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Abstract-This paper describes an integral closure 
approach for 2-D analysis of electromagnetically driven 
flow in inductively coupled molten metal using the finite- 
element method. This methodology, which restricts the 
solution domain to the conducting regionsts), was 
demonstrated for flows generated by complex 
electromagnetic fields, and computed results were found 
to be in good agreement with measurements. 

Index Terms- Eddy currents, fluid flow, modeling, 
numerical methods. 

I. INTRODUCTION 

Induction technologies are extensively used for stirring of 
molten metal by means of electromagnetic forces generated 
from the interaction between induced currents in the melt and 
the associated magnetic field. The range of applications 
extends from scrap melting in induction furnaces to melt 
stirring in continuous casting [ 11. With the increased use 
metallic shields to modify the force distribution in the melt 
and hence the flow, modeling has become an indispensable 
tool for the analysis of electromagnetically driven flows in 
these applications. The problem with the conventional 
differential approach for describing the electromagnetic field 
in eddy current problems is the expansion of the solution 
domain to infinity. This renders the numerical solution of the 
coupled electromagnetic and fluid flow equations using finite 
element or finite difference methods to be computationally 
inefficient. 

The hybrid differential-integral approach, which eliminates 
the solution of the magnetic field in free space, provides a 
practical framework for the analysis of electromagnetically 
driven flow in induction stirring systems [2,3]. An 
alternative to the finite element-boundary integral method is 
the integral closure method proposed by the authors for the 
numerical solution of the field in the conducting region [4,5]. 
It is based on the specification of the magnetic field boundary 
condition on the outer surface of the conductor using the 
Biot-Savart law. 
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The purpose of this paper is to extend this methodology to 
complex induction systems comprised of multi-conductor 
domains and to present an integrated finite element 
methodology for modeling electromagnetic and fluid flow 
phenomena in induction furnaces. 

11. GOVERNING ELECTROMAGNETIC AND Row EQUATIONS 

Consider a liquid metal in a Cylindrical or rectangular 
container surrounded by metallic rings and an induction coil 
as shown in Fig. 1. The passage of alternating current, I, in 
the coil generates a 2-d magnetic field, B (B,,O, B3). The 
current in conducting regions has only one component in the 
x2 direction. For a time-harmonic applied field with angular 
frequency a, the electromagnetic field in the conducting 
domains ( 0, ,.., fin, ) may be represented in terms of the 
vector potential, A (0, A?, 0), by: 

(1) 
ALJ 
A: 

V’A,  = c-+ jcI;U,wA,,, Q j = l . .nc  

where po the is magnetic permeability, (T is the electrical 
conductivity of the conductor, j is , h, is the coordinates’ 
scale factor, and c is constant equal to 0 for Cartesian 
coordinates, and 1 for cylindrical coordinates. 

In order to use this equation to compute the field in the 
system without solving for the field in free space, one needs 
to know A on boundaries of conducting domains. In this 
methodology, the boundary conditions for A are supplied by 
Biot-Savart law, which may be expressed as: 

Coil 

Fig. 1. Sketch of the System 
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The force field resulting from JXB in the liquid metal, which 
is in the x, and x, directions, generates a two-dimensional 
velocity field, U(u,,O,u,). For steady flow, the time-averaged 
continuity and turbulent Navier-Stokes equations for U, and 
U, are: 

P v.u=-- 
il (3) 

p((u . V ) 4 )  = -*+ J X  , v z u ,  + c . $j+fRe(J2B;)  (4) 

where p is the density, pel, is the effective viscosity, p is 
pressure and h is the penalty parameter [6]. Using the k-E 
turbulent model [7], pcrr is: 

PL.n = PI + PC,k2 / E  (6) 

where p, is the molecular viscosity of the fluid, k is the 
turbulent kinetic energy, E is the turbulent energy dissipation. 

The boundary conditions needed to solve (3)-(6) are zero 
velocity at solid walls and zero velocity gradients at the melt 
free surface and at the axis or plane of symmetry. 

111. FINITE ELEMENT FORMULATION 

In this work, the finite element formulation of the 
electromagnetic field problem was developed using the 
Bubnov-Galerkin method, while the fluid flow equations 
were discretized using Petrov-Galerkin method. 

From the weak integral form of (l), the global finite 
element matrix equation of the field problem for any 
conducting domain may be expressed as: 

(7) 

N ’ N  
[ K , ] =  I (VN’  . V N ) d V ,  [KZ]= j-, 

I ( 2 )  h: 
[K,]=jowp,] J N I ’ N d V  

IlJ 

where N is the shape function. The value of A at the nodes on 
the boundaries of the conducting region are specified by (2). 

Upon manipulating the weak forms of (3) to (3, the final 
matrix equation of the fluid velocities may be written as: 

K,, = j [ ( W I ( U . V ) N ) + V W ’  . V N P V  
I2 

dW‘ aN“ ah 
C, = J-dV , C,’ =I-.&, W 1 N + - ( u . V ) N  

I2 ax, n ax, . Iul 
Pii+’ = P a  + n [ ~ ] ’ ( ~ }  (9) 

where W is the weight function, Iul is the magnitude of 
velocity vector, and parameter a is defined in [6]. The 
superscript n denotes the iteration number. 

