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On the 3-D Inhomogeneous Induction Heating of a Shell 
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Abstmct-To overcome the difficulty of discretization due to a very 
small penetration depth, the 3-D eddy current field problem is solved 
by the longitudinal component method together with a discrete Fourier 
transform (DIT) in cylindrical coordinates. Galerkin's FEM is ap- 
plied to calculate the 3-D heat transfer in a conducting and permeable 
moving shell. Numerical results are presented. 

reads 

- 8 .  UVT+ c P p v '  V T = q  (3) 
where T is the temperature, K; is the thermal conductivity, 
cp is the thermal capacity, p is the mass density and q 
represents the heat source which results from the eddy 
current loss. To solve the steady heat transfer, a 3-D calcu- 

I. INTRODUCTION 
lation is performed inside the shell and a convenient 
method is Galerkin's FEM [2]. 

A moving steel shell is heated by an eccentric inductor 
idealized as a circular line current as shown in Fig. 1. Be- 
cause the shell moves with a low velocity along its longitu- 
dinal direction, the influence of the velocity-dependence on 

11. ALGOIUTHM 

A. 3-0  eddy current field 

the constitutive relations can be neglected. The elec- 
tromagnetic field due to the inductor current is considered 
as the incident field which be calculated in region 111 

gion 111 is represented as the superposition of the incident 
field and the scattered field. The scattered field in region 
I11 as well as the total field in regions I and I1 satisfy the 

fields with frequency w = 2nf, the phasors B and E (i.e., 
the vectors of complex quantities associated to the 
sinusoidal field components in usual manner) are intro- 
duced so that the source-free Helmholtz equations read as 

(1) 

The components Of both the magnetic and the 
tric field can be expanded into Fourier series with respect 

order harmonics B,,, B,, and E, are of even symmetry 
with respect to 'p while Bpn' Ern and are Of Odd sp- 
metry with respect to 'p. Assuming the shell is infinitely 

(Fig. 1) by means of Biot-Savart law. The total field in re- to Cp. Due to the Of the Problem (Fig. '), the n-th 

homogeneous Helmholtz equations. For time harmonic '0% we the transform (m) with respect to 

m CO 

gzn =SB,,e -Ikddz, E,, =SEm. 'kZdz. (4a,b) 

Applying the FT and the separation of the variables to the 
longitudinal components of (1) and (2), we obtain Bessel 
equations for the transformed Fourier coefficients of the 

- m  -m 

V2B + k 2 B  = 0 

82E + k2E = 0 (2) longitudinal components: 
and 

with k2 = u2p,, E ,  in air and k 2  = - j  up(a + j OC,) in the 
permeable and conducting material of the shell, where p is 
the permeability, a is the electric conductivity, cO is the va- 
cuum permittivity. To avoid the difficulties of discretization 
owing to a very small penetration depth and the open 

preferred. In cylindrical coordinates r ,v, z only the longi- 
tudinal components can be solved by separation of the vari- 
ables. Since the transverse components and the longitudi- 
nal ones are related to each other, the transverse com- 
ponents can be expressed in terms of the longitudinal ones 
[l]. The governing equation of the steady heat transfer 

ZA 

I 3 
I ,I1 111 

shell ,  

boundary in numerical methods, separation of variables is 
c -- ;;-a 
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Fig. 1. 
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In regions I and 111, we have A2 = u 2 h  e, - k," and in re- 
gion I1 A' = - j up ( U + j uq, ) - k," . The solutions of the 
above Bessel equations for the three field regions can gen- 
erally be written as 

gm = C,,J,(Ar) + C,,H,,@)(Ar), 

km = DJ, ( A r )  + D2,H,(2)(Ar) 

(7) 

(8) 

where J, and H,") are Bessel functions with integer order 
n .  In region I, C2, = D, = 0 and in region 111, C,, = 
D,, = 0 must be set. Thus for every n , 8 quantities are to 
be evaluated. The transformed Fourier coefficients of the 4 
transverse components can be expressed by gm and Em 
[3]. The boundary conditions based on the continuity of the 
4 tangential components (Appendix) are established at 
r = r,: 

