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THE SOLUTION OF 3-DIMENSIONAT
USTNG AN INTRGRATL

W. R. Hodekins and

Abstract - The boundarv integral eauation method is
avplied to the solution of the induction heating of
three dimensional objects. Two methods are explored.
The first uses a direct solution of the electric field
integral eguation and the sscond uses a combination of
the electric and magnetic equations and represents the
tangential components of the surface electromagnetic

field bv three scalar surface votentials. Both fields
and votentials are given a finite element
reoresentation. Results for some gsimple cases are
congidered.

INTRODUCTION

The aim of this work is %o ovrovide a tool to
agssist in the design of induction heating devices both
for metal melting and billet reheating. Programs
alreadv exist [1,2] and are used extengivelv in cases
wheve the problems mav be treated as two dimensional
but manv instances arise where it is desirable to dbe
able to analvse the full three dimensional geometrv.
FPor example, considerable work has been carried out at
F.C.R.C. on designing highly efficient induction
heaters for billets of various geometries with the aim

of minimising energv usage whilet vproducing a highly
controlled heat treatment: the channel furnace, where
the molten metal is dinductively heated in a loop,

resembling a handle on a cup or inverted suitcase, is s
case where it is almost imvnossible to make sensible two
dimensional anproximations.

An earlier gtudv [3] surveyed a numher of vossible
methodg for solvinz these vroblems. Amongst those
congidered were finite difference and finite element
methods using various formulations for votential or
field variables, integral eguation technigues, and
hvbrid methods using an integral eaquation for the far
field and a partial differential equation for the near
field. Tt concluded that for treatineg oproblems where
the electromagnetic vroperties of the material being
heated are relativelv wniform a version of the integral

equation method offered considerable opromise. This
agssumption is generallv wvwalid when molten metal is
being heated, but is not normallv true, for examvle,

materials are Dbeing heated through the
Curie point. For regions of uniform material the three
dimensional integral eguation mav bhe reformulated to
give an integral equation over the surface of the body,

when magnetic

thus effectively reducing the problem to two
dimensions.
GOVERNING RQUATIONS
The basic eanations for the boundary intezral

equation method were derived bv Stratton and Chun [4}
and have been examined in considerable detail bv Miller
[5]. For typical induction heating nroblems at low or
medium freguency the eaquations are slightlv simvlified
br making the usual assumption that the disvlacement
currents mav be neglected in comvarison with the
conduction currents and ignoring the transient
components of the fields. Maxwell's equations then
have the simplified form:

T H = J*Je = oF+l,

2 WWE = -iwpH (1)
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where the magnetic and electric fields have the form
Eﬁxn(iwt) and Eexn(iwt) respectivelv, and where source
currents Jo onlvy exist in the non-conducting regions
where ¢ =0.

region V

Congider now a homogeneous conducting

bounded bv the closed surface S with outward normal n.
The usual integral eouations for the fields within V
are:
1 = 1
(> Rf[@_hﬂ(ﬁm(gg(g) IATU(n.H(z))vulas  (2)
(AT ___l_ _a
ne- - / [ty B ()4 (n R () )aT0 T8 (3)
where:

U(r,r")= exn(-ik}r-r' }/() -1} ) = —dwpr (4)
Here the assertion that n.® is zero at the surface has
been used to delete the corresmonding term from the
usual form of the integral eauation. WNote that the
equations for R and H are not indevendent since each ig
the curl of the other. The corresnonding eanations for
the external region with zZero conductivity,

vermeability N and source currents J, are:

Al A 1
R= 21, (") + Loy BT+ (nuH (v, Jas (5)
B(r")= 28 (") +G;1- [-ip, n BT, + (n,B(r)), V0, Jds (5)

where n is now the internal normal to the external
region, T, =1/|r-r'{ and the source fields H, and R, are
given bve

TN 1
Holx')= L;:;jimv% %

The abhove eaquations for the fields in the internal and
external regions mav be used to give the fields at the
gurface S if the factor 47 is replaced bv the factor 2w
in (2),(3),(5) and (), and the Cauchv vrincival value
of the integral is used for the terms (nH(r))ATU and
(Eaﬂﬂzﬂ)AVU. Tn the derivation of these equations it
is generallv asgumed that the surface S is samooth and
that the tangential components of the electromagnetic
field are continuous with continuous first derivatives.

