following substitutions:

a* =a/Vk[6% pc, b* =bNk[8% pc
t*=t/N (8% pcfx), H*=hd/x.

Because the assumed magnetic behavior of the material dis-
appears as the Curie temperature is approached, temperature
is normalized with respect to the Curie temperature. Then
T* =(T)/T, where T, is the Curie temperature and the aster-
isks denote dimensionless quantities. Under these substitu-
tions the dimensionless form of (21) becomes

P

T,k ~1-H*

I *2 . 2 gk

.[l—eb T erfc b*/1F  1-¢ s erfca*\/_t?]
Z .

* a*

T =

_ 22)
For H*=1/4 (22) becomes indeterminate but has a definite
limiting value which is

: 52
<T;"(t*)>— (£

(1 e’ erfc/1¥), for H*=025. (23)
The $teady state dimensionless temperature of the skin layer is
obtained from (22) by letting £* =, It is

<P)6 p

lim (TH(t*)= ThC T
[+

1% — 0o

24

‘The temperature in region 2 is given by

P& 1
Tex  \1-4H*

A B* T - a* Y erfc 1y
2V

*2 1-
eV erfe -(a* o+

»* 1
- h%~
2\/7*) b

* * 22 4% 1-y*
LA O G0 IPL AR AP e S (b* * + 2\/J;_*>}

(25)

where y* =y/8. It can be shown that as y* =1 (25) becomes
identical to (22).

TE(t*,y*) =

sl gt (1-y%)
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Fig. 3. Plot of variation of temperature in surface region as function of
time for various values of s *.

TABLE 11
UseruL QUANTITIES DERIVED FROM TABLE I
pclx hik
Material (sec/meter”) (meter )
Cobalt 5.34x10" 0.0822-0.329
Iron 4.82x10" 0.0754-0.302
Nickel 4.26x10" 0.0617-0247

#h is assumed to be between 1 to 4 Btu/ft?>hr F or 1.357 X 1074 to
5.43 X 1074 calem™2 571K,

In Fig. 3, a plot of the variation of the temperature of the
surface region as a function of dimensionless time for various
values of cooling coefficient, or the Nusselt number A%, is
shown. More precisely the log;o T,k (TT)/(P)8* is plotted
against log;, #*. Here it is observed that the size of the Nusselt
number exerts little influence on the initial heating transient.
Indeed, the role of H* is to limit the ultimate temperature that
can be attained. From Table II it can be seen that the depth
of penetration would have to be more than 1/3 meter for the
Nusselt number to exceed 0.1, and most likely the Nusselt
number is of the order of 107 to 10 7%,

In Fig. 4, (T5(*, y*OXTH(*, y* = 0)) versus y* for var-
ious values of #* to show the spatial temperature distribution
as a function of time is plotted. For ¢* =0.1 the complete
thermal disturbance is confined to a region which hardly ex-
tends beyond two skin depths, that is, one skin depth for
region 1 and less than one for region 2. For #* = 5 the normal-
ized interior temperature is less than 1/e of the temperature of
region 1 at all distances from the surface greater than about
1.8. Only for the large values of #* does the temperature dis-
turbance reach large values of y*.

From this very approximate linear analysis which properly
accounts for ferromagnetic heating, it is concluded that a
Nusselt number of zero can be assumed in the more exact cal-
culations that follow. This is true over a very large range of
values of dimensionless time #*. The neglect of Newton sur-
face cooling will not influence the results obtained because
the heat leaving the surface is small compared to the heat be-
ing conducted to the work piece interior. In addition, it is
concluded that the ferromagnetic skin depth should be ad-
justed to embrace the region where large temperatures are
desired, because only by an extended application of power can
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Fig. 4. A plot of normalized interior temperature as function of posi-
tion at various times for A* = 0,0001.