- 
(9) 

1 -rr -rrr 
-Bm I r = r 3  = B z n  I r = r 3  + Bf: I r = r 3  7 

Pr 
-11 -111 Em I r = r 3  = Em I r = r j  , 

-. -rrr I r = r 3  = Eqm I r = r 3  + Ern I r = r 3  

where the incident field is developed into a Fourier series 
and then transformed. Together with the four analog boun- 
dary conditions at r = rl the above 8 coefficients can be 
determined. Performing the inverse FT, finally the com- 
ponents Er,  E ,  and E, of E are obtained. The electric 
power density in the shell is then calculated by 

p = u(E:+E:+E?).  (13) 

At r = r3 and z = 0 (Fig.1) I B I has its maximum value 
and the nonlinear ,u has to be adapted to this value. 
Therefore an initial value p,?) is set to calculate the eddy 
current field problem, the maximum value of the magnetic 

and choose prisms as finite elements. Therefore 3-D 
Cartesian coordinates are utilized instead of 3-D cylindri- 
cal coordinates. Eq. (3) is multiplied by a shape function 4' 
and integrated by parts: 

where U = c,u is the velocity of the shell. The finite ele- 
ment algebraic equation corresponding to (14) can be ex- 
pressed as the matrix equation 

[ S I [ T l =  [SI (15) 
where [ TI is the vector of the node temperatures, [SI is 
the stiffness matrix and [ Q] is a vector whose entries are 
the power densities of the prism elements used. Because 
the shell moves along the z -axis, the U -dependence makes 
[SI non-symmetric. However, due to the low speed of the 
shell, (15) can be solved by Gauss elimination without nu- 
merical oscillations. 

To consider the T-dependence of IC, l c , ( O ) ,  i = 1 ,  
2, . . . , m ,  are set, where m is the number of elements of 
the shell. After the described computation step of the heat 
transfer problem, according to the distribution of the tem- 
perature obtained and the piecewise-linear property of IC, 
we calculate K;/'), i = 1 ,  2, . . . , m and the average error - 

1 m K;:,) - K;P) 
Q = -  c . If a is less than some permissible 

m ' = I  /Q) 

value, the results are printed, else the iteration procedure 
and the relaxation formula are recalled. According to the 
movement of the shell (Fig. l ) ,  we denote the temperature 
of the part of the shell far in front of the inductor by T, 
while To, denotes the temperature of the part of the shell 
far behind the inductor. The behaviour of U with respect to 
To, can be expressed in piecewise-linear form as 

U = o, ( I -c ,AT)  (16) 
where a, is the electric conductivity at the ambient tem- 
perature T o ,  c1 is a constant and AT = To, - To. In the 
same time, the increase of (T leads to a rise of To, that may 
be approximately described as a linear function: 

To, = C, t c3 U .  (17) 
The ' 2  and '3 are determined by choosing 
two values U ,  and a,. The above nonlinear eddy current 
problem and the nonlinear heat transfer problem are 
solved for a, and a, to obtain the two corresponding To,, 

flux density and the corresponding p,('). If the relative error 
of pr is less than 5%, then go on to calculate the heat 
transfer problem, otherwise an under relaxation formula of 
iteration Pu(i) = o.5(Pu(i -1) + P ( i ) )  is and the eddy 
current field has to be computed again. 

B. Heat transfer and To,, . From (a,, Tom,) and (a2, To,,) one gets c2 and 
c3 from (17). In this case, a can be solved from the two 

According to Galerkin's FEM we discretize the shell linear equations (16) and (l7) to get 'out. 

