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‘ Calculation of the Induced Currents and Forces for a
‘j Hybrid Magnetic Levitation System

J D. Albertz, S. Dappen and G. Henneberger
} Institut fiir Elektrische Maschinen, RWTH Aachen, Schinkelstrafie 4, D-52056 Aachen, Germany

Al‘)stractﬁ This paper presents the calculation of
the #nduced currents and forces for a 3D non-linear
eddx’ current field Probl_fem with ferromagnetic moving
conductors. The A, V-A formulation is used in combi-
nation with four different gauging methods to stabi-
lize the solution process. To consider non-rectangular
shapes of geometries tetrahedral elements were em-
ployed. The computation procedure is applied to a
hybrid magnetic levitation system of a contactless and
frictionless conveyance system.

|

} I. INTRODUCTION

|

The calculation of braking and attractive forces for
magnetic levitation systems is one of the basic demands
for the design of levitation magnets. The calculated mag-
netic levitation system displayed in Fig. 1 consists of
four} hybrid magnets and a permanent excited linear syn-
chrgnous machine with an iron-less stator [1). To guar-
antje long operation periods and low energy consumption
the jcurrents of the hybrid excited magnets (NdFeB per-
maﬂent magnets combined with an electrical excitation)
are controlled to zero. The rail has a U-shape to use the
relu[ctance force for the lateral guidance of the vehicle. To
redlllce material costs the rail is made of solid steel and
does not suppress eddy currents. Since the stator is not
designed over the whole length of the lane, eddy currents
and the resulting braking effects caused by the motion of

the|vehicle have to be considered.
he attractive and propulsion forces are calculated by a
mixed A, V- A formulation [2]. This approach applied to
moving conductor eddy current problems tends to stabil-

ity [problems in the solution process. An upwind scheme
lane

airgap sensor

hybrid levitation magnet
Fig. 1. Magnetic levitation system
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Fig. 2. Hybrid levitation magnet

and different gauging methods have been incorporated to
achieve a stable, fast and precise solution. These meth-
ods will be compared with respect to solution time and
accuracy. For this reason the induced currents and brak-
ing forces of one of the levitation magnets (Fig. 2) are
calculated. In contrast to [3] 2D calculations can not be
adapted by using different calculation parameters, so that
a 3D calculation is absolutely required.

II. FORMULATION

A. Problem definition

The structure of the electromagnetic field problem of
the hybrid levitation system is simplified shown in Fig. 3.
To get a static field problem, the moving vehicle is chosen
to be the local reference system of the electromagnetic
model. So region Q;, representing the rail of the levita-
tion system, is moving with a relative velocity to the fixed
surrounding regions (s and (23 representing the real mov-

ing parts of the geometry. Because the geometry of the
T Hxn=0

T Bn=0

region Q,
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Fig. 3. Magnetostatic field problem with a moving conductor
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moving part is invariant in the direction of motion, the
Maxwell equations for region {2y are:

curlﬁ = 0 ] (1)
divy = 0 @)
T = a(B4oxB) L o (3
curlH = J (4)
divB = 0 (5)
H = vB)B (6)

In the non-moving parts of the chosen reference system
the excitation of the system may result from either per-
manent magnets or electrical source currents. All non-
moving regions, equal if they represent coils, permanent
magnets, non-linear iron or air; obey the Maxwell equa-
tions of a magnetostatic fleld problem and may be com-
bined in Q:

curl H = J_; (7)
divB = 0 in 22 (8)
H = vB)(B-B,) (9)

The interface boundary conditions between the moving
and non-moving part are described as follows:

X (ﬁl — ﬁg) = 6 (10)
- (El — Eg) = 0 on 2 (11)
a-Ji o= 0 (12)

The outer boundary of the model is divided into three
parts. In the direction of motion periodical boundary
conditions are defined. The other boundary conditions
are described by a vanishing normal component of the
flux density on I's or a vanishing tangential component
of the magnetic field intensity on I'g:

#-B = 0 onlp (13)
ixH = 0 onTy (14)