TABLE III
PROPERTIES OF IRON AS A FUNCTION OF TEMPERATURE

Temperature Specific Thermal Electrical Saturation
in %Rankine leat Conductivity Conductivity 10_6 Magnetization
(MHOS /M) (Tesla)
400 0.0925 1.08 16.2 2.17
500 0.102 1.03 12.0 2.17
600 0.109 0.987 9.0 2.15
700 0.113 0.941 6.91 2.13
800 0.118 0.896 5.44 2.11
900 0.123 0.851 4.37 2.08
1000 0.127 0.806 3.57 2.05
1100 0.133 0.761 2.97 2.01
1200 0.141 0.716 2.50 1.98
1300 0.150 0.670 2.14 1.92
1400 0.160 0.625 1.84 1.84
1300 0.170 0.580 1.61 1.71
1600 0.183 0.535 1.41 L1.57
1700 0.205 0.490 1.25 1.30
1750 0.220 0.467 1.18 1.14
1800 0.243 0.444 1.11 0.929
1850 0.320 0.422 1.05 0.500
1875 0.230 0.413 1.03 0.104
1800 0.210 0.413 0.999 0.
2000 0.182 0.415 0.926 0.
2100 0.157 0.417 0.887 0.
2200 0.130 0.419 0.869 0.
2300 0.137 0.420 0.862 0.
2400 0.143 0.422 0.860 Q.
2500 0.148 0.424 0.857 0.

interior regions beyond the ferromagnetic depth of penetra-
tion be heated significantly. In applications where a high tem-
perature, perhaps the Curie temperature, is desired in a near
surface region, the electrical excitation must be adjusted so
that ¢* is less than unity. Then the temperature will be high
in region 1 and will decay very rapidly in region 2, a distribu-
tion favorable to case hardening.

The theory just presented does not account properly for the
variations in specific heat, thermal conductivity, electrical con-
ductivity, and saturation magnetization which exist over the
temperature range from room temperature to the Curie tem-
perature. Inspection of Table III indicates that electrical con-
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TABLE IV
THE SOLUTION TO THE IDEALLY INSULATED SKIN REGION

T in "R 10_8X I1(T) in amperes per meter

528
566
638
776

1026

1241

1336

1359

1402

1464

1520

1588

1649

1663

1676

1700

1743

1809

1831

1846

1849

1855

1860

1863

1868

1875

1877

1879

1880

.126
.378
.882
.89
.90
402
.528
.78
.032
536
04
LS54
.67
.796
.048
552
56
.064
.568
694
946
.198
29
.61
24
.55
.18
.60

v ML W W Ny = O O O O

O O W W W N o L\

I =
[N <]

ductivity and especially saturation magnetization undergo the
most change. Hence the thickness of region 1 changes greatly
as the temperature rises to the Curie point. An estimate of
magnetic intensity or frequency to obtain any temperature
and skin depth in a certain time would not be accurate or even
correctly based on this siinplified theory. In case hardening it
is desirable to confine the heating to region 1. That is possible
by maintaining values of dimensionless time near unity. If
that is done (18) becomes

et}
TR Bs(x)

where 7 is the time required to raise region 1 from T, room
temperature to an elevated temperature 7. Here it is assumed
that no heat flows out of region 1. The value of the integral
I(T) is given in Table IV. We note that 7(7") depends only on
temperature and the temperature variations of heat capacity
and saturation induction. Hence, for any desired temperature
rise in region 1, the frequency, the magnetic intensity, and the
required time can be adjusted in anyway that satisfies (26).

