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Calculation of 3D Eddy Current Fields using both
Electric and Magnetic Vector Potential in Conducting Regions
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Abstract—Most papers concerning the calculation of
3D eddy current problems are using a combination of
a vector potential and a scalar potential to solve the
electromagnetic field in conducting regions. This pa-
per presents the ff T formulation using both the mag-
netic vector potential A and the electric vector poten-
tial T for the eddy current regions. Since nodal vector
potentials with continuous normal components have
accuracy problems at interfaces of regions with differ-
ent permeabilities, edge elements are used for both po-
tentials. The advantages of the presented formulation
compared to the mentioned well-known formulations
are described in detail. The formulation is applied on
the computation of the 3D time-harmonic eddy cur-
rent field of an induction furnace and is compared to
other formulations as well. ‘

Index terms—Electromagnetic fields, finite element
methods, eddy currents, numerical stability, induction
heating :

I. INTRODUCTION

For the calculation of 3D eddy current fields mostly-

two different potential formulations have been used. One
is the magnetic vector potential A and the electric scalar
potential V in the 4,V formulation [1], [2], [3], the other is
the electric vector potentlal T and the magnetic scalar po-
tential  in the T', € formulation [2], [3], [4]. To obtain the
uniqueness of the vector potentials in case of the mostly
used nodal elements and to gain a better convergence be-
haviour of the system matrix as well, the Coulomb Gauge
is employed leading to a lack of accuracy in the solu-
tion [5].

Therefore and because continuous nodal elements leads
to numerical problems on interfaces between regions with
different permeabilities edge elements are often employed
for the vector potentials to obtain a better accuracy of
the field solution [6], [7]. But, interpolating the vector
potential with edge elements results in a singular system
(8], [9].

Since the eddy current density J in the A V formula-
tion and the flux density B in the T, Q formulamon are
only numerically but not exactly dlvergence free, the sin-
gular system matrix may collapse [8]. A tree-cotree gaug-
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Fig. 1. Typical eddy current field problem

ing [9] is necessary for the matrix to converge, but results
in a high number of iteration steps and consequently in
an unintentional long computation time. A lot of papers
deal with the described disadvantages of the mentioned
well-known formulation trying to settle these problems
by keeping the given formulations.

In this paper the problems are eliminated by solving
eddy current problems with two vector potentials for both
the magnetic and electric field. The inaccuracy of nodal
elements is settled by using edge elements. Since the re-
sulting singular system leads to a consistent system with
exactly divergence free flux- and current densities a tree-
gauge is not necessary and the system shows a very good
convergence behaviour.

II. CALCULATION METHODS

A. Problem Definition

Fig. 1 shows a simple configuration of an electromag-
netic field problem with one eddy current region. In the
eddy current region )y the following Maxwell equations
are valid:

curl H

= J 1 B _9b
i o curl B T
leB = 0 (2) dlvf — O (5)
B = pH (3 J = oE (6)

In the non-conducting part €5, only equations (2) to (4)
have to be considered because there are no unknown cur-
rents influencing the electromagnetic field problem. In the
following only the potential formulation of the conducting
region {2 is considered.
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B. Common potential formulation

To solve the given Maxwell equations (1) to (6) for the
eddy current region {; mostly one vector potential (3 de-
grees of freedom (DOF)) and one scalar potential (1 DOF)
are combined to a potential formulation. If the magnetic
vector potential A with curlA Bis chosen, the poten-
tial equations result in the A V formulation:

curl v curl A — grad v div A + a%é +ogradV = 0 (7)
A -
div (—U%t— —ograd V) = 0 (8

If the electric vector potential T with curl T = Jis cho-
sen, the potential equations result in the 7', © formulation:

o0 -
—ugrada = 0 (9)

0 (10)

curl 1 curl T — grad 1 divT + uB_T_
o o ot
div (,u,f — pgrad Q)

il

Whereas in the A,V formulation the magnetic field
given by B depends only on the derivation of a vector
potential, the electric field given by J depends on a non-
derived vector potential and the gradient of a scalar po-
tential:

B =curl A J=-0o A—ogradV

0
e (11)

In the 7', Q formulation as well the electric field given by J

depends on the derivation of a vector potential, the mag-
netic field B depends on a non-derived vector potential
and the gradient of a scalar potential:

J = curl T B = uT — pgrad Q (12)
But this unsymmetrical fact is not necessary to solve the
symmetrically looking Maxwell equations (1) - (14) for
the conducting regions.

C. The presented A, T formulation

In this paper a much more symmetric potential formula-
tion for region Q0 is presented by using the same potential
derivation for the magnetic and the electric field together
in one region.

— —

B=curlA J=curlT (13)
This potential set-up results in the presented f-f, T for-

mulation, which looks much more symmetric than the
common formulations:

L

curlveurl 4 — curlT = (14)

(=1}

1 = 8A
1—curlT ] — =
curl ~ cur + cur 5 (15)
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D. Numerical Implementation

Applying the Galerkin weighted residual method to the
potential formulations given in (14) and (15) leads to:

/ (ﬁ@ curlvcurl A — N; - curlf) a2 = 0 (16)
851

o 1 = 0A N
(N,- - curl p curl T + N; - curl (9—) a = 0 (17)
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Using vector identities and Gauss’ theorem as well as
defining the T = —%—‘f as the negative time derivative of
7', equation (16) and (17) result in a symmetric equation

system:

/ (chrlﬁi -curl A + N; - curl 66_’1') e = 0 (18)
2
R aT - 04 <
/ (— p curl N; - curl B + curl V; - —a—t) a = 0 (19)

™

In principle this formulation can be applied as well on
nodal as on edge elements and for any kind of geometry
(hexahedrons, bricks, pyramids).