B. Potential formulations

In order to satisfy equation (1), (5) and (8) the A,V
formulation is used in Q; and the 4 formulation is used
in 25. Choosing these potentials equation (1)-(9) can be
written as follows:

curl v curl 4

- (m?’ x curl A — o grad V) = 0 i (15)
div (o7 x cul A —ogradV) = 0 in{  (16)
curlvcurd A — curlvB, = J. in Qs (17)

The boundary conditions (10)-(14) result in:
il X (1/1 curl A, — vy curl A, + V2§T2) 0 (18)
7 - (curl A’l — curl [fg) = 0 onI'io (19)
i - (017 x curl A1 — o grad 1712 = 0 (20)
i-curlA = 0 onlp (21)
iix (v curl A — VE,) = 0 onlwg (22)

Enforcing the continuity of A on I'1» and the tangential
component of 4 to be constant on T’y by setting

onTis and (23)

AL = A
0 , (24)

X A

the boundary condition (19) and (21) are automatically
satisfied and can be omitted. In fact equation (15)-(18),
(20) and (22)-(24) gives a complete potential formulation
for equation (1)-(14). But the solution for the potentials
is analytically not unique, because the divergence of A is
still vague.

C. Coulomb gauge

To get a unique solution for the potential A the diver-
gence of A has to be determined as well as the free normal
component of 4 on I';: For this gauge of A the Coulomb
gauge is chosen in this paper:

divAd = 0 inQandQ (25)
A = 0 only. (26)

It is important to mention that gauging is not necessary
to get a numerical solution for the field problem described
by equation (1)-(14), but has an effect on the convergence
of the solution process and on the accuracy.of the solution.

III. NUMERICAL IMPLEMENTATION

Applying the Galerkin weighted residual method using
the shape functions as weighting functions to the second
term of (15) leads to:

/ (1\71- .o x curl E) o @7)

2

This term forces the matrix to be badly posed and causes
violent oscillations in the solution process. These oscilla-
tions can be enormously reduced by upwinding and ad-
ditionally by a stabilized BiCG procedure [4]. In regions
of high permeability the stability of the solution can be
additionally optimized by enforcing %he Coulomb gauge.
In [5] it is shown that the Coulomb gauge can be obtained
in the numerical solution by adding (grad v div 4) to equa-
tion (15) and (17) in region'©; and Q5. But the advantage
of a better convergence in this case costs accuracy of the
field solution especially if the iron regions of the moving
parts are not saturated, so that the permeability differ-
ences between iron and air are high [6]. The following
numerical formulations give 4 pogsibilities for the solu-
tion of the given field problem, which use all the same
upwind scheme but differ in the way of implementing the
Coulomb gauge. Only for two of them convergence is ob-
tained for the given levitation system in the considered
speed range.




|

Tmulatzan without Coulomb gauge

In this case the Coulomb gauge is not implemented, so
that the whole FE-formulation looks as follows:

1/ curl Nl ceurl A

-1\7¢-oﬁxcurlA'—F]\—/‘}‘UgradV)dQ:O(28)
/ ograd Ni - & x curl A — o grad N; - gradV)dQ=0(29)
(851
/ucurlN ccurl A —vewlN; - B, = N; - J, )dQ—O(30)

The Jonvergence of the CG procedure for this case is al-
ready bad without taking velocity effects into account.
Considering small velocities the solution process does not
converge.

B. Regular Coulomb gauge

In ithis case the Coulomb gauge is implemented in £,
and @ by adding (grad v div A) to equation (15) and (17).

By additionally enforcing - A = 0 on I'y, vdivA =0 on
I's and the continuity of (v div A) on Ty it is shown in [5]

that the divergence of A in fact vanishes:

vdivd = 0 in(and Qs (31)

In thHis case the numerical implementation of the entire
form 1ation results in:

chrl N’I . curlff-i— vdiv ]\71 divA

—N; o7 x culd+ N; -JgradV) Q=0 (32)

/agradN # x curl A — o grad N; - gradV)dQ:O (33)

ucurlﬁi ccurl A + vdiv N, - div A
—vewlN; - B, - N, f) d0 =0 (34)

