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Abstract - To control the shape of the free surface of
a molten metal in a cold crucible is very important for
obtaining a good product. In this paper, an -inverse
problem in which the currents in the induction coils are
to be calculated to obtain the given free surface of a
molten metal in a cold crucible is solved by using the
boundary integral equation method and the least square
method.

I. INTRODUCTION
The schematic view of cold crucibles is shown in Fig.

1. There are two types of the problem of the free sur-
face of a molten metal in a cold crucible. The first is:

The direct problem, to. calculate the free surface
given the coil currents[1],[2],[3],

and the second is:
The inverse problem, to calculate the coil currents

given the free surface.
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Fig.l Schematic view of cold crucibles

(a) continuous casting type, (b) batch type

Inverse problem methodology is important in engineering
design[4]. In this paper, the inverse problem stated
above is solved by using electromagnetic and hydrodynam-—
ic equations and the least square method.
II. THE INVERSE PROBLEM
In this chapter, the inverse problem is solved under
the following assumptions:

(1) The molten metal is axisymmetric.

(2) The magnetic field does not enter the molten metal,
or the normal component of magnetic field intensity
is zero at the free surface of the molten metal.

(3) The surface tension of the molten metal is negligi-
ble.

(4) The fluid flow of the molten metal is negligible.

The shape of the given free surface is as shown 1in

Fig.2. Let the free surface be written as:

r=r(z), z; £z<z (¢D]
The liquid pressure at the point P(r(z),z) is given as:

ps(r(2),2) = pglzy - 2) (2)
molten metal and

where o and g are the density of the
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the acceleration of gravity, respectively. The magnetic
pressure at the point P(r(z),z) is given as:
pn(r(2),2) = [B(x(2),2)]1*/2y, 3

where B and yy are the magnetic flux density and the

permeability of free space, respectively.
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Fig.2 A given free surface
B is calculated from the magnetic vector potential as:

B=VxA (v

-A=0) (4)

The magnetic field equation in free space is written in
terms of the magnetic vector potential as:

V2A + pgdg = 0 (5)
where Jg is the coil current density. The boundary con-
dition for A = [Ar, Ag, Az] = [0, Ag, 0] is given as:

Ag =0 at the free surface, (6)

since the magnetic flux does not exist inside the molten
metal. In this paper, A is calculated by the following
boundary integral equation. (For the details of the
boundary integral equation method, refer to [5].)

1/2 A0 = [, wodo(x")/Gnlz - £'[) a2’

- [ A -8[1l/ Gz - £'[)]/em ar

+

[ 3" /e 1/ (r|x - x' ) ar

=[x, y, 2]l eT (7)

In

where Q and T denote free space and the free surface of
the molten metal, respectively.

In equilibrium, the following relation is establish-
ed:

ps(r(2),2) = pm(r(2),2), or

pg(zy - z) = [B(r(z),2)1%/2yy (8)

Since the system is linear and the boundary condition
is homogeneous (see (6)), the idea of the transfer func-
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tion is conveniently introduced to the inverse problem.
Let 2(i,j) be the transfer function between B(r(zi), zi)
and the j-th coil unit current. Then, the coil currents:
I1,I2,--=,IN produce the magnetic field:

N
B(r(zi),24) = ] 2(i,1)Ij, i =1,2,-—,M (9
j=1

where N is the total number of the coils, and M is the
total number of the points where the magnetic field in-
tensities are evaluated. Combining (9) with (8) and us-
ing the least square method gives the coil currents: I,
I2,---,IN.

The computed results for the case of N = 8 and M = 80
are shown in Table 1 and Fig.3, and the computed results
for the case of N = 15 and M = 80 are shown in Table 2
and Fig.4. The physical properties used are as follows:

H/m,

zp —2z) =5 X 10“2 m

p=2.3x 103 kg/m3 o = 4T X l0_7

rg = 2.5 x 10_2 m,

Table 1 Computed coil currents for
the configuration with 8 coils
Coil No. Coil current [A]

1 620.2

2 -79.3

3 90.8

4 215.0

5 420.9

6 366.7

7 293.0

8 1659.5

z z
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Fig.3 Computed coil currents for
the configuration with 8 coils

As is seen from the computed results, it may be im—
possible to realize the given free surface shown in Fig.
2 by using the configuration with 8 induction coils. On
the other hand, it may be possible to realize it by us-
ing the configuration with 15 induction coils.

