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Abstract—The shape optimization of coupled
systems by a gradients-based method is presented.
The design specifications are in one system, while
the critical parameters are in both systems. The
method is demonstrated using an induction heating
system. The magnetic and thermal models coexist
in the same geometry. The eddy currents calculated
from the electromagnetic solution is used as the
thermal sources for the thermal finite element
analysis. The objective is to achieve a required
steady state temperature profile by modifying the
geometry of the magneto-thermal domain. The
objective function, defined as a function of the
state variable temperature is no longer linked
directly to the design parameters of the magneto-
thermal system through the classic design
sensitivity analysis but through the “coupled” one.
The proposed algorithm allows the calculation of
the gradient of the object function with respect to
the design parameters.

1. INTRODUCTION

Optimization methods have been successfully developed
and effectively applied to electromagnetic problems [1-3].
However, the methods developed always deal with single
systems governed by electromagnetic fields, whereas reality
forces us to deal with more complex coupled systems where
two or more physical systems interact. Such coupled systems
are for example electromagnetic induction heating [4] which
is used for hyperthermia applications or the surface treatment
of materials [5), thermoelasticity, etc. In our case, we are
interested in the electromagnetic induction heating
phenomenon where the eddy currents generated by an
electromagnetic inductor are used as the thermal heat sources
through the Joule effect and more particularly to the shape
optimization of this electromagnetic inductor to achieve a
steady temperature profile [5]. For shape optimization of
single systems, the design sensitivity analysis which provides
the gradient information needed for the optimization
algorithm can be obtained directly by taking the derivatives of
the state variable solutions with respect to the design
parameters [1-3]). For coupled systems such as magneto-
thermal systems, any changes in the design parameters will
affect both magnetic and thermal models, and a “coupled”
design sensitivity analysis is needed to calculate the gradient
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of the thermal object function with respect to the magneto-
thermal design parameters. It is based on the coupling scheme
between the magnetic solution and the thermal solution and
the fictitious thermal optimization parameters as shown in
Fig. 1.

1. COUPLED EQUATIONS AND FINITE ELEMENT
FORMULATION FOR MAGNETO-THERMAL PROBLEMS

A. Electromagnetic Fields Finite Element Analysis

The electromagnetic system is governed by the Maxwell
equations. They lead to the following diffusion-type
differential equation, describing the electromagnetic fields in
terms of the magnetic vector potential A [6]:
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For 2D electromagnetic field analysis with time-harmonic
excitation at an angular frequency ® , (1) is transformed into
a complex type equation with the vectors A and J reduced to
the single components A and J, perpendicular to the plane of
analysis [6].
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Equation (2) leads to the following finite element complex
matrix equation
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Fig. 1. Finite Element Analysis and Optimization of Coupled Magneto-
Thermal Problems.

0018-9464/95%04 .00 © 1995 1EEE



[P{A} = (R} 3
B. Thermal Finite Element Analysis

The thermal system is governed by the following partial
differential equation expressing the conservation of energy [41:
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where k,and pc are respectively the thermal conductivity, and
specific heat; and Q, the heat density rate, represents the
internal heat generated by the induced eddy currents from the
electromagnetic system. Equation (4) leads to the following
thermal finite element matrix equation:
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C. Coupling Terms

The electromagnetic system and the thermal one are then
coupled through the heat density rate Q [4] by the following
equation
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where J. and J.* are respectively the eddy current density
complex phasor and its complex conjugate.

III. THE OPTIMIZATION METHOD AND DESIGN SENSITIVITY
ANALYSIS FOR MAGNETO-THERMAL PROBLEMS

A. Formulation of the Optimization Problem

In the optimization of coupled systems such as induction
heating systems as shown in Fig. 1, the performance
requirements are described in terms of thermal system state
variables, i. e. the temperature distribution, whereas the
design parameters such as geometric dimensions or excitation
currents are in the electromagnetic system. For example, in
hyperthermia applications or metal surface treatment systems
[5], the performances are given by requiring a steady-state
temperature profile and the optimum coupled system is
obtained by modifying the geometry or the location of the
conductive materials in the electromagnetic system [5]. In
order to achieve the optimum geometry, the design sensitivity
analysis based on the gradient of the objective function with
respect to the design parameters is required. It provides the
quantitative information on how the performance of the
system is affected by changes in the design parameters.
Different from other optimization techniques developed for
single electromagnetic systems [1-3], the design parameters
for coupled problems have no direct relationships with the
performance specifications, but indirect ones through the
coupling scheme (6). Therefore a coupled design sensitivity
analysis is necessary to link the design parameters to the
performance requirements.
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Let us select {p1, p2. .- Pn) = {p] as the electromagnetic
system’s design parameters and define the normalized least-
square objective function F
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which measures the deviation of the temperature distribution
Ty, obtained from the resolution of (5), from a desired
temperature configuration Ty, at the sampling point k. In
order to couple F with the n design parameters {p}, we have
to use the fictitious thermal parameters {q} = {q1, 92, .-» G},
defined as the heat change rate per element calculated from the
eddy currents in conductive materials. The reasons we choose
the heat change rate per element calculated from the eddy
currents in the conductive materials, are based on the facts
that the electromagnetic system and the thermal system are
coupled through the heat density rate, and any change in the
geometry of the electromagnetic system will only modify the
eddy current patterns and therefore the heat density rate. In the
case where the geometry of the thermal domain is modified
during the optimization process by the design parameters (i.c.
geometric changes in the magnetic domain affect the
geometry of the thermal domain), the coupled design
sensitivity analysis can be used by considering these design
parameters in addition to the fictitious thermal parameters for
the gradient of the objective function F.