B (z') = lff iwp, 3 0,4Y  (7)

o

Since the normal component of magnetic field, H.n,
mav be expressed in terms of the surface derivatives of

n, it is vossible to nse one or a combination of the
external eauations, (5) and (6), in coniunction with
one or a combination of the internal egnations, (2) and
(3), to determine the tangential fields at the surface

and hence the fields evervwhere. Varions comhinations
of the eaquations have heen suggested hv Pogeio and
Miller [6] and considerable exmnerience has been gained
of the value of different formulations as appnlied to

the related oroblem of antennae degign [7]. In the
nresent work two formnlations have been used. The
firgt is to work solelv with +the electric field

Thig has the advantage that no
normal comnonentg of the fields now anpear in the
eauations and hence the use of derivatives of the
tangential fields is avoided. The asecond awnproach is
to nse +the form oprovosed by Miller [5}. Thig is an
apnroviate combination of the dinternal and external
eanations for which Miller has demonstrated uniqueness
and convergence. In the wparticular case of low
freanency current and a non-conducting external region
these hecome the equation for the internal electric
field and the sum of the wmagnetic field equations

eauations, (3) and (K).
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weighted bv the permeability of each region. i.e.

(prpodny B(x")= Zponi Holz')- _,—f,— "/[PUP..\FL(E‘_)U
(0, 8(e)), (pTU-p, 75, )+ (n.B(2)) (U-w, Y]as  (8)
NUMERTCAL MRTHOD

The finite element method was chosen to discretise
the integral equations. This in principle allows a
choice in the level of approximation and in element
shape. The opresent work was limited to plane
triangular elements and uniform fields in each element.
Since the integral eaquations give valuea at a voint
whereas the fields are valid over an element, a further
integral was carried out over each element to give the
aporopiate average. Thig also had the value that it
reduced the weight of the value of the integral at
nodes and sharp edges where the value of the

approximations mav be indeterminate or changing
rapidly.
For the method based on the electric fields the

set of linear equations is then set up directly from

the two equations:

&E(Aj)hﬁlg—/_'[g_',\[-1WPA§(3)U+(M(£))Avu]as.dAj (9)
3

n D= 208 B 5o fain [-impon, (DT,

+(n, B(x) ) 70, 1a5.4A3 (10)
which vprovides two indevendent equations for the
tangential component of electric field for each

triangle j of areaflj. 'The unknown tangential electric

and magnetic fields are then deternined by a direct.
solution of the set of linear equations.
For the method based on Miller's equations some

further refinements were introduced. TFirst in order to

avoid representing surface vectors directlv, the
tangential electric and magnetic fields at the surface
are repregented as derivatives of surface scalar

potentials [8]. This has the advantage of providing a
much simpler scalar repregentation. Also, aince in the
present case the exterior region is non-conducting, the

magnetic field at the surface requires onlv one
potential. Thus the exvpressions for the tangential
gurface fields are:

2R =T nE = n,%3 + %y (1)

where Vg is the surface vector overator defining the
gurface gradient |5,7] and is also used to overate on a
vector to form the gurface divergence. ie.

(12)

On a simply connected closed surface where a field is
defined bv a vpair of votentials, the potentials are
continuong and uniaque to within a constant term. For

Lp =T~ (270 Vou = Vu- 2 (n.w)

multinly connected gurfaces it is necessary to
introduce apvroviate cveclic wvotentials. Thus for a
doublv connected region, such as a torus, both and b}
mav be regarded as cvelic rpotentials with a single

veriod, or alternatively the same vector field mav be
derived by making either.s or doublv veriodic. This
is esvecially convenient for expressing the magnetic
field, as the gecond vpotential has alreadyv been
dispensed with. The two periodicitv conditions imposed

on g are defined by:

f_}i.dg = [g_.p_ds (13)
When this condition is evaluated for any surface
contour enclosing the toroidal conductor it gives the

circulating current in +the conductor, and when it is
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evaluated round an orthogonal contour it gives the
total external current threading the torus.

