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orentz Forces on an Electrically Conducting 
ere in an Alternating Magnetic Field 

Udaya B. Sathuvalli, and Yildiz Bayazitoglu 

Abstract-A method to calculate the Lorentz force on an elec- 
trically conducting sphere placed in an arbitrary sinusoiddly 
varying magnetic field is developed. The crux of this method 
lies in expressing the external magnetic field and the eddy cur- 
rent density in the sphere in terms of a “source function” of 
the current sources and a “skin depth dependent function.” 
The general formula for the Lorentz force is used to derive the 
special case of a sphere in an axisymmetric stack of circular 
current loops. Numerical results for this case are presented as 
a function of the stack geometry. Approximations of the skin 
depth functions for practical situations are presented. Finally, 
a procedure to determine the magnetic pressure distribution on 
the surface of a levitated liquid metal droplet is given. 

I. INTRODUCTION 
HE solution to the problem of a metallic sphere placed 
in a magnetic field finds application in many areas of 

containerless processing. For example, in electromag- 
netic levitation melting, a small coil that is wound over 
the length of a few centimeters and carries a high-fre- 
quency alternating current is used to levitate and melt 
small metallic spheres [ 11, [2]. Bayazitoglu and Cerny [3] 
propose and study a method to produce fine metallic pow- 
ders by allowing a spray of liquid metal drops to fall 
through the high-frequency alternating magnetic field of 
a long solenoid. In these and several other applications 
such as gradiometry [4], determination of surface tension 
and viscosity of liquid metals [ 5 ] ,  the calculation of the 
force on an electrically conducting sphere and the heating 
in it are very important. 

Since the time when electromagnetic levitation melting 
was first demonstrated experimentally [ 11, it has been ex- 
tensively used for the measurement of thermophysical 
properties such as thermal diflusivity [6], surface tension 
[ 5 ] ,  [7], and viscosity of high temperature liquid metals 
and alloys in a containerless manner. For example, when 
a drop of liquid metal is levitated it executes shape oscil- 
lations [5] ,  [7] ,  [8]. The dynamics of these shape oscil- 
lations are determined by the balance between the hydro- 
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static, viscous, surface tension, and electromagnetic 
forces. In this case, it is important to calculate the mag- 
netic pressure on the surface of the conducting droplet of 
liquid metal beforehand [5], [7]. 

All the works that address the problem of an electrically 
conducting sphere in an alternating magnetic field can be 
classified as belonging to either the homogeneous [ 11, [2], 
[9], or the nonhomogeneous model. The homogeneous 
model assumes that the conducting sphere is placed in a 
uniform and unidirectional sinusoidally alternating mag- 
netic field and shows that the Lorentz force on the sphere 
is proportional to the product of the field and its gradient 
[2] [as given by (28)]. This assumption gives rise to sev- 
eral problems. For example, the magnetic field can hardly 
be regarded as being uniform or unidirectional over the 
diameter of the sphere. Calculations of the net power ab- 
sorbed by a sphere in a magnetic field by using the ho- 
mogeneous model show that it underestimates the power 
by as much as 30% in typical laboratory-type levitation 
situations [lo]. On the other hand, works that account for 
the nonuniformity of the field are highly geometry specific 
[11]-[13]. They are applicable only to axisymmetric sys- 
tems. Often the magnetic fields produced by the labora- 
tory coils are not quite axisymmetric [14]. Recently, Lo- 
hofer [15], [16] analyzed the problem of a conducting 
sphere in a magnetic field placed in an arbitrary (nonuni- 
form and not necessarily unidirectional) sinusoidally al- 
ternating magnetic field and obtained expressions for the 
net power generated in the sphere, and the Lorentz force 
and torque on it in terms of certain functions of the “cur- 
rent sources” that create the external magnetic field. In 
this work, this model is known as the nonhomogeneous 
model. 

In the present work, the density of eddy currents that 
are generated in a diamagnetic sphere placed in a sinu- 
soidally alternating magnetic field as given in [15] is first 
written. Then, by using multipole expansion, the vector 
potential of the external magnetic field is expressed in 
terms of the above-mentioned ‘‘source functions. ” The 
external magnetic field is calculated by using a gradient 
formula. The expression for the instantaneous Lorentz 
force per unit volume is subsequently integrated over the 
volume of the sphere to obtain the net time averaged force 
on the sphere in terms of these source functions and a 
“skin depth function. ” Approximations for the skin depth 
function for use in practical situations are presented. The 
general formula for the net Lorentz force is then used to 
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derive the force on a sphere in an axisymmetric magnetic 
field that is created by a stack of circular coaxial loops 
and numerical results in terms of the stack geometry are 
presented. The homogeneous model is shown to be a spe- 
cial case of the nonhomogeneous model, and the differ- 
ence in the predictions of the Lorentz force according to 
the two models is estimated. Finally, a method to find the 
magnetic pressure distribution on the surface of a levitat- 
ing liquid metal droplet by using this method is presented. 

