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Absrrucr - The numerical and experimental studies on 
induction heating of continuously moving strips in transverse 
field are presented in this paper. The induced eddy current and 
its coupled thermal field in moving media is computed with FEM. 
The adopted mathematical model consists of a Fouriers thermal 
conduction equation and a set of differential equations, which 
describes the steady-state eddy current problem in a configura- 
tion comprising a magnetic vector potential and an electrical 
scalar potential. The calculated results are in good agreement 
with the measurement. 

Index Terms- Transverse flux, FEM computation, Induction 
heating, Eddy current, temperature field, 3D, Moving object 

I .  INTRODUCTION 

Induction heating processes for heating plates and strips 
provide significant technological, economic and ecological 
advantages in comparison with conventional oil- or gas-fired 
plants: fast heating rate, instant controllability, high efficient 
and minimal environment pollution. Because of skin effect 
the induction heating in a longitudinal flux is limited only for 
electric thick plate. The limits are lifted by the transverse flux 
induction heating(TF1H). In TFIH the eddy currents induced 
in the workpiece close within the workpiece surface. The 
frequency used here must be matched to the size of the 
workpiece if power is to be transferred efficiently from the 
induction coil. To achieve a completely uniform temperature 
across the entire strip width is consequently a critical factor 

Fig. 1 .  Experimental model (I Inductor ; I1 Workpiece; 
I11 Measurement instrument) 
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in the development of a practical TFIH. The design of the 
TFIH equipment necessitates accurate process performance 
prediction for the thermal characteristic particularly in large 
scale equipment with more than several MW power energy 
consuming. This simulation is only possible with 3D eddy 
current computation coupled with thermal and mechanical 
force field. A 3d FEM multi-field simulation is used for 
developing such equipment. 

11. MATHEMATICAL MODEL 

The problem considered here is that of eddy current at 
low angular frequency w .  The displacement currents are ig- 
nored. magnetic permeability ,U and electric conductivity 
K are assumed to be constant over a long period. The 
mathematical model for this sinusoidal quasi-static eddy 
current problem results from the Maxwell equations and the 
complex magnetic vector potential A and a complex 
scalar potential 4 

- 
- 

- 
rot (:rot 2) - 3 x V x 2 + j C D K ( ~  - grad - 4) = K E ~  (1) 

div(v’ x V x 2 - j W K q  + W K  grad 4) = 0 ( 2 )  

- 3 0  is the electric field field strength impressed by the 

The eddy current density is computed as follows, 
- j = v’ x v x 2 - j m K 2  + W K  grad - 4 + K Z ~  

- 

power source. 

(3) 
The influence of the movement of strip to the magnetic 

field distribution(by velocity C>1.0 m / s )  is very small and 
can be neglected. 

The current density determines the heat source 
distribution: 

Pv = K 1112 (4) 

The temperature field S(x,y,z) is computed based on 
the Fourier’s thermal conduction equation, 

a(c’p’9) = div (2 grad 9) + p v  - v’grud(c,p,$) (5) at 
where 2 is the thermal conductivity coefficient, c is the 

specific heat, p is the mass density and 3 is the strip 
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velocity. The coefficient A and c are dependent on the 
temperature. 

The two field, the electromagnetic field and temperature 
field, which becomes steady-state at the constant velocity, are 
coupled via the dependence of temperature of the electrical 
conductivity and the magnetic permeability. By the practical 
computation a compromise has been made between the exact 
wished and the time saving computation. 

Forces-which c~ be calculated using the computed field 
variables A and J act through the electromagnetic field 
on the strip. Only the Lorentz force acts on a non- 
ferromagnetic workpiece. The force P " related to the unit of 
volume can be split into a mean value and a portion 
oscillating at twice the inductor current frequency. 

Fv = R e  J x ( r o t A )  + ( ? x r o t ~ ) c o s ( 2 o t )  (6) (- - *I 
In the case of ferromagnetic workpieces, interfacial forces 
$ A  are also effective. Assuming that the permeability of the 
workpiece p is much greater than that of air po ( p  >> po)  , 
FA - t i l  =-(-(..I a)', + q r o t  2);) ( 1 +  c o s ( 2 m t ) )  (7) 

2 P o  P 

111. BOUNDARY CONDITIONS 

The computation of the electromagnetic field by 
approximation is performed on the basis of the finite element 
method. The Galerkin method is applied to the differential 
equations (1) and (2). An illustratively model of the designed 
finite element mesh is shown in fig. 2. In order to decrease the 
computation time, the real investigations were made with a 
quarter of this mesh. If you look at fig. 2,  you can easily find 
two additional planes of symmetry, situated in the middle of 
the strip (x-y plane) and in the middle of the inductor-yoke 

- 
Fig.2. Inductor of the TFIH equipment with meshes 

combination(y-z plane). By using of the given boundary and 
symmetrical boundary conditions, we can work with this 
quarter part. 