In order to complete the substitution of the
potentials for the fields in (8) it is necessary to
express the normal component of magnetic field in terms
of the votentials. This can be evaluated as:

(14)

Rather than applving the resultant integral
equations directlvy to evaluate the field at isolated
points on the surface, it is more annpropiate to obdbtain
suitable averages for satisfving the egquations
apnroximatelv over the whole surface. In keeping with
the finite element method the equations are integrated
a gecond time after multivlying by two arbitrary
surface scalar votential functions, VX and n kR. The
functions mav then be subject o small variations
following the Galerkin nrocedure and a sget of 1linear
eguationsg obtained. Agsuming a smooth surface and

Hon = i(n.0E)/wp = -1y wp

aporoviate degrees of continuity of the various
functions the resultant equations are:
()1+}1. )‘[V_.,' ¢V5'8P<1S' = 2)1,/ V9, Vg 6p s’
« 57 [ {pornsp (1,53 %))
-[%8pp (0% p) 1. (pVU-, VU, )
+i7sp v_;“‘g(u-u.,)/w}as.as' (15)
Al Al p L] .‘ . t
/VsSVs &pds ‘:I}"/f {1wpt'sp (1,7, $)
_[vs'sp,(ghvsj +% p)].vulds.ds' (16)

/ v 9vs's«ds'=3¥';[ f {—iwpU(E'h V5 '8e0) (n, Vs ¢)
(0 W) (003 +% ) ] VUlas.as' (17)

where the external applied magnetic notential, g,, is
given for closed loons of source current bv:

fo (') = -ﬁ.— Jfrav (18)

where fLis the solid angle current

loon at the vpoint r'.

subtended bv the

The equations developned so
amooth surface

far have assumed a
and the approniate degree of continuity
of the fields. However, unless an undulv fine mesh 1is
to be used and rounded corners introduced it is
important that the method is valid when ' the geometry
includes sharp edges. Singularities of the integrand
arise at gharvp edges and corners but fortunatelv as is
tvoical of finitée element energvy methods it is onlv
necessary to determine whether there is a finite
contribution to the double integrals in these
circumstances. An examination of the terms shows that
the onlv term making such a contribution is the final
term of (15) involving the second derivatives of scalar
potential. Stratton [4] introduces a line distribution
of charge densitv at edges to accomodate this effect.
The other terms involve +the value of the fields and
will onlv cause problems if the actual field  becomes
large enough for there to be a contribution to the
physical field, in which case a fine mesh will be
required to obtain a useful sverage value of the field
in this neighbourhood. The term involving the second
derivative of wnotential mav be readily evalunated at an

edge, since:
/V:?f(z,ﬁ‘ Yds = - f‘{s ymf(r,r')dl (19)
where n, is the external normal in the wplane of each

neighbouring triangle
{15) mav thus de

to the edge 1. The last term in
readilv rewritten to include the
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contribution from the edges. TIn the gnecial case under
congideration when the vpotentials and the trial
functions are linear votentials, the second derivatives

over the elements are gero and the onlv contrihution
from this term is the double integral over the edges
which is:
I \
e fi[(\g'&p_g:,)(vs yne) (0T ) /wldl.a1’ (20)

NUMFERICAL IMPLEMENTATION

One difficultv in the implementation of the
integral method is that in regions where the fielda mav
be fairlv uwniform and hence the use of a coarse mesh
would seeminglv be adeguate the integrands contain
functions which wvarv as the skin denth and hence mav

require a fine scale for sccurate integration. Where
the terms in the intesrand give rise +to analvtic
expressions which mav be readilv evaluated this causes

no problem, but in general this is not the case and

care must be taken over the muamerical intesgration,
eapecially as some of +the integrands are singular at
points on the edges of neighbouring triangles. To

provide sufficient accuracv a techniaue was therefore
devised which divides triangular elements into a
regular pattern of sub-triangles which are »nlaced into
two classes of similar triangles devending unon their
orientation. Numerical integrations are then performed
with repect to the centroids of each set of similar
triangles seperatelv and a linear combhination of the
two egtimates is formed +o eliminate first order
errorg. This technigue was implemented in the method
based on the electric field equations s0 as $o give
integrations to different accuracies as reaquired.

For the method based on Miller's equations the
integrations were onlv based on the % wvoint Gauss
formula for each triangle and the 2 noint Gauss formula
for the line integrals.