H, fr=3/8p dx=I{T) (26)

DETERMINATION OF EXCITATION REQUIREMENTS

In case hardening applications it may be desirable to heat a
near surface region of a certain thickness up to the Curie tem-
perature in a given amount of time. Although the time may
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not be specified, the shorter the heating time, the higher the
temperature gradients and the more confined the heating. For
example, it is assumed that a near surface area of a workpiece
is to be heated up to 1880°R in 0.36 seconds. From Table III,
1(1880)=12.6 X 10® =H,,,fr where 7 is the heating time.
Then, if the available source of power has a frequency of
350 Khz, H,, = 12.6 X 103/0.36 X 3.5 X 10° ~ 10,000 am-
peres per meter. Making use of the standard formula for
electromagnetic skin depth & = (mfou,) %%, and using the
value of conductivity given in Table IV for a temperature of
1880°R, 8 = 0.842 mm. Although the expressions given by
(22) and (25) are not accurate because of the assumption of
k, ¢, o and B, not being functions of temperature, it is still
instructive to inspect the values of dimensionless variables
obtained. For example, at 7 = 1880°R and for r =036 s,
t* = 0.048. This seems to indicate that only region 1 will be
heated to the vicinity of the Curie temperature. Equations
(25) and (26) do not yield any quantitative information about
the transient temperature distribution in region 2. Equation
(25) completely ignores the fact that specific heat, thermal
conductivity, and saturation magnetization are strong func-
tions of temperature. Equation (26) assumes region 2 is an
insulator, and properly accounts for the thermal variations of
the physical properties of iron. Qualitatively, (25) indicates
that the temperature in region 1 falls considerably in a dis-
tance of a few electrical skin depths. For excitation of H,,, =
10 000 amps/meter and f= 350 kilohertz the electrical skin
depth ranges between about 0.019 to 0.84 mm depending
upon temperature. The normalization of (25) could have been
accomplished another way by using the quantity d = (k7/oc)*/?
to make ¥ dimensionless. If 7= 0.36 s then 0.2 <d < 0.4 mm.
Hence, from (25) and Fig. 4 it is estimated that the material
several skin depths or in this case several millimeters beyond
region 1 will attain a temperature much lower than region 1
during the heating time 7. To be more specific, a numerical
solution to (19) and (5) must be executed.

THE NUMERICAL SOLUTION

It would be desirable to numerically solve (5) and (6) simul-
taneously, accounting for the temperature variations in x, ¢, 6
and p;,.. However, it is difficult to get data on y;,, the in-
cremental permeability as a function of temperature, and pinc
depends upon past heat treatments. Also, the work of Mere-
wether [6] indicates certain numerical difficulties which be-
come worse as the frequency is raised. Instead, in region 2 the’
nonlinear heat flow equation (5) is solved simultaneously with
the average nonlinear heat flow equation (19) valid in region 1.
Here the average power density is obtained from the limiting
nonlinear analysis previously explained. In addition to the re-
lationships already stated, the saturation induction is given by

Bs= uoHy,, + Mg 27

and Mg; the saturation magnetization is plotted as a function
of temperature in Fig. 5. Equation (7) is used at all tempera-
tures, and with the assumption of (27) is valid at both room
temperature, any temperature where By/H,, >> u,,and at the
Curie temperature and above. The saturation magnetization
drops very rapidly within a few degrees of the Curie tempera-
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ture as shown by Fig. 5. In that small temperature range this
approximation of (7) may be somewhat inaccurate. This con-
stitutes a transition between the limiting nonlinear and the
standard linear theory of eddy current phenomena in solid
iron. Under the approximation of (27) the transition is a
smooth one. Only a small fraction of the total heating time
is spent in the transition regime. Equation (11) is used for
the average power per unit volume until the transition is com-
pleted; then (15) is used. Region 2 is characterized by 2N - 1
points at which the temperature is sought as shown in Fig. 6.
Due to symmetry only half of the geometry is considered. In
Fig. 6 N = 5. The finite difference-differential equation for
point 1 is given by (19) as

dt
where (x} is a mean value of thermal conductivity given by
(k)= [k(Ty)+k(T1)}/2. The finite difference-differential
equation for the remaining points of interest derives from (5)
and is given by

=[&dy (T - Ty o 6(T) +<P(T )N [pe(Ty) (28)

dr;