-- . 
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111. EXAMPLE 

A conducting and permeable shell heated by an inductor 
(Fig. 1) where I = 200 A, f = 100 kHz, the radius of the 
inductor r, = 10 mm, the inner radius of the shell 
r1 = 4 mm while the outer radius is r, = 6 mm and U = 1 
m/s, has been considered. For the calculation, only n = 0 
and n = 1 of the Fourier series are taken since the error of 
neglecting the higher harmonics is less than 5%. The na- 
tural boundary conditions for the 3-D heat transfer prob- 
lem with cp = 464 J/kg. K, p= 7800 kg/m3 and 
Ti, = 20°C are shown in Fig. 2. In order to solve the eddy 
current field problem, the origin of the coordinate system 
is chosen at the center of the shell in the plane of the in- 
ductor where the eccentric distance is a = 3.5 mm (Fig. 1). 
To solve the heat transfer problem in the case of a moving 
shell, the lower end of the shell is placed at z = 0 (Fig. 2). 

The piecewise-linear descriptions used are: 
pr = 100, B =< 0.2T; pr = 120 - c,B , C, = 100/T, 
0.2 T < B =< 1.0 T; p, = 20, B > 1.0 T, where B is the rms 
of B .  oo= 5x1O6SS/m, cl=O.0O21/"C, T0=20"C,  
T <  200°C and K; = 55.4(1-c,T)W/K.m, c4 = 

0.0235/" C, T < 200 " C. 
From the distribution of the magnitude of B along the 

z -axis shown in Fig. 3, the skin effect is evident. The distri- 
bution of the magnitude of E along the z-axis decays as 
shown in Fig. 4. The distributions of the temperature along 
the z -axis and in the p-direction are shown in Figs. 5 and 
6, respectively. Obviously, an inhomogeneous induction 
heating is achieved. 

Iv. CONCLUSIONS 

1. A semi-analytical method for computation of the 3-D 
eddy current field coupled to the 3-D heat transfer is 
presented. The advantage is that all the formulas for the 
field variables are analytically available and there is no dif- 
ficulty with the discretization. 
2. The 3-D steady heat transfer problem is computed by 
Galerkin's FEM considering the movement of the heated 
shell whose speed is less than 10 m/s. 
3.  The results show that with the eccentric inductor inho- 
mogeneous induction heating is clearly achieved. 

h 

v b 

h 
2 
$ a 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I I I I I I I  

1. r=6 mm 
.1: 2. r=5 mm 

. O l  7 

.001: 

z-axis (m) 
Fig. 3. Distribution of the magnitude of the 

magnetic flux density against z 

l o l l  1 

2. r = 5  mm 

,001 

1E-4 1 
al . 0 5  . 1  . 1 5  

z-axis (m) 
Ei 0 '  

Fig. 4.  Distribution of the magnitude of the 
electric field strength against z 

I . , . I . I . I . I . I . I . I . I . l . I . I . I . I . I . I . t . I . I . I . I .  

100 

h 

U 
v 

1. r=6 mm 
2. r=5 mm 
3. r=4  mm 

cp=  0 
60 

40 

2 0 ,  

0 
0 . 5  1 

Fig. 5. Distribution of the temperature against z 
z-axis (m) 

75  : 

J L 

50' 3. r=4 mm 1 
z=0.96m : 

45 -4 

0 . 5  1 1 . 5  2 2 . 5  3 
$9 (radians) 

Fig. 6. Distribution of the temperature against 'p 



3327 

REFERENCES 

L. Gong, R. Hagel, K. Zhang, and R. Unbehauen, "Solution of the 
3-D Helmholtz equation with eddy currents in cylindrical coordi- 
nates by longitudinal Components", IEEE Trans. M a p . ,  vol. 28, no. 
2, pp. 1154-1157, March 1992. 
P.P. Silvester and R. L. Ferrari, Finite Elements for Elecm'cal En- 
gineers, Cambridge: Cambridge University Press, 1992. 
R. Hagel, L. Gong, K. Zhang, and R. Unbehauen, "Ein Verfahren 
zur Wsung dreidimensionaler zylindrischer Wirbelstromprobleme 
unter Verwendung longitudinaler Feldkomponenten", Archw f i r  
Elektrotechnik, vol. 75, pp. 85-93, 1992. 
C.A. Balanis, Advanced Engineering Electrodynamics, New York: 
John Wiley & Sons, 1989. 