The coefficients form the alements of a
non-symmetric complex matrix. Tor a single conducting
region the matrix is essentiallv non-svarse but for a
region much larger than the skin depth manv of the
elements are small. The possibilitv of reducing the
amount of computation in solving the matrix bv taking
advantage of the structure of +the matrix has been
discussed previonsly [3]. For the small test cases
used here to evaluate the method a direct method of
golution has Dbeen emploved. However, some tests using
the Muller method were solved bv iteration as anite
rapid convergence would be expected on vhvsical grounds
for vproblems of interest on induction heaters.

RESUTLTS

The aim was to choose some simple tegt cases where
as far as possible the solution is Imown and then
examine the numerical results to esatabligh which
factors are of most importance in determining accuracy
and speed of solution. Unfortunatelv it is not easv to
find genuine three dimensional test cases which can be

readilv modelled bv the wvlane triangular alementg
incornorated in +the mnresent wvrogram and for which a
complete solution is known. Two test cases ware

therefore considered.

The first is a cirenlar cvlinder with a ratin of
length to radius of three where the conductivity was
chosen to give a skin denth of either one  or fthree
radii. - An annroximate solution to this vroblem was
caleulated using a finite element program taking
advantage of axial sgvmmetrv for an avnlied nniform
magnetic field.

became avnparent from a
Firgt the finite element

A number of wproblems
comparigon of the results.

which wvaried hv a amall
onlv on the fineness of the mesh

method itself gave results
amount devending not

but more partienlarlv unon the nlacing of the assumed
finite external Ddhoundarv containing the vroblem. Thig
arises since the boundarv conditions for the integral

equation method are imvosed in a different form than in
the finite element or difference methods. Whilst this
difference wonld not be very signi®icant for
calculating nower in induction theaters where the
designer is Jlargelv onlv interested in an overall
accuvacy of a few npercent, it dJdoes mean that the
estimates of the fields, esveciallv the magnetic field,
can varv bv a few percent in both phase and magnitude.
This makes evalnation of the results for the integral
equation methods difficnlt. :

A second problem is that the curved surface of the
cvlinder is avvroximated bv straieht sgides and the
results for the curved cvlinder will necessarily differ
from the correct, but unknown, solntion of the straight
sided avnproximation unless a verv large number of sides

is used. It is thus not easv +to separate errors
arising from an inadequate geometrical apvproximation
from those which arise from wpoor aceursev in the

integral equation anproximation.

The results show that for the case of the low
conductivity evlinder the electrie field is fairlv well
determined in all the annroximations. This is not too

surorisineg since 1its major comnonent is directly
induced from the apolied magnetic field. The electric
field method also gives good values for the magnetic

field in the regions awav from the endas hut the program
based on the Mhller method onlv gives the same accuracv

when the cvlindrical shave is well avproximated. Since
only a coarse integration method is wused in this
implementation it is not clear whether +the lack of

accuracv depends on the poor integration or the
praegence of the sharp edges which give rise in +this
method to explicit terms.

Although the magnetic field in the region of the

ends is less well determined both in the finite element
and integral eaunation solutions there is general
agraement between the various anproaches. Figure 1
shows the out of vphase componant of the axial magnetic

field, ¥ , along the curved surface for the electrie
field method, the Miller method, the finite element
method and the asvmptotic solution determined

analvticallv for small conductivitv.
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The results for the electric field method show an
oscillation in magnitude between neighbouring triangles
lving between the same axial coordinates which reduces
as the mesh is refined. TIn contrast the Miller method
allows far 1less freedom to the fields which are
constrained bv the votentials and there apnears to be a
tendency to over smooth the fields.

The results for +the cvlinder with the higher
conductivitv show gimilar features. Table 1 lists the
values on the curved surface at the centre and end
planes of the circumferential component of electric
field and the axial component of magnetic field.