== k(T Ty - (@) + k(T )} Ti+ k(T Ty My pe(Ty,

dt
valid for i <2 << N - 1. This equation was obtained by using
a forward difference for the first differentiation and a back-
ward difference for the second. At the middle of region 2
there is symmetry and no heat flows, or 87/3y = 0 there. To
accomplish this we set T, = T~ to yield the equation

AN o Ty -1) Ty - [K(T) + 1Ty )] Toy My pe (T

dt
(30)
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Fig. 7. Plot of t4emperature versus time at various values of position.
Here H,,, = 10" amp/meter, f = 350 kilohertz, and y, = 1.2 inches.

valid for i=N only. The right sides of these functions are
given elsewhere in the notation of APL [8]. The remaining
boundary condition is obtained by specifying the film coef-
ficient 2. As long as % is kept within physically obtainable
limits it has little influence on initial heating transients and
can be assumed to be zero. The averaging process from
whence (19) and (28) are derived automatically includes the
boundary condition on the air-iron interface of region 1. The
initial condition on temperature depends on the situation, but
is taken in this work to be T;= 528°R for £=0. APL func-
tions for the thermophysical properties of iron corresponding
to Fig. 5 and Table III are included [8]. The differential-
difference technique of Petrov [7] is used to solve (28), (29),
and (30). Essentially, the method solves N simultaneous non-
linear first order differential equations, one at each point in
space, by a numerical integration such as the Runge-Kutta
method. Petrov shows this technique to be more efficient
than most other methods, and establishes a limit on the size of
time step which may be used to obtain an accurate solution.
For an excitation of H,, = 10 000 amps/m and f= 350 kilo-
hertz, a numerical soltuion containing 17 points for a half-
sheet was executed. An increment of y, = 1.2 inches was
chosen to insure quick computation and good convergence.
The results are shown in Figs. 7 and 8. From Fig. 7 we note
that the Curie temperature is reached by region 1 in 0.36 sec-
onds, as would be predicted by (26) and Table IV. Only the
first four points in distance are represented in Fig. 7. In Fig. 8

(29)

plots of temperature distribution at ¢ = 0, 0.054,0.108, 0.153,
and 0.364 seconds after the thermal transient is initiated are
shown. When the temperature of region 1 is 1880°R, the
“thermal skin depth” of region 2 corresponds to the place
where the temperature is 1025°R. This occurs at about 0.16
meters from the interface between regions 1 and 2. At the
interface the temperature gradient is estimated to be about
10°R per millimeter when region 1 has reached the Curie tem-
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Fig. 9. The thicknessqu region 1 as a function of temperature for two
different excitations. (-<— for H,, = 10° amp/meter and f = 3500
kilohertz, for H,, = 10% amp/meter and f = 350 kilohertz).

perature and region 1 is 0.84 millimeters thick. In Fig. 9 the
thicknesses of region 1 under different conditions is shown.
Below 1850°R both curves are the same because the ratio of
H,,[f is the same in both cases. Thus, when region 1 behaves
as a ferromagnetic material the thickness of region 1 is about
0.0187 mm for both excitations. However, raising H,,, from
10* to 10° amps/meter and raising the frequency from 350
to 3500 kilohertz requires a hundredfold increase in power
per unit volume dissipated in the ferromagnetic region. The
numerical solution for H,,, = 10° amps/meter and f = 3.5 mega-
hertz was executed with y, = 0.1 and 0.01 meters. The latter
results are presented in Figs. 10 and 11. The figures are similar
except the abscissa scale of Fig. 10 is 0.01 that of Fig. 7 and
the abscissa scale of Fig. 11 is one tenth that of Fig. 8. The
former observation is in agreement with (26) and Table IV.
The latter observation indicates that the “thermal skin depth”
dropped but one order of magnitude when the Curie heating
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Fig. 10. Plot of temperature versus time at various values of position.
Here H,, = 105 amp/meter, f = 3500 kilohertz, and y , = 0.12 inch.
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Fig. 11. Plot of temperature versus position at various values of time.
Here H,,, = 105 amp/meter, f = 3500 kilohertz, and y, = 0.12 inch.

