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A FORMULATION FOR 3D MOVING CONDUCTOR EDDY 
CURRENT PROBLEMS 

D. Rodger, T.  Karaguler, P.J. Leonard 
University of Bath, Bath, Avon BA2 7AY 

A 3D finite element formulation for moving conductor 
problems is outlined. Upwinding is shown to be important at 
high values of Peclet number. 

Introduction 

Many devices, for instance, electromagnetic launchers and 
linear induction machines, involve conducting parts which move. 
The geometry of these machines is often such that full 3D 
computer models are required. In this contribution we describe a 
new formulation for 3D eddy current moving conductor problems 
and show how the technique of upwinding, borrowed from the 
field of fluid flow, is very important in achieving accurate 
numerical solutions. The technique is implemented using standard 
3D finite elements. 

We only consider the type of moving conductor problem in 
which the moving member is invarient in the cross section which 
is normal to the direction of motion. This allows motion to be 
taken into account using the usual Minkowski transformation, 
which leads to a steady state solution for constant speed moving 
conductor problems. All other geometries would lead to a full 
time transient analysis. Eddy currents can be generated in the 
same region by a combination of time varying source fields as 
well as by motion ('transformer' and 'flux cutting' emfs). In this 
paper we only deal with the latter. 

Theoretical Develooment 

The 2-$ method has been used for some time for solving 
3D eddy current problems which are either harmonic or transient 
in time [1-4]. The problem volume is partitioned into 
conducting and non-conducting regions. Magnetic scalars are used 
to model fields in non-conducting regions, reduced magnetic 
scalars [5 ]  in regions containing known source currents and total 
scalars elsewhere. 

The two components of E can be readily recognised from 
fig. 1 ,  which shows a conducting bar moving in the x direction 
through a constant z directed magnetic field. There is a force 
on each charge of q coulombs given by: This 
leads to a displacement of mobile charges as shown. These 
charges give rise to an electrostatic field shown as E, which is 
represented in eqn (1) as - grad V. 

P = qU x B. 

Using = curl A, we can obtain: 

c u r l  1. c u r l  A = U (i x c u r l  - grad V) ( 2 )  
P 

From div j = 0: 

d i v  U (i x c u r l  A - grad  V) - 0 (3)  

Eqns 2 and 3 do not define a unique system. The 
Helmholtz theorem states that a vector field is unique if its curl 
and divergence are known throughout a volume, together with the 
normal component on the boundary. Here we choose div A = 0 
throughout and A.; = 0 on the boundary. The condition 
div A = 0 can be imposed on eqn (2) by means of Lagrange 
multipliers [ l ]  or by a penalty technique - the latter is used 
here. 

Numerical Implementation 

As usual, the Galerkin weighted residual technique is used to 
find an approximate solution to eqns (2) and (3). 

Equation 2 

This leads to a standard set of equations: 

11 c u r l  N.curl  + 3.(u(G x c u r l  E) - grad  V)dll 
P Eddy -current regions are modelled using the magnetic vector 

potential A, with [2,4,6] or without [1,3] an auxiliary electric 
scalar potential V. The regions are conveniently joined -together 
!t -the common interface by invoking the continuity of Hxn and 
B.n. are the shape functions. 

- (p i.(1 c u r l  x h ) d r  = 0 (4)  
P 

Moving conductor formulation In order to impose div A = 0, we add the term 

In the laboratory reference frame, the moving region electric ja d i v  d i v  dll 
field has two components: 

to eqn (4), where a is a large number (usually of the same order 
E = ; x i - g r a d V  (1 )  as L). Best results are obtained if this set of constraints is 

In the above, is the velocity of the region with respect to singular [7], therefore numerical integration one order less than 
that which would lead to an exact evaluation of these integrals 
should be used (order 1 for first order elements). 

IJ 

the laboratory and V is the electric scalar potential. 

Incidentally, a different argument can be used [8] to show 
that the addition of the term 

fig. 1 Fields in a moving rod 

leads to the same results, if a = 1_ 
PO 

The terms involving the velocity require special treatment, 
upwinding, as outlined below. 