Because of the numerical inaccuracy of nodal elements
and to save the disadvantage of 6 DOF for each node,
in this paper linear edge based_tetrahedral elements are
used, which 2 DOF for A and T on each edge. With the
presented formulation all types of eddy current regions
(current driven coils, open or short conductors) can be

considered.

3 4

A@y2) = Y. Y @dy (20)
i=1 j=i+1l
3 4

T(ey,2) = 3, &Ts (1)
i=1 j=i+1

with @&; = N;VN; — N;VN; (22)

III. APPLICATION

A. Comparison of the potential formulations

Fig. 2 displays a simple test model for the compari-
son between the well-known A — A,V potential formula-
tion with nodal elements and the presented edge based
A- A T formulation. It consists of three conducting re-
gions of copper (o = 5.7-107 Sm™"') between two iron
yokes (pr = 1000, V = 100-55 - 100 mm?®) in a homoge-
neous magnetic field of 50 mT (4000 Hz) in y-direction.

Because of the symmetry only one quarter of the model
has to bo calculated. The first conductor in the middle
(d = 10 mm) is considered to be short, the second con-
ductor (d = 10 mm,r = 20 mm) is an open coil and the
third one (d = 10 mm,r =40 mm) represents a_current
driven coil (I =40 A). The mesh consists of 1st order
tetrahedral elements.
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Fig. 2. Test model

Table I compares the two computation methods con-
cerning some mesh and solving data. In the presented
edge based formulation the number of DOF is more than
2.6 times higher than in the nodal based A- A V for-
mulation. A factor of 2 results by the fact that there are
more than 6 times more edges than nodes in a tetrahe-
dral mesh, but there are 3 DOF per node instead of one
per edge for the vector potential A. The reason for the
rest of the factor 2.6 is, that there are more unknowns in
the conducting region taking the edge based electric vec-
tor potentials T instead of the nodal based electric scalar
potential V.

But in the case of edge elements the matrix is much
sparser (48 < 94, 0.112% < 0.568%), so that the number
of non zeros has only a factor of 1.3 between the 2 formu-

TABLE I
Comparison between the two formulations
Formulation A- ff, T A- /T, 14
Nodes 4820 4820
Elements 24902 24902
Edges 30701 30701
Order 1 1
numbaor of DOF 12047 16568
Non zeros 2083246 1557490
Matrix density 0.112% | 0.568 %
Average columns per line 48 94
Solver , ICCG ICCG
number of ICCG steps 81 78
CPU time (HP J280) 399 s 297 s
Power loss conductor 1 144 W 104 W
Power loss conductor 2 212 W 232 W
Power loss conductor 3 333 W 399 W
Accuracy + —

-.178637
-.161174
-.143711
—-.126248
-.108785
—-.091323
- —.07386
—.056397
-.038934
-.021472
~.004009
.013454
.030917

Fig. 3. Flux density B (T) in y direction (E — A, T formulation)

-.149031
~.134449
~.119867
~.105285
~.090703
-.076121
~.061539
~.046957
-.032375
-.017793
~.003211
01137
.025952

Fig. 4. Flux density B (T) in y direction (4 — A,V formulation)

lations. The sparseness of the matrix is one of the reason,
why the edge based A — 4. T formulation hac a cimilar
good convergence behaviour (81 compared to 78 ICCG
steps) like the A- A V formulation with implemented
Coulomb gauge.

However, the main advantage of the presented formu—
lations is the accuracy of edge elements which produces a
much better result on iron-air interfaces than nodal ele-
ments without free normal components do. Fig. 3 and 4
show the differences in the y-component of the real part
of the flux density B on the iron interfaces. Fig. 4 be-
longing to the nodal A- fT, V formulation with Coulomb
gauge shows a wrong field solution on the iron interfaces,
which also leads to mistakes in the complete distribution



and in the loss power of the three conduction regions (see
Table ). :

The other advantage is that the presented formulation
results in a consistent matrix system, so that a tree-cotree
gauge is not necessary and the matrix demonstrates a very
good convergence behaviour.

B. Computation the power losses of an induction furnace

Finally the presented formulation is applied to the cal-
culation of the electromagnetic eddy current field of an
induction furnace shown in Fig. 5. A water cooled copper
coil causes a time harmonic field of 500 Hz which leads
to high eddy currents in the melt. The surrounding yokes
insure, that the magnetic flux is directed close to the coil,
and reduce the magnetic flux leakage.

It is important that the power efficiency of the furnace
is very high. So the loss power of each turn of the coil
displayed in fig. 6 is of high interest.

Fig. 6 states, that the 3D calculation gives similar re-
sults compared to the axially symmetrical 2D calcula-
tion, which shows that the accuracy of the 3D presented
A, T formulation is just as good as we know it from 2D
calculation and that the influence of the non axially sym-
metrical yoke can be nearly neglected.

IV. CONCLUSION

In this paper the f_l', T formulation for 3D eddy cur-
rent problems based on edge elements is presented. The
results agree well to other computation methods. The ad-
vantages of the presented formulation to other well-known
potential formulations are detailed described. Finally the
formulation is compared to other formulations and applied
to the calculation of an induction furnace.

Fig. 5. Structure of an induction furnace
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Fig. 6. Loss power of each turn
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