Table 1
Fields on curved surface of high conductivity cvlinder.
By (mV /m) H,, (4/m)

Centre plane
Flectric Field Method -2.269-i%.125 1066+i28.5
Miller Method -2.142-1%.313 1069+143.3
Finite Blement Method -2.135-i3.076 1022+i27.9
Infinite Cylinder -2.132-12.955 1000

End plane
Hlectric Pield Method -1.896-1i4.274 1167+i85.0
Muller Method -1.729-13.871  1043+i86.6
Tinite Element Method -1.479-14.304  1054+i93.4

The second test case was a TFaraday Ring in the
torus of dimensions

form of a square section ]
0.01m x 0.01m and inner radins 0.0tm with a  high
conductivity, 10°/ohm.m., energised bv & or 12 windings
to provide a total magnetomotive force of 10A. This
problem was chosen because the surface magnetic field
depends only on the avplied magnetomotive force and is
unchanged bv the eddv currents in the ring. This gives

an exact check on the sarface magnetic fields obtained
from the solution of the integral equations. This
property also means that the torug is a +true Dboundary

valne problem and reliable
from the finite element method
surfaca electric fields for
integral equation solution.

results could be expected
uged to generate the
comparison with the

For this problem only the integral method using
the electric field equations was tried at two different
levels of geometrical avproximation. The first used a
coarse mesh hased on a six sided approximation to the
torus, Fig.2, whilst the second used a twelve gided
figure, Tig.3, to provide a much finer mesh.

Fig 2. View of 6 sided torus.

Advantage was taken of syvmmetrv to reduce the solution
time. The coarse mesh was solved for 5 triangles and
the fine mesh for 20 triangles. Thus the major vart of
the solution time was ftaken by coefficient generation.
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Fig. 5. View of elements of 12 sided torus.

Table 2 ghows the results for the torus
calenlations at voints on the surface labelled A,B,C on
Tiz.2. The tangential magnetic field, which is known
exactly, and the finite element solution for the
tangential electric field are shown for comparigon.
Results are shown for 6 and 12 gided models of the
torus with three methods of avvlving the same
magnetomotive force: a straight line current flowing
along the axis of gvmmetry, and 6 or 12 current
windings svmmetricallvy nlaced around the torus. Azain
reasonable results are obtained in the regions away
from the edges, but large errors are apparent near the
edges which reduce only slowlv as the mesh is refined.

Table 2
Fieldg on the surface of the torus.
Position: A B [
Tangential Rlectric Field(nV/m)
F -0.025-10.176 ~0.021-i0.13  0.017+i0.106
B1 -0.057-10.256  0.004-10.005 0.015+i0.146
B2 -0.051-10.244  0.002-i0.003 0.028+i0.159

B3 -0.1 ~i0.25 -0.00%-10.047 -0.040+10.033
B4 ~-0.1 ~i0.25 -0,004-10.049 -0.040+i0.03%3
Tangential Magnetic Field (A/m)

i 159.a 106.1 79.6

Bt 173.1+110.9 77.8+i16.2 101.9+18.5
B2 166.3+110.1 6.3%3+i2.0 82.3+i10.1
B3 167.7+112.6 79.8+i1.5 Z6.T+16.7
B4 168.2+i12,7 80.2+i1.4 %7.8+i5.8

Kev: F TFinite element solution for R.
Fxactly known value for H
Rlectric field intepgral equation solution
Bl 6 sided model, axial drive current.
B2 12 sided model, axial drive currents.
B3 6 sided model, drive current 6 windings.
B4 6 sided model, drive current 12 windings.

DISCUSSION

In general the resulits of the test casea show that
where the surface is smooth and the fields fairlv
uniform theve 18 no great difficulty in obtaining
acciurate answers usineg the integral equation methods.
However, whereas in finite element methods a coarse
mesh with little comvutation can then be used, for
integral methods the integration must still be carried
out, at least in the first integral, to a relativelv
high degree of accuracvy which necessitates either a
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mesh on the scale of the skin depth or a fine
gubdivision for the numerical integration. Where there
are edges or the field is changing rapidly, and these

features went together in the test cases, it is wmore
difficult to establish accurate answers. The electric
field method, as implemented here, shows strong

ogcillations in the magnetic field between neighbouring
triangles even after using the double integral
technigue, although the oscillations raduce with
reducing mesh size. The origin of the oscillations is

not clear but could vossiblvy be reduced by imposing
additional constraints on the fields by using
potentials as in the implementation of the Maller
method. Because the program took advantage of symuetry

it was vpossible to evaluate the coefficients to a high
accuracy and also work with a fairly fine mesh. For
example the resulss for the high conductivitv cylinder
were obtained with elements spanning each of the 12
gides of the straight sided cvlinder, with the length
divided into 10 equal sections and the radius divided
into 3 sections at each end. This gives 132 nodes and
360 triangles. A much finer mesh for a problem not
exhibiting symmetry could hardly be afforded so the
best approach would appear to be to replace the
congtant field approximation by Ilinear fields and to
introduce curved elements to supplement the plane
triangles.