11. ANALYSIS 
Consider a diamagnetic sphere of radius R, , electrical 

conductivity a,, and magnetic permeability p o ,  that is 
placed in a time varying magnetic field Be(r, t )  (see Fig. 
1). If the external magnetic field is created by a set of N 
current sources whose current densities are J ,  (r)  cos (U, t ) ,  
then its vector potential A, (r ,  t) may described by 

N 

Ae(r, t) = c A,(r) cos (writ) (la) 

(1b) 

(IC) 

n =  1 

where 
Be(r, t) = V x Ae(r, t) 

V * Ae(r, t)  = 0. 

For this situation, the density of the induced eddy currents 
is given by [15] 

Jdr,  U, $ 9  0 
N m  1 w 

- 2  -- c c  c c 
R;I2 n = l  [ = O  m = - l  k = l  

where 

and Y';'(u, 4) are complex spherical harmonics defined by 
I 

t t  1 - t t t  t 
Fig. 1. A sphere placed in a magnetic field. 

and the asterisk denotes complex conjugation. Also, U = 
cos 0 and T ( U )  are associated Legendre polynomials of 
the first kind. J 1 +  1/2(z) is a fractional order Bessel func- 
tion of the first kind, and x1 + 1/2 ,k  is the kth real root of 

J/-112(4 = 0. (4) 
The k-dependent terms in (2a) may be summed to yield 

- Re [ql ( z ,  r/Rs)ei(W"t+ a'2) IYY(u, 4) 
( 5 4  

where for real values of s 

z = (1 + i)q, (5c) 

and Zl denote modified Bessel functions of the first 
kind. Equations (5a) and (5b) are proved in Appendix D. 
The above equations are valid in a spherical coordinate 
system whose origin is at the center of the sphere. Con- 
sequently, the current densities of the external sources that 
create the magnetic field must be described as seen from 
this coordinate system. Equation (2b) defines the complex 
vector I,,, /, which is purely a function of the external cur- 
rents that produce the magnetic field and is referred to as 
the "source function." Note that in (2), 6, is the skin 
depth and qn is the dimensionless ratio of the sphere ra- 
dius to its skin depth at a given frequency. Finally, we 
must point out that the form of the induced eddy current 
density as suggested by ( 5 )  is particularly useful in the 
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calculation of the magnetic pressure that acts on the sur- 
face of a levitating drop of liquid metal (see Section VI). 

The net time averaged Lorentz force acting on the 
sphere is 

given 

Ae(r, 4, t )  

R, N m  1 

= p o x  c c - r ‘ y ~ *  ( U ,  411: 1,m cos(mnt). 

(9b) 
The magnetic flux density of the external field can then 
be found by (lb) . The calculation of the external magnetic 
field [according to (lb) and (9b)I requires the use of the 

f(r)~;“(u,  4)  [191. However, this involves the calculation 

scription of angular momenta in quantum mechanics. For 
the purposes of the present calculation, it is advantageous 

dard spherical harmonics Y Y ( ~ ,  4) in a slightly modified 
form. Following the notation used in [20], we let 

T RS + 1  27r n = l  I = O  m=-l21 + 1 

F, = ~ - + m  Lt T 1, 1, i-, i 0 Re[J,(r, t)l 

x Re[B,(r, t ) ]  r2 d4 du dr dt. (6) 

The form of (6 )  suggests that it is convenient to express general gradient formula for functions of the type 
the external magnetic field in terms of the source function 

sphere has already been expressed in terms Of it [accord- 
ing to (2)]. 

be expressed in terms of the external current densities by 
[171 

I n , l , m  9 since the induced eddy “ITent density inside the of Clebsch-Gordan coefficients which are used in the de- 

The vector potential Of the magnetic can (from a purely algebraic point of view) to rewrite the stan- 

(7) 

Since (7) represents the vector potential due to the exter- 
nal currents, the region of integration is all space that is 
outside the sphere. The denominator of the integrand in 
(7) can be written as a multipole expansion in spherical 
harmonics [ 181 

so that YEm and Gm are the real and imaginary parts of 
the standard spherical harmonic Yy(u ,  4) ,  to a multipli- 
cative factor. 

Now let the complex vector (“source function”) 

* Y;“(u’, 4 ‘ )  d$r du’ dr‘ . 1 
Assuming that J,  (r ,  U ,  4) is real for all n,  the above equa- 
tion in conjunction with (2b) becomes and 

(94  

The vector potential of the external magnetic field is then 

21 + 1 (1 - m)! 
47T (I + m)!’ 

. 
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Equation (12) ensures that the induced current density is 
expressed solely in terms of known real functions of the 
external currents. It now remains to express the external 
magnetic field similarly. 

