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On the Nonlinear Eddy Current Field
Coupled to the Nonlinear Heat Transfer
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Abstract - A semianalytical algorithm including the Fourier trans-
form, the quasi-Newton iteration and Galerkin’s finite element method,
has been developed to solve the eddy current field problem and the cou-
pled heat transfer problem in the presence of a metallic slab. The field-
dependence of the magnetic permeability and the temperature-
dependence of the electric and thermal conductivities of the heated slab
ble and ¢ with

the real operation conditions in the industrial processing.

are considered. The results obtained are r

I. INTRODUCTION

Metal parts are often hardened by high frequency induc-
tion heating where the frequency is about some hundreds
of kHz. The governing equation of the concerned eddy
current field problem is [1], [2], [3]
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where B is the magnetic flux density, (=, 14, is the mag-
netic permeability, € is the permittivity and o is the electric
conductivity. The governing equation of the heat transfer
reads
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where T is the temperature, £ is the thermal conductivity,
¢, is the thermal capacity, p is the density and ¢ accounts
for the heat source which results from the eddy current loss
in the heated slab.

This paper considers the field-dependence of the mag-
netic permeability and the temperature-dependence of the
electric and the thermal conductivities of a heated slab. To
avoid the discretization in dealing with a very thin penetra-
tion depth and an open boundary, the nonlinear eddy
current field is calculated by the Fourier transform with a
precondition and the quasi-Newton iteration.

The temperature-dependence of «(T) and o(T), and
the nonlinear magnetic reluctivity v=1/ are approximat-
ed by piecewise linear functions.

II. ALGORITHM

1. The quasi-stationary eddy current field is assumed as
in the steady state and therefore described by phasors. For
the 2-D rectangular coordinate case, (1) can be written as
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The arising boundary value problem can be solved by
separation of the variables. The space may be divided into
three regions I, IT and IIT according to the electromagnetic
property of the medium shown in Fig. 1. Because the
length of the slab is infinitely long, the Fourier transform
(FT) is applied to the 2-D boundary value problem.

The Fourier transforms of B, and B, are [4]
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The FT of (3) and (4) can then be written as
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The solutions of the above equations provide together with
the incident field the total field as
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where
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and B” and 5,‘" are the transformed incident field com-
ponents. Substituting (7) and (8) into the Fourier
transformed Maxwell equation V- B =0, it is found that the
relations
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between by, b,, ¢, and ¢, must hold. From the geometry
shown in Fig. 1, the boundary condition equations can be
established to determine the integration constants.

According to Maxwell’s second equation, it is known
that in the 2-D case
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Substituting (5) and (6) into the Fourier transformed equa-
tions (9), E, can be obtained
E=Er+ 25 (10)
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It is convenient to determine the transforms of the incident
field components and those of the scattered field by means
of the discrete Fourier transform (DFT). By applying the
inverse discrete Fourier transform (IDFT), the rms of the
electric field strength can be obtained. The formula for the
power density P which is the source of the heat transfer of
the induction heating in the slab reads

P=0E? (12)

where E, is the rms.
2. To take into account the temperature-dependence of
the electric conductivity, the average temperature of the
slab is taken to calculate the electric conductivity of the slab
according to the piecewise-linear characteristic curve of the
conductivity via the temperature. At x =0, y =d there is
the maximum magnetic flux density from which the mag-
netic reluctivity is computed as follows:
* Precondition: According to the given magnetic permea-
bility values the corresponding magnetic flux densities are
calculated by means of DFT and IDFT to obtain the load
line which is expressed as
a

V= e

B (13)

where B is the the magnetic flux density rms for x =0,
y=d, v=1/u and a, is piecewise-constant. The
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piecewise-linear curve of the magnetic reluctivity via the
magnetic flux density rms is described as

v=a, +a;B (14)

where a, and a, are piecewise-constants,
* Quasi-Newton iteration [2] is applied to search the inter-
section of (13) and (14).

The advantages of the quasi-Newton method are its sim-
ple programming and its high speed of convergence, for in-
stance, after less than 10 iterations the solution error is less
than 5% as computation experiments have shown.