IITI. MODEL REFINEMENT

In the preceding chapter, the surface temsion of the
molten metal is neglected for simplicity. However, the
surface tension plays an important role for shaping the
free surface of a molten metal. In this chapter, the
surface tension is taken into account. Egs.(2) -and (8)
are changed to the following:
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Table 2 Computed coil currents for
the configuration with 15 coils

Coil No. Coil current [A]
1 1591.6
2 -1344.5
3 471.2
4 ~3.5
5 -23.4
6 117.6
7 112.1
8 133.4
9 229.3

10 191.0
11 194.4
12 233.0
13 322.6
14 -265.0
15 4002.5
z z

s
w000

Fig.4 Computed coil currents for
the configuration with 15 coils

ps(r(z),2) = pglz, - z) + p* @'

ps(r(z),2) = pm(x(2),2) = t[1/R{(x(2),2)
+ 1/R,(x(2),2)] (8’

where R; and R, are the principal radii of curvature of
the free surface and are expressed as follows:

1/R; + 1/R, = -d/dz[(dr/dz‘)//(l + (dr/dz)?)]

+ (1/x)/V(1 + (dr/dz)?), . (10)

and T is the surface tension. p* in (2)' is a conmstant
and is determined by (8)' since R; and R, are known im
the inverse problem. (As is shown in the .last section
of this chapter, the determination of p* is complicated
in the direct problem.)

Since the surface témsion has a self-regulation func-
tion, the refined model using the surface tension equa-
tions improves the computed results - obtained. by the
simple model described in the preceding chapter. Fig.5
(a) and (b) denote respectively the computed results by:
the simple model and the refined model for the configu-
ration with 8 induction coils. Fig.6 (a) and (b) dencte



1564

respectively the computed results by the simple model
and the refined model for the configuration with 15 in-
duction coils.
The computation procedure using the refined model is
as follows:
(1) The induction coil currents: I]1,I2,--—,IN obtained
by the simple model are used without any change.
(2) Calculate the shape of the free surface using
(2)", (8)' and (10).
(3) Calculate the magnetic pressure at the updated free
surface using eqs.(3),(4),(6) and (7).
(4) Iterate the processes (2) and (3) until the shape of
the free surface converges.

eqs.

T T T T T T T
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Fig.5 (a) Computed result by the simple model
for the configuration with 8 coils
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Fig.5 (b) Computed result by the refined model

for the configuration with 8 coils

In comparison with the inverse problem, consider the
direct problem defined in chapter I. The mathematical

model for the direct problem is derived from . eqs.(2)',
(8)' and (10) as follows:
dr/dz = w/V(1 - w?), (11)
dw/dz = [V(1 - w*)]/r - [pg(z, - 2) + p*
- pm(r(z),2)]/1 (12)
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Fig.6 (a) Computed result by the simple model

for the configuration with 15 coils
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Fig.6 (b) Computed result by the refined model

for the configuration with 15 coils

where w = (dr/dz)/V/[1 + (dr/dz)?]. The boundary condi-
tions for eqs.(ll) and (12) are given as:
r(z)|z = 0 = r; (not known in advance), (13)
W(Z)lz =0 = 0. (14)

r; in (13) is iteratively determined such that w(z) sat-
isfies w(z;) = -1. p* in (12) is iteratively determined
such that the mass of the molten metal coincides with
the given mass. The magnetic pressure pp in (12) depends
upon the shape of the free surface. The shape  of the
free surface is iteratively updated until the converged
shape is obtained. Therefore, the direct problem has
three iteratively determined parameters, while the in-
verse problem has only one iteratively determined param-
eter. An example of the computed result for the direct
problem is shown in Fig.7. The molten metal used is iron
and the assumed initial shape of the free surface is a
sphere.

Note. There may exist a fluid flow inside the molten
metal, and it may be expected that the velocity of the
fluid flow is very small as long as a stable free sur-
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face 1s maintained. Assume that the fluid flow is a
steady flow. The fluid flow is expressed by the Navier-
Stokes equation[6] as follows:

(v -v)v = [F-Vp+nWyl/p (15)
where v, F, p, and n are the velocity, the volume force
, the dynamic pressure, and the viscosity, respective-

ly. The calculation of the fluid flow has not been car-
ried out yet.

(em) z

| molten metal
(iron)

Fig.7 Computed result for the direct problem

Note. The operating frequency of a cold: crucible.lies

between 10 kHz and 100 kHz, and the corresponding skin
depth lies between ! mm and 0.3 mm. Therefore, the as-
sumption (2) in chapter II may be valid.
IV. CONCLUSIONS
In this paper, an inverse problem of the free ~sur-

face of a molten metal in a cold crucible is solved by
using the boundary integral equation method and the
least square method.

To formulate the problem of the free surface as an
inverse problem may be promising since - the inverse
problem has less iteratively-determined-parameters than
the direct method. The inverse approach may be consid-
ered to be complementary to the direct approach. By
combining the direct problem with the ‘inverse - problem
gives an efficient and accurate approach to the free
surface problem of a molten metal of a cold crucible.
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