Substitution of (1 1) in (9b) results in 

Re[A,(r, U ,  4, Ql 

= ~o C c 
N m  1 

[(r'y;,m(u, 4 ) P n , l , m  
n = l  1=0 m = - l  

- ( r l e m ( u ,  + ) > ~ n , 1 , m 1  COS ( a n t )  (134 

where 
N a ,  1 , c - c c  c .  

n,l,m n = l  1 = O  m=-1 

Since the fields are all harmonic, the time dependent in- 
tegral in (1 5) reduces to 

R2T 

w, 3-  COS (ant -k $n,k ,r)  COS (W,rt) dt 
2n 0 

where is the Kronecker delta function. The cross prod- 
uct in the volume integral can be expanded to yield the 
following terms: 

where 

%l,m = D/ ,mUn, l ,m  

(13b) m 

Since V X Z n , l , m  = 0, the definition of the magnetic vector 
potential yields, 

Re[B,(r, U, 47 01 
m m  1 

J o  J - I  Jo  

It is easy to check that (14) satisfies the 
condition 

V * Be(r,  U ,  4, t) = 0 

as required by the Maxwell equations. 

111. THE LORENTZ FORCE ON THE SPHERE 
The Lorentz force on the sphere can now be found from 

(6), (12), and (14) by direct substitution of the expres- 
sions for the current density and the external magnetic 
field. This substitution yields 

x [V(r"fl,,,,(u, 4)) X Tnl , l r ,m , ]  r2 d+ du dr 

(174  

so that the net time averaged Lorentz force on the sphere 



390 IEEE TRANSACTIONS ON MAGNETICS, VOL. 32,  NO. 2 ,  MARCH 1996 

is 

F, = ; POLXI + XI1 + XI11 + XIVI-  (18) 

It now remains to evaluate each of the terms in (1 8), which 
in turn involves the calculation of the sums of the inte- 
grals in (17). Fortunately, the four vector integrals in (17) 
share a common integral. The calculation of a typical term 
in (17) is shown in Appendix A. The evaluation of the 
integrals in (17) calls for the calculation of the gradient 
of functions of the type Y ' Y : ~  '(U, 4). These are evaluated 
in Appendix B. 

The final expression for the net time averaged Lorentz 
force on the sphere is found by substituting the expres- 
sions for the terms in (18) from (AlO), (All) ,  (A12), and 
(A13) of Appendix A. Thus, 

ski? depth function in [16] makes use of ordinary frac- 
tional order Bessel functions as opposed to modified Bes- 
se1 functions that we use in (1 9b). 

Appendix D presents a proof of (19b). The skin depth 
function gl(qn) for the Lorentz force is analogous to the 
function Hl(qn) which appears in the expression for the 
power absorbed in the sphere placed in an alternating 
magnetic field [15]. The function gl(qn) depicts the fre- 
quency dependence of every mode in (19a) (see Fig. 2). 
Since modified Bessel functions can be expressed in terms 
of circular functions [21], the special case of 1 = 1 may 
be obtained explicitly. For 1 = 1, 

1 sinh 2q, - sin 2q, 1 
"(") = cosh 2qn - cos 2q, 6' (20a) _ -  

where the skin depth function gl(qn) is given by A comparison to the skin depth function derived by Rony 
[2] [see (28b)l reveals that 03 

(19b) G ( q n )  = -6gl(qn). (20b) 
-1 44: 

gl(qn) = 2 2 4 4  
k = l  X1+1/2,k  4qn + Xl+112,k 

This suggests that the homogeneous model corresponds 
to the E = 1 mode in the general expression for the force. 

A note about the calculation of the skin depth function, 
(19~)  2(21 + 1) 

The P-coefficients are defined as 

and 

p3 = ~ J ( z  + m + 1) (I - m + 1). 

Along with (2b) and ( l l ) ,  (19) gives the net time av- 
eraged Lorentz force acting on a sphere placed in an al- 
ternating magnetic field. Equation (19) in conjunction 
with (2b) confirms that the Lorentz force is indeed pro- 
portional to the (21 + 1)th power of the sphere radius. 
Here, we must point out that Lohofer [16] presents an 
expression for the force on the sphere in terms of the same 
source functions, but a different skin depth function. The 

gr (qn ), is appropriate here since it involves the evaluation 
of ratios of fractional order modified Bessel functions of 
complex arguments. Lentz [22] presents a method to eval- 
uate such ratios in terms of continued fractions. Since 
modified Bessel functions can be eventually expressed in 
terms of ordinary Bessel functions, the Lentz algorithm 
may be used to evaluate gl(qn) for arbitrary values of qn . 
However, in most practical levitation situations, the ratio 
of the specimen radius to skin depth, q,, is of the order 
of 40 to 50. In powder production applications, this ratio 
is seldom greater than 2. It is therefore worthwhile to ex- 
amine the behavior of the skin depth function gl(q,), for 
large and small limiting values of q, . The high-frequency 
limit (or large q,) can be shown to be (see Appendix D) 

- 1  

This is physically reasonable since (2 la) implies that in- 
creasing the frequency indefinitely does not correspond- 
ingly increase the force (see Fig. 2). On the other hand, 
when qn is small, it can be shown (see Appendix D) that 

