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Unconstrained Optimization of Coupled Magneto-Thermal Problems 
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A bs t r ac t -The  s h a p e  opt imizat ion of coupled 
systems by a gradients-based method is presented. 
The design specifications a r e  in one system, while 
the cri t ical  parameters  a r e  in both systems. The 
method is demonstrated using an  induction heating 
system. The magnetic and thermal  models coexist 
in the same geometry. The  eddy currents  calculated 
from the electromagnetic solution is used a s  the 
thermal  sources  f o r  t h e  t h e r m a l  finite e lement  
analysis. T h e  objective is to  achieve a required 
steady state tempera ture  profile by modifying the 
geometry of the  magneto- thermal  domain .  T h e  
objective funct ion,  defined a s  a funct ion of the 
s ta te  var iab le  t e m p e r a t u r e  is no longer  l inked 
directly to  the design parameters  of the magneto- 
t h e r m a l  s y s t e m  t h r o u g h  t h e  c lass ic  des ign  
sensitivity analysis but  through the “coupled” one. 
The proposed algori thm allows the calculation of 
the gradient  of the object function with respect to 
the design parameters .  

I. INTRODUCTION 

Optimization methods have been successfully developed 
and effectively applied to electromagnetic problems [ 1-31. 
However, the methods developed always deal with single 
systems governed by electromagnetic fields, whereas reality 
forces us to deal with more complex coupled systems where 
two or more physical systems interact. Such coupled systems 
are for example electromagnetic induction heating [4] which 
is used for hyperthermia applications or the surface treatment 
of materials [5], thermoelasticity, etc. In our case, we are 
interested in the electromagnetic induction heating 
phenomenon where the eddy currents generated by an 
electromagnetic inductor are used as the thermal heat sources 
through the Joule effect and more particularly to the shape 
optimization of this electromagnetic inductor to achieve a 
steady temperature profile [5].  For shape optimization of 
single systems, the design sensitivity analysis which provides 
the gradient information needed for the optimization 
algorithm can be obtained directly by taking the derivatives of 
the state variable solutions with respect to the design 
parameters [l-31. For coupled systems such as magneto- 
thermal systems, any changes in the design parameters will 
affect both magnetic and thermal models, and a “coupled” 
design sensitivity analysis is needed to calculate the gradient 
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of the thermal object function with respect to the magneto- 
thermal design parameters. It is based on the coupling scheme 
between the magnetic solution and the thermal solution and 
the fictitious thermal optimization parameters as shown in 
Fig. 1. 

U. COUPLED EQUATIONS ANTl FINITE ELEMENT 
FORMULATION FOR MAGNETO-THERMAL PROBLEMS 

A. Electromagnetic Fields Finite Element Analysis 

The electromagnetic system is governed by the Maxwell 
equations. They lead to the following diffusion-type 
differential equation, describing the electromagnetic fields in 
terms of the magnetic vector potential A [6]: 

aA VX(VVXA)+G-= J 
at 

For 2D electromagnetic field analysis with time-harmonic 
excitation at an angular frequency o , (1) is transformed into 
a complex type equation with the vectors A and J reduced to 
the single components A and J, perpendicular to the plane of 
analysis 161. 

Equation (2) leads to the following finite element complex 
matrix equation 
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Fig. 1. Finite Element Analysis and Optimization of Coupled Magneto- 
Thermal Problems. 

0018-9464/95$04.00 0 1995 IEEE 



1989 

PI{N = {RI (3) 

B .  Thermal Finite Element Analysis 

The thermal system is governed by the following partial 
differential equation expressing the conservation of energy [41: 

where k,and pc are respectively the thermal conductivity, and 
specific heat; and Q, the heat density rate, represents the 
intemal heat generated by the induced eddy currents from the 
electromagnetic system. Equation (4) leads to the following 
thermal finite element matrix equation: 

C.  Coupling Terms 

The electromagnetic system and the thermal one are then 
coupled through the heat density rate Q [4] by the following 
equation 

Q = - -  1 J, . J,’ 
2 0  

where J, and J,* are respectively the eddy current density 
complex phasor and its complex conjugate. 