3. Heat transfer
Because the DFT limits the length of the slab, the heat
transfer of the slab can be calculated by means of the FEM.
The backward Euler scheme for the heat transfer (2) reads
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According to Galerkin’s FEM, (15) is multiplied by the
shape function ¥ and integrated by parts:
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where () is the field domain, ¥ is a linear shape function,
9Q) is the boundary of the field domain () and 2 is the unit
vector outward normal to the boundary.

The finite element algebra equation corresponding to
(16) can be expressed by means of the matrix equation

s, 1+ o5 D - o) 1)

where [S, ] and [S,] are stiffness matrices, [T"] is the vector
of the node temperatures for the n -th time step and [Q] is
a vector whose entries are the average power densities of
the three nodes of the triangular elements used for the -
discretization.

The time step of the transwnt calculation is evaluated -
from the temperature-dependence of the thermal conduc-
tivity. The thermal conductivity can be expressed as

K=a +bT (18)
where @ and b are piecewise-constant. According to the
permitted error of x due to the change of the temperature
a vector [AT] can be given. In (17) [7™] is known, set
[T"*!] according to

[T"1) < [17] + [AT],
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then the matrix [S, ] influenced by the thermal conductivity
can be calculated. For the i -th equation of (17) a value of
At; can be derived. Let the vectors

W1=1e]- 11,
V] = ¢, pS:)(T"*'] - [T"])

and
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where u; and v; are the i -th entries of [U] and [V], respec-

tively. Taking the average value of them yields an upper
bound for the time step A¢:
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where 7, is the number of the elements. The time step can

be taken equal to or less than A, . Thus the time step can be

estimated, provided that the thermal conductivity has no

evident change in this time step, that means the transient

can be calculated step by step without iteration.

4. Iteration loop for the coupled fields

(i)  The initial condition T (x,y,0) = T, is given, calcu-
late the loss of the eddy current field.

(ii) By the loss, the new temperature can be computed
for a time step.

(iii) Taking the average value of the new temperature as
the temperature of the slab, the loss of the slab can
be calculated again.

(iv)  Calculate a new time step, if ¢ <, go to (ii).

III. EXAMPLE

An infinitely long steel slab is heated by an inductor
(Fig. 1). The boundary conditions for the 2-D heat transfer
are shown in Fig. 2. In order to calculate the eddy current
field by the DFT, the origin of the coordinate system is
chosen at the center of the inductor. To calculate the heat
transfer of the slab, the y-axis is moved to the left end of
the slab. The eddy current field problem is solved in the
whole space by applying the DFT, while the heat transfer is
evaluated in the heated slab.

The temperature responses at x =0.5/ and x =/ of the
surface of the slab are shown in Fig. 3. The scattered elec-
tric field strength has an odd symmetry with respect to the
x -axis of Fig. 1 shown in (10). In the middle of the slab the
temperature increases slowly. This phenomenon is shown
in Figs. 3 and 4 where the temperatures at the left and right
ends have the highest values. In Fig. 4 the temperature
difference between the surface and the center of the slab is

about 15° C. The difference between the highest value and
the lowest value along the x -axis is about 22° C,

Based on the calculations of the magnetic flux density in
the whole space, the equivalent circuit inductance has been
computed, and the resonance capacitance of the oscillator
has been determined. The calculated inductance L is
113.35 4 H and the required capacitance C is 22.37nF,
which is consistent with the capacitance of a real oscillator
operating in our industrial application, and shows the vali-
dity of the proposed model and the algorithm.

IV. CONCLUSION

(1) A semianalytical algorithm for the solution of the
eddy current field problem coupled to the heat transfer
problem is presented. The advantage is that all the formu-
las for the field variables are analytically available and that
there is no difficulty with the discretization due to the very
thin penetration depth and the open boundary.

(2) The nonlinear heat transfer is computed by
Galerkin’s FEM together with the backward Euler scheme
where a criterion of the time step is suggested.

(3) The results show the temperature response at the
surface and the local distribution of the temperature along
the x -axis. Because the scattered electric field strength is of
odd symmetry to the x -axis shown in (10), both the eddy
current density and the temperature are lower in the mid-
dle part of the slab. In the y-direction the temperature at
the surface is higher than the temperature at the center of
the slab. The difference between the temperature on the
surface and the temperature at the center of the slab is
determined by the cooling condition of the slab.
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Fig.1 Inductor and slab
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Fig.2 Boundary conditions of the heat transfer
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