%enmmmmfw‘memhhr method d4id not take
advantage of symmetry. The results gquoted are for an
11 sided cvlinder with each end divided into 2 sections
and the length divided into 7 sections, giving 112
nodes and 220 triangles. Here there appeared to be a
definite gain in accuracy as the mesh was refined, but
much more improvement would be expected oy
incorporating quadratic potentials and curved elements.
This would reduce the significance of the line integral
arising from the normal magnetic field which with a
coarge mesh is probably the major factor leading to
relatively poor accuracy at the ends of the cyvlinder.
If good values for the average fields in each element
are attained then a further integral would give the
variation of the fields over the elements. This has
not been carried out for the present work.

In comparison with integral equation wethods it
should be noted that the finite element vprogram for the
cylindrical problem used 615 nodes and 1140 elements
with a linear variation of vector magnetic votential
within each triangular element. The outer boundaries
were at a radial distance of 0.2m and an axial distance
of 0.3m. A finer mesh and more distant boundaries
would have been desirable but the program was already
picking up oscillations in derived gunantities and it
was not clear that an accurate result for the magnetic
field near the end of the cvlinder had been achieved.

With the size of problem solved here the largest
time was used in forming the matrix coefficients. This
increases in oproportion to the square of the number.of
elements, although for very large problems some of the
coefficients will be negligible leading to some saving
in computation. However the time for a divect solution
of the matrix equations increases in provortion to the
cube of the munber of nodes and will eventually become

an important factor. TFTor all the test cases on the
cvlinder the Muller method always converged guickly
using a simple iterative method. Typically the
potentials  converged +to within about 1% in 12

iterations and to about 0.1% in 20 iterations. The
form of the linear equations for the Muller method is:

B =W+ C, Bt CLE 0y (21)
BY = +Ca Pt CinX 0y (22)
B9_= +c:‘£+ cu + ol (23)

where B is a real sparse symmetric matrix, similar 4o

the two dimensional Taplace equation matrix, and the ¢
matrices are complex. For the iterative method the
three matrix equations were first multiplied by B and
then a Jacobi iteration without acceleration was
performed. As +this worked adequately more refined
procedures were not investigated althouegh they could be
advantageous in solving wmach larger vproblems.

For ease of develovment all the calculations
carried out on a Prime 650 computer which was readily
avalilable. TIn view of the rapidly increasing size of
the matrices as a function of the number of unknowns it
ig unlikelv that problems more than 504 larger than the
current vproblems could be convenientlv solved on this
machine. However, more powerful processors or the uge
of special Arrav Processors [3] should enable much
larger problems to be solved, but to what extent these
will provide accurate answers remaing to be seen. The
Blectricity Council is sponsoring work on the
meagurement of the fields and forces in a model of a
coreless furnace [Q], and it 1is apparent that soue
considerable care muat be taken both in caleulation and
experimental measurement even in this two dimensional
case if satisfactorv results are to he obtained. Thus
there may be some Jdiffienlty in verifying results
calenlated for a genuine three dimensional prodblem.

were

CONCLUSIONS

The work here wmay be regarded as
limited demonstration of the usefulness of boundary
integral methods in solving three dimensional eddy
current problems. Satisfactory results are obtained
for gmooth surfaces but vproblems still remain in
providing adequate revpresentation for surfaces with
gharp edges. It is unlikely that the solution will be
to uge a verv fine mesh but alternative routes of
introducing curved elements and guadratic potentials
are more promising. For programs to solve problems of
practical use to the engineer it will be very imvortant
to take the maximum advantage of anv asvymuetry in the
vroblem.

providing a

For manv problems a large parit of the work 1is in
evaluating the coefficients involving surface integrals
and it is important that wavs to minimise this task are
develoved. For large vproblems when the solution time
may become dominant it is encouraging that the method
based on Minller's equations showed good convergencs.
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