(21b) 
4q: 

(21 + 1)3 (21 + 3) (21 + 5)' Lt kl(qn)l = - 
gn+O 

Since, Zl+ 1,2(2) = Zl- 1/2(2) for large values of z ,  the skin 
depth function may be approximated by 

1 1 
g l ( q n )  = 4s, - 2(21 f 1) 
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Fig. 2. The behavior of the skin depth function. 

for intermediate values of qfl > 2. For 1 = 1, (21b) and 
(21c) give 

-6 Lt [gl(q,,)] = 0.025397q: (2 1 d) 
qn+o 

and 

3 
-6g,(qn) 1 - - (2 1 e) 

2qn 
respectively. These are the limiting values for the skin 
depth function obtained by using the homogeneous model 
of Rony [2, (12) and (15)]. The relations in (21) obviate 
the need for the Lentz algorithm, which at the minimum 
requires the use of a computer program to evaluate the 
ratios of fractional order Bessel functions. 

IV. THE AXISYMMETRIC CASE 
Fig. 3 shows a sphere placed along the axis of a conical 

stack of coaxial loops. The vector source function Zn,l,m 
for this arrangement can be shown to be [15], [lo] 

Zn,l,m = -Zn,l[-6m,l(iux + "y) + &n,-~(- iux + uy)l 

W a )  
where 

z ~ , ~  = I ,  J [ ( ~ z  + 1)1/[1(1 + I)] (zts/rn)'sin e,p:(cos e,> 
(22b) 

d 

and I,  is the current flowing in the nth loop. The form of 
(1 1) allows the following: 

r 

Fig. 3 .  A sphere on the axis of a stack of loops. 

Vn,l,m = -u.xzn,l & (6m, 1 + a m ,  -1). (23b) 

It is now merely a matter of substituting (23) into (19) 
and plodding through the various steps. Passing lightly 
over the finer algebraic details, the following points are 
noted: 1) only two terms that denote the transverse (i.e., 
x and y )  components survive the triple vector products in 
(19a); 2) however, these terms do not survive the sum- 
mation over the index m due to the presence of factors 

the two terms that survive the cross products and the sum- 
mation over m are along the z-axis. The net Lorentz force 
is directed along the positive axis of the stack, and is given 

such as (-6m,1 + 6m,-1) (&6m-1,1 + 6m+1,-1); and 3) 

by 
N N m  

(24) 

Brisley and Thornton [ 1 11 obtain an identical relation, al- 
beit in a slightly different notation, by calculating theforce 
exerted on the individual loops by the eddy current field 
outside the sphere. 

It is convenient to nondimensionalize (24) by choosing 
the least radius of the stack of loops as the length scale a, 
(= al)  and I, as the current scale. With reference to Fig. 
3, (24) becomes 
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7 where 
T, = d(Zo - Y C , ) ~  + (yc, tan a + 1)2 (25b) 

yc, tan CY + 1 , tan 0, = 
Z, - Y C n  

- 
and Z, = Z,IZ,, 7, = r, lr, , c, = (n  - 1)/(N - l ) ,  Z, = 
zolao, y = hla, , E, = R,/a, . Note that 2, is the scaled 
height of the center of the sphere from the center of the 
bottom loop in Fig. 3. For the special case of a single 
loop (i.e., N = l), put y = 0 and n = 1 in (25) to obtain 

21 + 1 m 

F S  7 = u Z r  sin2 o1 C g l (q )  - 
Pdl 1 = 1  1 + 1  

Equations (25) and (26a) are reasonable, since they dic- 
tate that the force on the sphere should vanish at points 
far removed from the coil. Further, it is easy to check that 
the expression for the force in (26a) is an odd function of 
the position of the sphere with respect to the center of the 
loop, i.e., 

From a physical standpoint, this is expected since a dia- 
magnetic body tends to move to a region of weakeir field 
strength. 

v. THE LORENTZ FORCE ACCORDING TO THE 
HOMOGENEOUS MODEL 

The homogeneous model proceeds by assuming thiat the 
sphere is placed in a uniform and unidirectional external 
magnetic field. Let this magnetic field be given by B, = 
Bo cos w t  = uzBo cos w t .  In spherical coordinates, the 
vector potential of this field can be shown to be [17] 

A, = U$ Bor sin 8. (27) 

Based on this assumption, Rony [2] shows that the Lor- 
entz force on the sphere is given by 

P O  

where 

3 sinh(2q) + sin(2q) 
Gyq) = 1 - - (28b) 2q cosh(2q) -  COS(^^)' 