The related boundary and symmetry conditions are 
considered. In the x-z and the y-z symmetric planes, the 

electric current density is oriented perpendicular to these 
planes. Hence the tangential components of the magnetic 
vector potential A and the scalar potential 9 are: 

- 
- 

on the x-z plane: - - 
4, =Az = O  (8) 

p=O - (10) 

(9) 
a i  

--y = 0 
BY 

and on the y-z plane - + 

A =AZ=O -Y 
3ax - 0 (12) 

- ( p = O  (13) 

- A ,  = O  (14) 

B X  

On the x-y symmetrical plane, the current density has no 
perpendicular component, hence - 

- = o  
d Z  

The present problem has an open boundary condition 
because the vector potential disappears only in the infinity. 
With the aids of comparative computations, an enveloping 
surface can, however, be determined for which the condition 

is valid within a defined upper limit of error. 
The temperature field must only be computed for the 

workpiece. The boundary condition on the entering side of 
the strip is 

- i = O  (17) 

S ( X , Y , Z ) ~ ~ ,  = ~ o ( x , y , z ) l r ,  (18) 

where $0 is the ambient temperature. Because of the 
mass-bound heat transfer in the direction of the velocity v' , 
there is no y-z symmetric plane. The heat source density in 
newly added area can be obtained by reflection at the y-z 
plane or by separated computation for a corresponding 
temperature distribution. Thermal losses by convection and 
radiation on the strip surface are also considered. 

The boundary condition on the strip surface is: 

On the exit side 

d X  

is indicated. 
Thermal losses by convection and radiation on the strip 

surface are considered with the Cauchy boundary condition. 
il grad9.n' = a(90 - 9) (21) 
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where a is the heat transfer-coefficient for convection 
and radiation, and 9 0 the ambient temperature respectively. 
Therefore the computation of the temperature field of the 
moving strip could be done advantageously on the basis of 
particular grid. The distribution of heat sources, in form of 
node values, is transferred to this new grid from the old grid 
by means of the shape functions. The influence of the velocity 
destroys the coeEcient matrix symmetry of the equation 
system. Test computation reveals that a better stability is 
obtained by transient computation, wherefore the Crank- 
Nickelson method is applied. Convergence problems at an 
increasing velocity are eliminated by adopting shorter time 
steps. 

Iv. RESULTS 

The numerical method presented here was verified by 
measurements on an experiment installation for homogenous 
preheatingheheating of strips [2],[4]. The inductors of this 
installation are arranged according to Fig. 1. The calculated 
eddy current distribution on the strip surface is illustrated in 
Fig. 3. Because the depth of current penetration is much 
greater than the strip width, a similar eddy current distribution 
will also occur in the deeper layers. 

. . . . . . . . . . .  

. . . . .  

Fig. 3 Eddy current distribution on the strip surface (half) 

The TFIH is widely used to make a uniform temperature 
distribution by the continuously strip heating. The long side 
of the inductor protruding beyond the strip edge lead to 
overheating. The short side of the inductor result in a 
temperature decrease. Joint application of both effects results 
in a multitude of feasible combinations going from extreme 
edge overheating to undercooling. With an optimised design, 
they can also result in almost homogenous temperature 
distribution across the strip width. 

strip 

Fig. 4. Distribution of heat source density in the workpiece. 

Fig. 5 shows the temperature distribution resulting 
from the reflected heat sources distribution as per Fig. 4 in the 
steady-state situation. The computed results are confirmed by 
temperature measurements performed with an infrared camera 
shown in Fig. 6.  

Fig. 5 .  Steady-state temperature distribution on the strip surface 

The presented accurate numerical model permits finding 
an optimal design by variation without having to perform 
high-cost time-consuming experiments. The design sought 
can, for instance, be the one which, at a specified distance “a” 
(Fig. 1) from the last inductor, results in a temperature 
distribution 9(y,z) with the restriction 

If further latitude for variation remains on fulfilment of this 
requirement, the task of optimisation can be extended to 
include low energy consumption or a high over efficiency 

q =  q i n  ‘ q e l  ‘ q t h  --$ max (23) 
The efficiency of frequency converter, resonant circuit 

and supply conductors qin is generally independent of the 
TFIH inductor design. However, the product of the electric 
and thermal efilciencies e e  . th essentially depends on 
the design. 
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Fig 6. Temperature distribution across the stripwidth at the outlet side 

The computed results shown on the laboratory model are 
confirmed by temperature measurements in fig. 6. The close 
agreement verifies the accuracy of the models above. 

V. CONCLUSION 

Induction heating found more and more application in the 
metallurgy industry. Electromagnetic processing of materials 
can brings new world not only for new technology, but also 
for new materials. The simulation is necessary and p 
with 3D eddy current computation coupled with thermal and 
mechanical force field. 
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