time dropped two orders of magnitude. The thickness of
region 1 at 1880°R is 0.266 mm and the temperature gradient
at the interface between regions 1 and 2 is about 320°R/mm.
During the time when region 1 is heating to the Curie tempera-
ture, the heat being conducted into region 2 is small compared
to the heat being stored in region 1. Then by (19) the time
rate of increase of temperature is proportional to the power
per volume dissipated in region 1. Since most of the heating
occurs when the iron is ferromagnetic, the time rate of tem-
perature increase in region 1 is proportional to the product of
the magnetic intensity and frequency. The temperature at
point 1 is the temperature of region 2 at its interface with re-
gion 1. Just after region 1 reaches the Curie temperature the
power dissipated becomes smaller by almost two orders of
magnitude than it was when region 1 was ferromagnetic. This
is illustrated in Fig. 12. Then by (19) the term P becomes
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small compared to
{1
pcd(TH/dt and (3T/3y)|,=5 = pcd ~ pcd Hyf.

Here 8 is the ordinary electric skin depth proportional to f~Y/2,

Therefore, a good estimate of the temperature gradient at the
left boundary of region 2 is given by
oT

o (€39

) =BHu VT

y=

where § is a constant of proportionality. From Fig. 8 an esti-
mate of § is found to be 1.69 X 107 or meter sec'/? famp mm.
If (31) is applied to the case where H,,, = 100 000 amps/meter
and f=3.5 X 10° hertz, it is found that the temperature gradi-
ent is 316°R/mm, which agrees well with the numerical solu-
tion of Fig. 11.

CONCLUSIONS

The heat transfer between the work piece and the surround-
ing air is negligible compared to the heat conducted toward
the interior for practical Nusselt numbers. It has been shown
that to heat a near surface region to any given temperature,
the product of the applied magnetic field intensity, frequency
of excitation, and desired heating time must equal a certain
value. This value, given for iron in Table IV, is related to the
temperature and density of the material and the way the heat
capacity and saturation induction of the material vary with
temperature. The application of this criterion yields a heated
near surface region whose depth is the electromagnetic depth
of penetration. Beyond the near surface region the tempera-
ture diminishes rapidly. The gradient of the temperature just
beyond the near surface region is proportional to the product
of the applied magnetic field intensity and the square root of
the excitation frequency. In industrial practice the frequency
of excitation may not be easy to vary. If that is the case, the
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thickness of the near surface region to be heated to near the
Curie point is determined by the fixed frequency and the elec-
trical conductivity of the material at the elevated temperature,
and the designer has no control over this quantity. By (31)
the temperature gradient just outside of the heated region can
be adjusted by the proper choice of H,, the applied magnetic
field intensity. Then by (26) the heating time is determined.
Alternatively, the heating time can be chosen and H,, can be
obtained from (26). The resulting temperature gradient out-
side the heated region is predicted from (31). When the fre-
quency is fixed there is not much flexibility in the design of
near surface heating apparatus. If the applied magnetic inten-
sity is chosen for convenience or practical reasons, then the
resulting heating time and thermal gradient must be tolerated.
If it is possible to choose the applied magnetic field to produce
the desired thermal gradient then the heating time dictated by
(26) must be accepted.

In summary, it has been shown how heating time, applied
magnetic field intensity, desired temperature, heating thick-
ness, and temperature gradient are related, taking into account
all of the complicated thermophysical properties and properly
considering the nonlinear magnetic properties of ferromagnetic
materials. For any given ferromagnetic material, equations
similar to (26) and (31) can be derived as they have been for
iron. From these equations it is possible to understand better
the induction heating processes required in case hardening.