111. THE OPTIMIZATION METHOD AND DESIGN SENSITIVITY 
ANALYSIS FOR MAGNETO-THERMAL FQOBLEMS 

A. Formulation of the Optimization Problem 

In the optimization of coupled systems such as induction 
heating systems as shown in Fig. 1, the performance 
requirements are described in terms of thermal system state 
variables, i. e. the temperature distribution, whereas the 
design parameters such as geometric dimensions or excitation 
currents are in the electromagnetic system. For example, in 
hyperthermia applications or metal surface treatment systems 
[5], the performances are given by requiring a steady-state 
temperature profile and the optimum coupled system is 
obtained by modifying the geometry or the location of the 
conductive materials in the electromagnetic system [5 ] .  In 
order to achieve the optimum geometry, the design sensitivity 
analysis based on the gradient of the objective function with 
respect to the design parameters is required. It provides the 
quantitative information on how the performance of the 
system is affected by changes in the design parameters. 
Different from other optimization techniques developed for 
single electromagnetic systems [I-31, the design parameters 
for coupled problems have no direct relationships with the 
performance specifications, but indirect ones through the 
coupling scheme (6). Therefore a coupled design sensitivity 
analysis is necessary to link the design parameters to the 
performance requirements. 

Let us select (PI, p2, .., pn) = {p) as the electromagnetic 
system’s design parameters and define the normalized least- 
square objective function F 

F = C  1-- (7) 
k (  

which measures the deviation of the temperature distribution 
Tk, obtained from the resolution of (5 ) ,  from a desired 
temperature configuration Td,k, at the sampling point k. In 
order to couple F with the n design parameters {p) , we have 
to use the fictitious thermal pardeters {q) = (ql, q2, .., & I ,  
defined as the heat change rate per element calculated from the 
eddy currents in conductive materials. The reasons we choose 
the heat change rate per element calculated from the eddy 
currents in the conductive materials, are based on the facts 
that the electromagnetic system and the thermal system are 
coupled through the heat density rate, and any change in the 
geometry of the electromagnetic system will only modify the 
eddy current pattems and theEfore the heat density rate. In the 
case where the geometry of the thermal domain is modified 
during the optimization process by the design parameters (i.e. 
geometric changes in the magnetic domain affect the 
geometry of the thermal domain), the coupled design 
sensitivity analysis can be used by considering these design 
parameters in addition to the fictitious thermal parameters for 
the gradient of the objective function F. 

B.  Coupled Design Sensitivity Analysis 

The gradient of the objective function F with respect to the 
design parameter pi can be then calculated as 

The coupled design sensitivity anaIysis of (8) is 
decomposed into a product of two gradients. Each can be 
easily obtained through the design sensitivity analysis of a 
single system, with relatively small computational effort, 
when the solutions of equations (3) and (5) are available [l-31. 

From (7), taking the derivatives of the objective function F 
with respect to the thermal parameters qj, we obtain 

(9) 

- JTk can be calculated with the solution of the following 
aqj 

matrix equation resulting form the design sensitivity analysis 
of the thermal system. 
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The matrix [MI and the vector { S )  are expressed in terms of 
geometry and physical properties of the thermal model; thus 
their derivatives with respect to any physical parameter can be 
expressed by direct differentiation of the element matrices and 
vectors, without any need for an additional thermal 
computation [ 1-33. Equation (10) can be conveniently solved 
using Choleski decomposition from the solution of (5) [l-31. 

In the same way, - can be calculated using the design 

sensitivity analysis of the electro-magnetic model [ 1-31 
through the following formulation for the heat rate per 
element generated by the eddy currents Je (6). 

'4 j 

a P i  

with 
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J, = J, + jooA (12) Fig. 2. Optimization of Coupled Magneto-Thermal Problem with a 
where JO is the constant source current density. Thus, 
replacing Je with the form of (12) in (1 l), we obtain 

conductor in air. 