In order to calculate the Lorentz force on the sphere for 
this configuration of the field by using the present method, 
the appropriate source function Zn,l,m must be found. For 
a uniform z-directed field, Zn,l,m has been shown to be [lo] 

which, when coupled with (1 l), gives 

These equations may be substituted in the general force 
equation (19). The principal steps are essentially similar 
to the axisymmetric case of the previous section, except 
that all the terms in the force expression vanish. None of 
them survives summation over the index I due to the pres- 
ence of the factor &, + 1, 1. Therefore, the present method 
when applied to the sphere in the homogeneous unidirec- 
tional field implies that the Lorentz force is zero. Clearly, 
this result does not agree with (28). It must, however, be 
anticipated, since paradoxically enough (28) predicts that 
the Lorentz force vanishes in the absence of a field gra- 
dient. In other words, the homogeneous model begins by 
assuming a homogeneous field and derives a nonhomo- 
geneous field as a precondition for a nonzero Lorentz 
force! This is not surprising since the homogeneous model 
calculates the force on the sphere by assuming it to be a 
small dipole that is placed in a nonhomogeneous field [2]. 

In Appendix E, it is shown that for a very small sphere 
placed on the axis of a circular loop, the homogeneous 
model overestimates the Lorentz force by as much as 
33 % . This assertion must be tested experimentally. 
Fromm and Jehn [9] measure the forces on small copper 
spheres placed in the field of a circular loop. However, 
the radius of the smallest sphere that they use is only a 
fourth of the radius of the circular loop. The result of Ap- 
pendix E is very likely valid for the limiting case of a 
small sphere. It suggests that the forces on smaller spheres 
(one-tenth of the loop radius and smaller) might be over- 
estimated by (28). These results will be of interest to 
workers in the area of electromagnetic powder produc- 
tion, where very small droplets of liquid metal are al- 
lowed to fall through the magnetic field of a long large 
diameter solenoid [3]. 

It is worthwhile to consider the limiting case of a sphere 
with a very small radius, i.e., R, -, 0. The source func- 
tion for such a sphere placed in an arbitrary magnetic field 
is given by [lo] 

2& 
In,l,m = - An(ro , uo 3 4 o P l , 0 6 m , 0  (3 1) 

P O  

where (r, , U,, 4,) are the coordinates of the center of the 
sphere. Since the source function vanishes identically for 
all values of I = m # 0, (19) indicates a net zero Lorentz 
force on the sphere. This is an expected result since a 
magnetic field cannot exert a force on a zero-radius 
sphere. Also, in the case of an extremely small sphere, 
the magnetic field is essentially uniform over its volume. 
The sphere is not large enough to sense the inhomogene- 

'The force on a dipole of moment M placed in a nonhomogeneous mag- 
netic field B is (M . V)B. 
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ity of the magnetic field and hence does not experience a 
force. 

VI. THE MAGNETIC PRESSURE ON THE SURFACE OF A 

CONDUCTING DROPLET 
When the conducting sample is allowed to levitate, it 

melts after a short time (- 100 s) [23]. The Lorentz force 
drives the liquid metal flow in the droplet. If shape oscil- 
lations are induced in the droplet, its dynamics can be 
analyzed to yield the surface tension of the liquid metal. 
For an inviscid fluid oscillating in an inviscid medium, 
the hydrodynamic equation for the oscillating droplet is 
given by 171 

+ u(r, t )  Va(r, t )  

= - V P ( ~ ,  t )  - Pg + Re[Js(r, t)l X Re[Be(r, t)l 
(32) 

where u(r, t )  is the bulk fluid velocity, o(r, t )  = 0 is the 
equation for the surface of the droplet, p(r ,  t )  is the pres- 
sure, p is the fluid density, and g is the acceleration due 
to gravity. However, at very high frequencies, the in- 
duced eddy currents are confined to the skin depth and the 
Lorentz force does not act on the bulk of the fluid [7]. 
Instead, it manifests itself as an effective magnetic pres- 
sure, pmag(r, U, $, t ) ,  on the surface of the droplet. The 
details of how such an external pressure affects the dy- 
namics of the droplets are given in [5] and [7]. For the 
present, we indicate how our method may be directly used 
to obtain the magnetic pressure distribution on the droplet 
surface. In the limiting case of very high frequencies (i.e. , 
qn + CO), the magnetic pressure decays exponentially 
from the surface of the droplet and can be regarded as a 
superficial quantity. Therefore, 

VPmag(r, U, $ 9  t )  = Lt Re[Js(r, U, 4,  t)l 
q n  + m 

X Re[Be(r, U,  $ 9  t)l- 

Thus, the pressure difference Apmag(u, $, t )  between the 
outside and the inside of the droplet surface is simply 

- *\Pmag(U, 4, t) = Pout, mag Pin, mag 
RS 

= 1 r=O 
VPmag(u ,  4, t )  * dr 

= (,:, Re[Js(r, U >  4, t)l 

) X Re[Be(r, U,  4, t)] - dr. (33) 

It now remains to obtain the limiting value of the current 
density as qn -+ 00. This is easily obtained from (5a) by 
using the asymptotic values for the modified Bessel func- 
tions. This process yields 

Lt [ J s ( y ,  U, 4,  t)I 
q,-*w 

where 

(34b) 
Note that (34) is a physically reasonable and an expected 
result, since it indicates an exponentially decaying current 
density toward the center of the sphere. It is interesting 
that (34) compares well to the result of Van Blade1 [24, 
(9.22)] for a conducting sphere placed in a uniform and 
unidirectional magnetic field. The magnetic pressure dis- 
tribution on the surface can now be obtained by resolving 
the induced current density and the external magnetic field 
into their real and imaginary parts and then evaluating the 
integral in (33) by using (34). 