APPENDIX UNIQUENESS THEOREM FOR THE 
BOUNDARY VALUE PROBLEM OF THE HELMHOLTZ 

RQUATION IN A CLOSED REGION DIVIDED INTO 
A NUMBER OF SUBREGIONS [4] 

The region G is surrounded by a closed surface S, n is 
the number of subregions G , ,  V,  (i = 1 , 2 ,  . . . , n )  and SI  
(i = 1 ,2 ,  . . . , n )  denote the volume and closed surface of 
each subregion, respectively. S, consists of a part of the 
boundary S denoted as S,, and the interfaces of neighbour 
subregions i and j denoted as S, . m is the number of in- 
terfaces in region G . The medium of each subregion is un- 
iform and the corresponding complex constitutive parame- 
ters are C, = q ' - j  E,", liL, =p,'-j p," and a, . 

Statement of the uniqueness theorem: 

For a time harmonic field, if the source current densities 
J, and the source magnetic current density I,,,, are given 
everywhere in V ,  (i = 1 , 2 , .  . . , n ) ,  n X E  I s,o or 
n X H I s,o are given everywhere at S,, , and n X E I 
and n XH I are continuous everywhere at S,], then the 
solutions E, and H, of Maxwell's equations or Helmholtz 
equations are unique. 
Proof: Assume E,, , H,,  and E,, , H,, (i = 1 , 2 , .  . . , n )  
are two sets of solutions. Each set must satisfy Maxwell's 
equations and the conditions imposed at the boundary and 
interfaces. According to the superposition theorem, the 
difference field 

m, =E,, - E , ,  9 m, = H,, -HI2 7 

must satisfy Poynting's theorem as derived from Maxwell's 
equations in V ,  , providing 

$(AE,XAH,*).n,ds = -J(ju.k,)* I AE, I ,du 
SI VI 

Due to the sources being given everywhere in V ,  , AI, = 0 , 
AI,,,, = 0, so that no term AI, or AI, occurs on the right- 
hand side of (A-1). There are two terms at s,, of the 
neighbour subregions I and k to be considered in the sum 
of the integrals with respect to the m interfaces. Both the 
two normal unit vectors nlk and n,, for neighbour subre- 
gions I and k, respectively, point outwards their own su- 
bregion, nIk = -nk, . Thus the left-hand side of (A-1) is 

f: $(AE,XAHT)-n,ds = f: J(aE,XA€€,*)-n,,ds 
r = l  s, r = l  s,o 

+? s (aEIXAH,* - AE,xAH,*>.n,ds. 
1 slk 

Because the tangential components of E, or H, are given 
everywhere at the outer boundary Si, ,  

nxAE,  I s l o  = 0 or n x m ,  Is,, = 0 .  ( A 4  

According to the continuity of the tangential components 
of the electric and magnetic fields everywhere on the inter- 
face s,, , we have 

xAE, I SN, = xAEk I 
and 

xm, I = xnak I SN, * (A-3) 

Eqns. (A-2) and (A-3) yield zero for the left-hand side of 
(A-1), so (A-1) becomes 

- 5  s(juk,)* I AE, I , d u - i  sjob, I AH, I 'du 
r = l  v, r = l  v, 

-$su,lAE, 1 2 d u = 0 .  
r = l  v, 

(A-4) 

The real and imaginary parts in (A-4) must be equal to 
zero individually, i.e., 

5 Joq" I AE, I 2dv +f: sup:  I AH, I 'du 
r = l  v, r = l  v, 

+ ~ ~ a i I A E i 1 2 d u  = 0 ,  
i = l  Vi 

(A-5) 

$J'uq'IAE, 1 2 d u - k s u & ' I a H ,  I 'du = O .  (A-6) 
1 - 1  v, r = l  v, 

If any one of E,", K'' or a, is not zero then I AE, I = 0, 
I AH, I = 0, or &, = 0, AH, = 0. The uniqueness of the 

subregion solutions is proved. 