B .  Finite Element Descriotion. 
aA' aA -J; %- = om2[ ($ + A) * - + -- (- )] (13) The magneto-thermal model is uniformly meshed with 425 

JPi 2 api api j o o  nodes and 128 elements with field excitation for the conductor 

The superscript * denotes the complex conjugate. 
and 640 elements for the air domain. 

The magneto-dynamic finite element analysis is used to 
aA calculate the magnetic potential A and the eddy currents for 

the magnetic model. The eddy currents are then used as input 
to the steady state heat conduction finite element analysis for 
the thermal model through the Joule Effect. Convection and 

Finally - is obtained through the solution of the 
a P i  

magnetic design sensitivity analysis equation [ 1-31 

[PI{*} a P i  

the radiation phenomenoi are taken to be negligible compared 
to the importance of the heat conduction phenomenon in the 
thermal model. (14) 

In the case where the design parameters modify also the 
thermal domain, as stated above, the thermal design 
parameters are also included and their derivative is respectively 
unity when the magnetic design parameter is the same as the 
thermal design parameter and null otherwise. 

Using (8)-(14) the gradient of F can be calculated, and an 
optimization method such as the conjugate gradient method 
[7] can be used without constraints to obtain an optimum 
design for coupled problems. 

IV. NUMERICAL EXAMPLE 

A. Model Description 

The numerical example of Fig. 2 is used to validate the 
proposed algorithm. A rectangular conductor (with p., = 10, 
CF = 100 kS/m and k = 100 W/m-"C and a current density of 
50 kA/m2 at the frequency of 60 Hz) excites the magnetic 
field. The conductor is surrounded by air (o = 0.0 S/m, 
k = 100 W/m-"C, and its shape must be designed to satisfy a 
constant temperature profile of 160 "C along the line y = 
14.375 cm. 

C. Optimization 

All the nodes on the edge to be shaped (see Fig. 2) with 
their vertical displacements, are selected as design parameters. 
They are represented by small squares in Fig. 3. For the 
magnetic model, there are then 9 geometric parameters. As 
the magnetic domain and the thermal domain are the same, we 
have to consider 9 geometric parameters (the same as the ones 
for the magnetic model) and 128 fictitious thermal parameters 
(elements where there are heat sources generated by the eddy 
currents) for the coupling scheme. The sampling points are 
located on the horizontal line at y = 14.375 cm and 
10 cm 5 x I 20 cm with the desired temperature of 160°C. 
For the optimization process, a Polak-Ribiere conjugate 
gradient optimization method [7] is used. 

D.  Results 

The optimum shape of the conductor as shown in Fig. 3 is 
obtained after 7 iterations and the normalized objective 
function F decreases from a value of 0.24137 at the initial 
shape to 0.00074 at the optimum shape. 
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Fig. 3. Initial and optimum duper  of the conductor 

Fig. 4 presents the temperature profile of the sampling 
points at the initial shape and at the optimum shape where 
the relative error is a maximum of 1.25% at both comers of 
the conductor, regions where the gradient of the temperatures 
is high and therefore more sensitive to numerical error. 
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Fig. 4. Temperature profile of sampling points at initial and optimum rhaps. 

Fig. 5 and Fig. 6 show respectively the magnetic 
equipotentials A and the isothermal lines T at the optimum 
shape. 

V. CONCLUSION 

A technique for the shape optimization of coupled 
magneto-thermal problems is presented and validated with a 
simple but descriptive example. Techniques already developed 
for single systems [ 1-31 can applied to moie complex coupled 
problems by using the coupled design sensitivity analysis 
based on the coupling scheme and the fictitious parameters in 
order to compute the required gradient of the objective 
function. 
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The next step to be taken is to include in the thermal 
model other phenomena such as convection and radiation. 
Using the Wtpaiencc. it is planned to extend this technique to 
include a broader range of objective functions, design 
Parameters.and- - ts. 

Fig. 6. Tmpcntu~e distribution at optimum geanetry. 
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