The|convergence of the CG procedure without any veloc-
ity effects is better than in the formulation of section A,

but [the accuracy of the results is not as good as in sec-

tion| A. As well as in section A the solution process does
not |converge considering small velocities because of the
hlg iron permeabilities.

ortified Coulomb gauge

In this case the Coulomb gauge is implemented in
and |2, by adding (grad vo div A) to equation (15) and (17).
By additionally enforcing - A = 0 on T'y, vodiv A = 0 on
['s and the continuity of (v div A) on I'1; it can be equally
shown, that the divergence of A vanishes:

wdivA = 0 in$and Qe (35)
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Here the entire formulation can be given as follows:

/ (u curl Ni ccurl 4 + vg div ]\71 ~divA
2

~ N, o0 xcurl A+ Ni-cgradv> dQ =0 (36)

/ (a grad N; - 7 x curl A — g grad N; - grad V) dQ =0 (37)

151

/ (1/ curl ]\71 ccurl A + vo div Nh divA
Qg

—veuwlN; - B, —Ni.L) =0 (38)

Because of the high permeability of the iron parts the
Coulomb gauge is stronger fortified by adding (v div A)
instead of (vdiv 4). So the convergence of the CG proce-
dure is considerably better than in the first two formula-
tion. Velocity effects can be considered well. But like in
section B the accuracy of the results is not as good as in
section A.

D. Fortified Coulomb gauge in moving conductor

In this case the Coulomb gauge is implemented only
in the moving part Q: by adding (gradwo div A) to equa-
tion (15). By additionally enforcing (v div A= 0) onT it
can be similarly shown that the divergence of A vanishes
in Q1:

vwdivA = 0 in (39)

So the entire formulation can be described by:

/ (1/ curl N; - curl A+ v div N; divA
1231

— N o¥ x curl A + Ni‘ogradV) dQ = 0 (40)

/ (a grad N; - ¥ X curl A — o grad N; - grad V) dQY =0 (41)

1931

/ (ycurll\-fi ccurl A — veurl N; ~§r - N, j;) dQY =0 (42)

11

The convergence of the solution process is better than
in the first two formulations so that velocity effects can
be considered. Because of the more accurate formulation
in the non-moving parts the accuracy of the results are
better than in section C. ~

V. RESULTS

The considered mesh of the hybrid levitation magnet
shown in Fig. 2 consists of about 50000 first order tetra-
hedral elements with 10000 nodes and about 32000 degree
of freedoms using the A, V- A formulation. Calculations
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Fig. 4. Absolute value of B at 6 m/s (§ = 0 A)

were done for the 4 formulations once with a permanent
magnet excitation and once with a hybrid excitation with
a total number of ampere turns § = —600A. Fig. 4,5
and 6 show the numerical field solutions of the flux den-
sity value, the resulting eddy currents and the electrical
scalar potential V in the rail. It is recognizable, how the
flux density refuses to follow the excited field and how the
distribution of the eddy currents has to look like to cause
this effect of resistance against changes of the exciting
field. Fig. 7 and 8 display the attractive and braking force
curves calculated by the Maxwell stress tensor for the 4
different gauging methods in the 4, V- 4 formulation com-
pared with a scalar potential formulation, which leads to
the best result in the non-moving case compared to mea-
surements. As pointed out in section 3 only the two 4,
V- A formulations with the fortified Coulomb gauge con-
verge over the full speed range. Formulation III C needs
twice as much CG-steps for each non-linear calculation
step as formulation 11 D, but this formulation impresses
with its accuracy compared to formulation ITI A without
upwinding and Coulomb gauge.
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Fig. 5. Induced currents J in the rail at 5 m/s (§ = 0 A)
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Fig. 6. Electric Scalar Potential V in the rail at 5 m/s (§ =0 A)
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V. CONCLUSIONS

In this paper a complete formulation is given to solve
magnetic moving conductors eddy current field problem
excited by either permanent magnets or electrical source
currents. Dependencies of the convergence and the ac-
curacy on the implementation of the Coulomb gauge are
described. The given formulation with four different gaug-
ing methods was applied to a magnetic levitation system
to compute its electromagnetic field, induced currents and
forces and to compare the different calculation methods.
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