APPENDIX
Here (16) and (19) are solved to obtain the thermal transient
in the magnetic skin layer given by (21). By Laplace transfos-
mation with respect to time, (16) and (19) become

Po | kdty(s,7)
s

cds + ) {t, (s> =
(pess + ) (11(6) e I

(32)

{where the last term is a consequence of Fourier’s law of heat
conduction at y =5 and the convention that L[T(z, ¥)] =
t(s,y) is used) and

Kdz tl(ssy)

e - spety(s,y)=0. (33)
The solution to (33) is
t2(5,¥) = A(s) exp (- Vspek) (34)
where A(s) is a constant of integration. From (34)
[d22(s,¥)/dy] | ys = - £2(s,8)Vspcfk.
However, at y = §, #,(s,8) = {£,(s, 8)) and thus
A() = (#,(s)) exp (5 VspelK). (35)

Then (34) becomes
t2(s,»)={t,(s)Vexp [(6 - ¥)Vspcfk] fory=8 only
(36)

where (¢, (s)) must be found before (36) can be inverted. The
right most member of (32), found just below (34), is substi-
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tuted into (32) to yield
PS5
(Spes + R+ A/spefr ) (¢ (s = e 37

By means of certain algebraic manipulations (37) can be cast
in the form

<t1 (S)) =

P 1 1
spcV (k82 pc) - (4h/pcs) <\/s_+b st a)
(38)

where 2 and b are the same as those given in (21). Equation
(38) is comprised of simple standard Laplace transforms, easily
inverted to yield the result previously stated in (21). The
{£,(s)) of (38) can be substituted into (36) to yield £, (s, »).
The resulting 75 (s, y) can also be inverted and leads to a some-
what more complicated result than (21). The result is given

by (25).

Letters
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A True Swap Gate for Magnetic Bubble Memory Chips
P. 1. BONYHARD

Abstract—The design of a true swap gate suitable for incorporation
into magnetic bubble memory chips with 16-um to 18-um circuit
periods is reported. The swap operation is true in that the outcoming
bubble takes the position vacated by thie ingoing bubble, as well as
vice versa. Swap gates of this design have been operated successfully
at temperatures from 0°C to 70°C, and frequencies up to 100 kHz.

The design of a swap gate, as well as other functions, suitable for
incorporation into magnetic bubble memory chips with circuit periods
of 16 um to 18 umm has been reported [1]. The swap gate reported
did not place the bubble taken out of the storage loop into the position
vacated by the ingoing bubble. Also, the design of the storage loop
turn at the swap gate was not fully satisfactory in that this turn propa-
gated only over a bias ficld margin range considerably less than the
margin range for a propagate along a straight path.

A superior design is shown in Fig. 1. The storage loops are on 36-um
centers and the nominal minimum feature size is 2 um, as in the earlier
design. An improved version [2] of the asymmetric half disk propagate
element [1] is used. The swap operation is true in that not only does
the ingoing bubble go into the position vacated by the outcoming
bubble, but also vice versa. The 180° storage loop turn incorporated
in this design has been found in no way to limit the bias field margin
range of the loop. The propagate margin range of the write major line,
however, can be the margin limiting feature on the chip, depending on
circuit processing, especially at rotating drive fields of about 30 Oe and
less. :

Swap gates of this design have been operated successfully on a large
number of chips, in wafers, and in packages at temperatures from 0°C
to 70°C, rotating drive field frequencies of 50 kHz to 100 kHz, and
amplitudes of 35 Oe to 55 Qe. Swap current amplitudes of 30 mA +
10% have been used successfully in most tests, but successful operation
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Fig. 1. True swap gate.

at 30 mA *+ 33% has also been demonstrated in some cases. Phase mar-
gin ranges, like those of most transfer type bubble functions, are very
wide and have not been fully investigated. “On” phases from 270° to
330° and “off” phases from 640° to 700° are known to work satisfac-
torily.

Acknowledgment: The author wishes to express his thanks to his
colleagues who produced and helped to characterize the circuits.
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