VII. RESULTS AND DISCUSSION 
The results in the paper by Brisley and Thornton [l 13 

provide a benchmark to check the results obtained here. 
An order of magnitude calculation for a 0.5-cm-radius 
copper sphere (os = 2.5 x lO7/Q - m) placed 1 cm from 
the center of a loop of radius 1 cm is reported in [ 111. The 
loop carries a current of 1320 A at 400 kHz. This current 
is sufficient to balance the weight of the sphere (45.72 
mN). Using these values in (26a) yields a value of 46.2 
mN . 

Fig. 4 shows the variation of the magnitude of the Lor- 
entz force along the axis of a single loop for three different 
values of the radius-to-skin depth ratio. The figure indi- 
cates that the force is a very weak function of q, for large 
values. Also, note that the case of q = 31.4 corresponds 
to the case shown in Fig. 4 of [ll].  The difference in the 
scaled values along the force axis arises from the present 
choice of rationalized MKS units. When the values of the 
forces shown in Fig. 4 are multiplied by a conversion fac- 
tor of 47r (to convert from rationalized MKS to electro- 
magnetic units), the curve reported in [ 111 is recovered 
exactly. Recall that (28) predicts that the Lorentz force on 
a sphere varies as the product of the field and the field 
gradient. The magnetic field due to a circular loop has 
only an axial component on its axis, and is given by (El) 
of Appendix E. The maximum of the product of the func- 
tion in (El) and its derivative occurs at Z, = 0.378, which 
is close to the point at which the force shown in Fig. 4 
peaks. 

The top half of Fig. 5 shows the variation of the force 
along the axis of a right circular stack with two and five 
loops. The effect of the individual loops is clear. There 
are as many peaks as there are loops. In the case of only 
two loops, the loops are situated at zo lh = 0 and z, lh = 
1 .  Then the field in between the two loops is relatively 
gradient free, and thus the force is close to zero. As in the 
case of the single loop, the peak occurs at a point just 
above the top loop. When the number of turns is increased 
to five (5), there is significant variation of the field over 
the length of the stack, and this is reflected in the force. 
In fact, when the number of loops per unit length is large, 
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Fig. 4. The force on a sphere along the axis of a circular loop. 
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induced eddy current density and the magnetic flux den- 
sity of the external field in terms of certain "source func 
tions" of the current sources that create the field. Once 
the "source functions" for a given configuration, such as 
a coil, are known, the force on the sphere may be evalu- 
ated. Further, the present method calculates the Lorentz 
force per unit volume by resolving the current density and 
the magnetic flux density of the external field into real and 
imaginary parts. This method has the advantage that it can 
be used to obtain the pressure distribution on 
of a levitating liquid metal droplet. We conj 
this method can also be used to find the magnetic pressure 
distribution on the surface of a slightly deformed aspher- 
ical liquid metal droplet in order to determine the surface 
tension (of a liquid metal) by studying its dynamic under 
normal gravity (1 g) conditions. 
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APPENDIX A 
THE EVALUATION OF XI 

The substitution of the gradient formula, (B6) and (12c) 
and (13b) into (17a), leads to 

where 
m 

Fig. 5. Force on a sphere along the axis of a stack of loops. 

and 

a 
aj 

the variations die out completely, and the force profile 
becomes smooth within the coil [14]. The. bottom half of 
Fig. 5 shows the same results for a conical stack of 15" 
semiangle. Due to the increasing diameter of the loops 
with height, the field and the field gradient become smaller 
with increasing distance from the bottom of the stack. 
Consequently, the effect of the individual loops is not 
seen. The effect of a nonzero semiangle is to reduce the 
average magnitude of the force. 

27r 

A t z m , j  = s," l': so f f k , m ( r ,  U ,  6) - 

j = x, Y ,  z 
P7 q = e7 0. 

(A34 

- { rl 'c , ,m,(u,  +)}r2  d6 du dr, 

The calculation of the various terms of (17a) finally in- 
volve the calculation of triple integrals of the type shown 
in (A3a). As an illustrative case, consider the casej = x, 

= q = e .  Equation (A3a) then becomes [after making 
use of (12b), ( ~ 3 )  and (~4)] 

VIII. CONCLUSIONS 
A method Of calculating the Lorentz forces on a sphere 

has been presented. The method relies on expressing the 

A;:;, m , x 
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The orthogonality relation (Cl) implies that I’ = I + 1, m’ = m f 1 for nonzero values of the above integral. This 
enables the evaluation of the r-integral in both the terms above to yield 

395 
/ 

Finally, 

- (1 + m + 2) (1 + m + l)6m,mr- 4 . 
For real values of v ,  the following relations are useful in evaluating the r-integrals [21]: 

After some straightforward algebra, the term X I , x  can now be found from (A2), (A5), (12e), and (13d) as 

In (A3,  the sums over the indices 1’ and m‘ vanish due to the presence of the Kronecker delta functions 
am,”* 

I and 
Note that the expression for cos $ n , k , I  from (2e) has been used in arriving at (A7). 