IV. SOLUTION TECHNIQUE 

The developed formulation allows the treatment of each 
conducting region as a separate domain from meshing, 
assembly and solution of the matrix equations standpoints. 
This approach not only reduces the size of the field stiffness 
matrix, but also facilitates combining the fluid flow and 
electromagnetic field algorithms. The solution of the 
governing equations essentially involves the calculation of 
the electromagnetic field in the conducting domains followed 
by the calculation of the electromagnetic forces and flow in 
the molten metal region. 

The algorithm for computing the electromagnetic field 
begins with the solution of (7) using an estimated A on the 
boundaries of the conducting regions from the coil current. 
This step is repeated with updated A from the previous 
solution until an identical solution is obtained. The 
convergence criterion for error definition R, was 10’. 

In computing the Lorentz force (J X B) at the nodal points 
of the fluid domain B was evaluated from the Biot-Savart 
law. In this work, four-point Gaussian quadrature was used 
to evaluate the integral of J in this equation. 

The fluid flow algorithm involves the solution of the 
velocity matrix equation (8), followed by updating the 
pressure field and turbulent viscosity fields using (9) and (6), 
respectively. This procedure is repeated till the error between 
two successive iterations using the error definition in (10) is 
less than 10.’. For the cases examined, it took between 100- 
130 iterations to obtain converged velocity solution. 

V. APPLICATION To  INDUCTION FURNACES 

The developed solution methodology was applied to 
simulate electromagnetically driven flow in a mercury 
physical model of the induction furnace [8]. Two cases were 
examined. The first deals with stirring in absence of metallic 
shields, while the second involves field modification using 
copper rings for the configuration shown in Fig. 1. The 
geometrical and electrical data are summarized in Table I. 
All calculations were carried out using 725 quadrilateral 
elements in the liquid, and 121 elements in the copper ring. 

TABLE I 
INPUT DATA USED IN THE CALCULATIONS 

Inner radius of the container 
Height of mercury in the container 
Radius of the copper ring 
Major and minor axis of the shield 
Radius of the induction coil 
Number of coil turns 303 
RMS coil current 32.51 Amps 
Frequency 50 Hz 
Electrical conductivity of mercury 
Electrical conductivity of copper 

0.075 m 
0.2 m 
0.0875 m 
0.018,0.013 m 
0.15 m 

lo6 mho/m 
6 107 mho/m 
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Fig. 2a and 2b shows the computed magnetic field 
streamlines with and without field modification. These 
figures show that the induced field in the melt distorts the 
applied magnetic field, and the distortion is more pronoqyed 
near the outer surface of the molten region. Inspectioh4f 
these figures indicates that the effect of the shield is to further 
distort the magnetic flux lines. 

Fig. 3 to 5 shows a comparison between computed and 
measured axial profiles of the magnetic field and induced 
currents in the liquid mercury for the two cases. Quantitative 
agreement is seen regarding the numerical values of these 
field quantities within experimental errors. It is also seen that 
the measured and computed profiles are quite similar, and the 
model predicts reasonably well the distortion of the magnetic 
field the shields. 

Fig. 6 and 7 shows the axial and radial variation of Fz, 
which is the principal driving force of the flow. Again, the 
agreement is seen to be very good between the measurements 
and predictions. This together with the ability to resolve the 
reversal of the force direction by the shields with relatively 
few elements demonstrates the viability of the present 
method for the analysis of the flow in induction stirring 
systems. 

0 2  0 2  

0 0  0 0  

(a) (h) 

Fig. 2. Computed magnetic streamlines: (a) without shields, (b) with 
shields. 
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Fig. 4 Measured and predicted axial variation of B, at M.07 m, 
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Fig. 5. Measured and predicted axial variation of J. at ~ 0 . 0 7  m. 
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Fig. 6. Measured and predicted radial variation of F, at z=0.17 m. 
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Fig, 7. Measured and predicted axial variation of F, at ~ 0 . 0 7  m. 
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Figs. 8a and 8b show the effect of the metallic shield in 
modifying the flow. These figures clearly show that the 
presence of the shields significantly modifies the flow pattern 
from two recirculating loops to four recirculating loops. 
Furthermore, it alters the direction of the flow in these loops. 
The reversal of the flow is clearly shown in Fig. 9, which 
shows the radial variation of the velocity at the axial position 
corresponding to the eye of the vortex. The agreement 
between the computed and measured velocities regarding 
both the direction and magnitude for these two cases not only 
validates the model formulation. Also, it demonstrates the 
robustness of the model in resolving the electromagnetic and 
velocity fields with fewer elements. 
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Fig. 8. 
and (b) with shields. 

Plot of velocity vectors in an induction furnace: (a) without shields, 
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Figure 9 Comparison between measured and predicted radial variation of Vz 
at ~ 0 . 0 7  m. 

VI. CONCLUDING REMARKS 

A finite element based computational approach has been 
described for the simultaneous solution of the 
electromagnetic and fluid flow equations in 2-D induction 
stirring systems. The key to this computational technique, 
which limits the solution domain to the conduction region, is 
the integral description of the electromagnetic field boundary 
condition for closure of the differential field equation. This 
alternative formulation to the hybrid FEM-BIM method is 
easier to implement specially for systems with many discrete 
conducting regions. Through the decomposition and solution 
of the field in small domains as well as the calculation of the 
flow in the molten region only, the developed method offers 
considerable savings in memory and CPU time requirements. 
Finally, the robustness of this method has been demonstrated 
by accurately predicting the measured electromagnetic 
parameters and melt velocities in a physical model of 
induction furnace with a relatively small number of elements. 
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