B. Coupled Design Sensitivity Analysis

The gradient of the objective function F with respect to the
design parameter p; can be then calculated as
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The coupled design sensitivity analysis of (8) is
decomposed into a product of two gradients. Each can be
easily obtained through the design sensitivity analysis of a
single system, with relatively small computational effort,
when the solutions of equations (3) and (5) are available [1-3].

From (7), taking the derivatives of the objective function F
with respect to the thermal parameters gj, we obtain
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matrix equation resulting form the design sensitivity analysis

of the thermal system.
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The matrix {M] and the vector {S} are expressed in terms of
geometry and physical properties of the thermal model; thus
their derivatives with respect to any physical parameter can be
expressed by direct differentiation of the element matrices and
vectors, without any need for an additional thermal
computation [1-3]. Equation (10) can be conveniently solved
using Choleski decomposition from the solution of (5) {1-3].

0q:

In the same way, '] can be calculated using the design
sensitivity analysis of the electro-magnetic model [1-3]
through the following formulation for the heat rate per
element generated by the eddy currents J. (6).
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where Jo is the constant source current density. Thus,
replacing J, with the form of (12) in (11), we obtain
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The superscript * denotes the complex conjugate.,
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Finally gTA is obtained through the solution of the

magnetic design sensitivity analysis equation [1-3]
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In the case where the design parameters modify also the
thermal domain, as stated above, the thermal design
parameters are also included and their derivative is respectively
unity when the magnetic design parameter is the same as the
thermal design parameter and null otherwise.

Using (8)-(14) the gradient of F can be calculated, and an
optimization method such as the conjugate gradient method
[7] can be used without constraints to obtain an optimum
design for coupled problems.

(14)

IV. NUMERICAL EXAMPLE
A. Model Description

The numerical example of Fig. 2 is used to validate the
proposed algorithm. A rectangular conductor (with g, = 10,
¢ = 100 kS/m and k = 100 W/m-°C and a current density of
50 kA/m2 at the frequency of 60 Hz) excites the magnetic
field. The conductor is surrounded by air (¢ = 0.0 S/m,
k = 100 W/m-°C, and its shape must be designed to satisfy a
constant temperature profile of 160 °C along the line y =
14.375 cm.
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Fig. 2. Optimization of Coupled Magneto-Thermal Problem with a
conductor in air.

B. Finite Element Description.

The magneto-thermal model is uniformly meshed with 425
nodes and 128 elements with field excitation for the conductor
and 640 elements for the air domain.

The magneto-dynamic finite element analysis is used to
calculate the magnetic potential A and the eddy currents for
the magnetic model. The eddy currents are then used as input
to the steady state heat conduction finite element analysis for
the thermal model through the Joule Effect. Convection and
the radiation phenomenon are taken to be negligible compared
to the importance of the heat conduction phenomenon in the
thermal model.

C. Optimization

All the nodes on the edge to be shaped (see Fig. 2) with
their vertical displacements, are selected as design parameters.
They are represented by small squares in Fig. 3. For the
magnetic model, there are then 9 geometric parameters. As
the magnetic domain and the thermal domain are the same, we
have to consider 9 geometric parameters (the same as the ones
for the magnetic model) and 128 fictitious thermal parameters
(elements where there are heat sources generated by the eddy
currents) for the coupling scheme. The sampling points arc
located on the horizontal line at y = 14.375 cm and
10 cm < x £ 20 cm with the desired temperature of 160°C.
For the optimization process, a Polak-Ribiere conjugate
gradient optimization method [7] is used.

D. Results

The optimum shape of the conductor as shown in Fig. 3 is
obtained after 7 iterations and the normalized objective
function F decreases from a value of (0.24137 at the initial
shape to 0.00074 at the optimum shape.
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Fig. 4 presents the temperature profile of the sampling
points at the initial shape and at the optimum shape where
the relative error is a maximum of 1.25% at both corners of
the conductor, regions where the gradient of the temperatures
is high and therefore more sensitive to numerical error.
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Fig. 4. Temperature profile of sampling points at initial and optimum shapes.

Fig. 5 and Fig. 6 show respectively the magnetic
equipotentials A and the isothermal lines T at the optimum

shape.
V. CONCLUSION

A technique for the shape optimization of coupled
magneto-thermal problems is presented and validated with a
simple but descriptive example. Techniques already developed
for single systems [1-3] can applied to more complex coupled
problems by using the coupled design sensitivity analysis
based on the coupling scheme and the fictitious parameters in
order to compute the required gradient of the objective
function.
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The next step to be taken is to include in the thermal
model other phcnomcna such as convection and radiation.
Using the experience, it is planned to extend this technique to
include a broader range of objective functions, design
parameters, and constraints.

Fig. 5. Magnetic Potential A distribution at optimum geometry.
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Fig. 6. Temperature distribution at optimum geometry.
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