The other two terms in (Al) can be found by following a similar set of steps. This yields, 

&,y = 0 
and 

Finally, (Al), (A7), (AS), and (A91 result in the following expression for the first term in (18):  
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\ 
\ 
The remaining three terms in (18) can be obtained by a similar procedure. For the sake of brevity, only the final 
expression for each of these terms is given below: 

+ I  1 \ 

X I ,  = 5 lgo mF-l 5 gl(4n)6wn,wfi,(1 + Sm,o> 

(B3) In evaluating the volume integrals in (17), it is conve- 
nient to employ a Cartesian system of axes, since the unit 
vectors in this system are space independent throughout 
the region of integration (i.e., the volume of the sphere). 
Hence, it is easier to obtain the gradient formula in carte- 

(L - i g) [r'z(u)e'm+] 

sian components. The definition of the gradient gives = (I + m) ( I  + m - l )r ' - l~-- l ' (u)e"m- ' )+ 034) 
a 

V(rlY;,;O(u, 4)) = c U - [r'y;,;O (U, 411 a 
az J = x , y , z  aj - [r'P;"(u)e"'] = (I + m)r'-'fl- (u)e"+. (B5) 

Following through with some tedious but straightforward 
(B 1) algebra yields the following gradient formulae: 

U , x { - Y ; - l , m + l  + (I + m) (I + m - l)Y?-l,m-1) 

- U y { Y P - I , m + l  + ( I  + m> (I + m - 1)Y?-I,m-l) 

+ ~ z { 2 ( 1  + m ) Y ; - l , m }  

V{rlYEm(u, 4)} = - rl-l 

u x C - y P - 1 , m + 1  + ( I  + m) (1 + m - l)e-1,mL-i] 

i 1 
2 

V { r ' e m ( u >  411 = m) (I + m - l)Y?-l,m-11 

The derivatives on the right-hand side of ( B l )  are evalu- APPENDIX C 

SPHERE 
a cos Re a The surface harmonic functions, as defined in ( lo) ,  can 
- ['lV(') sin . m4] = Im [: a~ {r'T(u)eLm'}] be shown to obey the following orthogonal properties. 

Unlike the standard spherical harmonics, these functions 
are not orthonormal. By direct substitution of the defini- 

ated by using the following relations [25, p. 3611: THE U AND 4 INTEGRALS OVER THE SURFACE OF THE 

aj 

(B2) 
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tions for the functions Y?,*(u, 4) and C m ( u ,  $), the fol- 
lowing can be verified: 

from s = 0 to s = 1, gives 

2 
n + l  n2n 

where the orthogonality of associated Legendre polyno- 
mials [18], i.e., 

2 (2 + m)! 
21 + 1 (1 - m)! p;"(u)p;?(u)du = - ____ 61,P S:: 

has been used. 

due to the orthogonality of the Bessel functions, i.e., 

1 is = sJl + 1/2(xl + 112, k S ) J l  + 1/2(x l  f 1 / 2 , k r S )  ds 

The integral in (D3) can be evaluated to yield 121, 
(1  1.3.29)] 

sJl+ 1/2(xl+ 112,ks)IL+ 1 1 2 k s )  dt 

The above sum is evaluated by expressing the modified For z = (1 + i)qn, the above equation gives 
.~ 

Bessel function Zl + 112(zt) in a Fourier-Bessel series as 
m 

I l + l / Z ( Z s )  = k =  1 ~l+1/2,k(~)~l+1/2(xl+1/2,kS)~ 

0 ~ s ~  1 ,  1 = 0 , 1 , 2  . . . ,  (D2) 

where z may be complex, Xr + 112,k are yet-undetermined (D5) 
coefficients, and x l+  112,k  are defined in (4). Multiplying 
both sides of (D2) by sJl + 112(xi + k ' s )  and integrating Finally, putting s = r/R,  , multiplying throughout by 
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ei(wnt + r i 2 )  , and taking real parts leads to 

Re[\E(z, t)ej(wnt + *I2) 1 

= - A  
= 

-2qi cos w,t + x ~ + ~ ~ ~ , ~  sin w,t 

J I  + 1/2(x/ + 1/2 ,  k 

2 

4q: + .t'+ 112,k 

Together, (Dl), (D6), and (2a) establish (5a) and (5b). 
Finally, for z = (1 + i)q, = s = 1, equating real parts 
throughout (D5) gives 

= Re[fz(z, l)]. 037) 
To prove (19b), consider the function sl+ ' I 2 .  Since it is 

continuous in the interval 0 I s I 1, it can be expanded 
in a Fourier-Bessel series as 

00 

X I +  1 / 2 , k ~ 1 + 1 / 2 ( x l +  112 ,kS) .  (D8) + 112 = 
k =  1 

As before, the undetermined coefficients hl + 112,k are de- 
termined by making use of the orthogonality of Bessel 
functions. Thus, 

2(21 + 1) 
X 1 + 1 / 2 , k  = (DW .?+ 1/2 ,kJI+ 1/2(%+ 1 / 2 , k )  

and 
m 

(D9b3 
J / +  1/2(xZ+ 1 / 2 , k s )  2(21 + 1) c 2 s I+1 /2  = 

k =  x /  + 112, k J l  + 1/2(xZ + 112,k)' 

Fors  = 1, 

1 
(D 10) - m 1  c-- 

k = l  X T + 1 / 2 , k  2(21 + 1)' 

Finally, the subtraction of (D10) from (D7) gives the de- 
sired result, i.e., (19b). 

The limiting case in (21a) can be proved by rewriting 
(19b) as 

By virtue of (DlO), (21a) follows. Similarly, in the limit 
of very small q, , (19b) can be written as 

m 
-1 

~t [gl(qn)~ 4 d  C p. ( D W  
qn - m k =  x?+ U 2 , k  

Multiply (D9b) by s1+312 and integrate from s = 0 to s = 
s. The use of (A6a) leads to 

m 
J/+3/2(x/+ 1 / 2 , k S )  2(21 + 1) (21 + 3) c 3 

& + 3 / 2  = 
k =  + 112, kJl + 1/2(xI + 1/2 ,k) '  

Multiply the above equation, once again, by sz+5/2 and 
integrate from s = 0 to s = s. This leads to 

2(21 + 1) (21 + 3) (21 + 5 )  s1+5/2 = 

Putting s = 1 in (D13), and then using the recursion re- 
lation (A6b) in conjunction with (4), gives 

1 = 2(21 + 1) (21 + 3) (21 + 5 )  

. -g [(21 + 1) (21 + 3) - '1. 4 (D14) 
k =  1 .?+ 112.k X l + 1 / 2 , k  

Squaring both sides of (DS) and then multiplying through- 
out by s, and finally integrating from s = 0 to s = 1 
(Parseval's theorem), yields 
r l  m m  

By using the orthogonality of Bessel functions and then 
(D9a) results in 

O 0 1  1 E---.-= 4 (D15) 
k = l  X i + 1 / 2 , k  2(21 + 3) (21 + 

Together, (D15) and (D14) give (21b). 

APPENDIX E 
THE DIFFERENCE BETWEEN THE HOMOGENEOUS AND 

NONHOMOGENEOUS MODELS 
The magnetic field on the axis of a circular loop is 

purely z-directed and is given by [19] 

1 a' 
Bo(z0) = U Z P O I O  5 (a2 + z;) (El) 

where zo is the axial distance from the center of the loop 
of radius a.  Using superposition and (28), the homoge- 
neous model yields the following expression for the Lor- 
entz force2 on the sphere along the axis of the stack of 
loops shown in Fig. 3: 

( E a  
where t,, = 1 + yc,, and s, = Z - yc,. For the special 
case of a single loop, the force on the sphere at a height 
z, above the center of the loop becomes 

'Assuming that all loops carry current at the same frequency. 
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If the sphere is small compared to the radius of the loop, 

Considering only the 1 = 1 term and expressing all func- 
tions in terms of the dimensions in Fig. 3, (26a) can be 
written as 

[I81 ti. Arfken, Mathematical Methods f o r  Physicists, 3rd ed. New York: 

[201 P. M. Morse and H. Feshbach, Methods of meoretical Physics. New 

Academic, 1985. then Of Order 2: in (26a) may be dropped‘ [I91 M. E. Rose, Multipole Fields. New York: Wiley, 1955. 

York: McGraw-Hill, 1953. 
[21] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Fuhc- 

tions. New York: Dover, 1965. 
[22] W. J .  Lentz, “Generating Bessel functions in Mie scattering calcu- 

lations using continued fractions,” Appl. Opt . ,  vol. 15, pp. 668-671, 
1976. 

[23] A. D. Sneyd and H. K. Moffatt, “Fluid dynamical aspects of the 
levitation melting process,” J .  Fluid Mech.,  vol. 117, pp. 45-70, 
1992. 

(U) 

By (20b), it follows that 
[24] J .  Van Bladel, Electromagnetic Fields. New York: Mctiraw-Hill, 

- slhoJ/[ sln;;h;j = -3’ (E5) [25] H. Bateman, Partial Di$erential Equations of Mathematical Physics. 
1 1964. [ London: Cambridge University Press, 1932. 
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