0018-9464/89/0900-4147$01 .@IO1989 IEEE 



4148 

Eauation (3) 

S i c e  

d i v  j - fNj . ;  fl - l g r a d  N.jdn, 

from eqn (3) we have: 

8 -  

(I..(. x c u r l  - grad  V) . i d r  

- jg rad  N.u(; x c u r l  % - grad  V)dn - 0 

The surface integral is important as it yields j.; = 0 as the 
natural boundary condition on the inside of the conductor. 

We need to include V in this formulation as this models the 
electrostatic field which is the mechanism for controlling the flow 
of current withia the conductor and obtaining i.; = 0 on the 
conductorair interface surfaces. Without the electrostatic 
component of (give? by - grad V in eqn (l)), we would have 
to try and impose E.n = 0 on U x at these surfaces. 
Obviously this is impossible in the general case without 
introducing erroneous constraints on B. 

Uowinding 

When the Galerkin technique is applied to eqn (4). large 
-ve tern are generated on the diagonal of the final global 
matrix. This typically causes oscillations in the solution and very 
poor results when the Peclet number, p = g ! p ,  is greater than 

1.0 (h is the average element length in the direction of the 
velocity). 

This problem has long been familiar in fluid dynamics. The 
solution is known as upwinding. A finite element scheme which 
allows different degrees of upwinding in each moving conductor 
element has been developed for fluid flow [9]. 

Usually the integrals of eqn (4) are evaluated using Gaussian 
quadrature, sampling at the normal quadrature points. Using an 
upwind scheme, different sampling points are used for evaluating 
the velocity terms only of eqn (4) as follows, for element e: 

l O + - T - p  7 -  (B 

- 
u(o) is the velocity evaluated at the origin of the isoparametric 
co-ordinates of the element, J(o) is the Jacobian of the 
isoparametric transform, W equals 8 for a 3D element and 4 for 
a 2D element. The location of point E (this is a local 
co-ordinate, -1 L e 4 1) determines the degree of upwinding. 

The optimal position for e has been shown to be [9]: 
e = c o t h p - L  

P 

This scheme is very easily implemented, some earlier 
schemes were rather complex. 

2-1  

2D test Droblem illustratine uowinding 

It is interesting to demonstrate the value of upwinding. A 
very simple test problem which can be solved using a Fourier 
series analysis is shown in fig. 2. This involves a moving iron 
rotor, a R of 2000 leads to high values of p. Results for 2D 
f ~ t e  elements with and without upwinding are shown on fig. (3). 
The drag force for the no upwind case is poor (5 mls represents 
a Peclet number of about 125 for the mesh used). 

I 

r--- 48 - -----i 
stator iroJ 

- 
VX 

fig. 2 2D test problem with steel rotor 
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fig. 3 Forces on the 2D rotor 
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3D Problem - filamentarv coil moving over an aluminium track 

This problem is of interest in MAGLEV advanced transport 
system design. The coil would normally be superconducting and 
would, of course, carry DC current. The dimensions are shown 
on fig. 4. Lift and drag forces are shown on fig. 5. Also 
shown are forces obtained from a Fourier transform technique 
applied to a conducting plate of the same thickness and infinite 
extent. The agreement is probably reasonable. 

8 -  

6 -  

4 -  

2 -  

Conclusions 

Problems involving 3D eddy currents generated by velocity 
effects have been investigated. The scalar V is needed inside 
conductors when using this formulation. It is well known that 
time varying eddy current problems can be solved using only the 
vector A (without V) inside conducting- fegions, linked to \I. 
elsewhere. In this case we rely on the J .n  = 0 condition being 
weakly enforced [3] on the inside surface of conducting regions. 
This condition will remain approximately true for problems in 
which the eddy current effect is predominantly due to time 
variation of fields, with a small component due to velocity. An 
earlier paper [lo] illustrates results for this case. This is valid 
only where speeds are reIatively low, and although more economic 
than the present implementation, should be used with extreme 
caution. 

Aluminium 20mm Moving 
Magnet Plate 

\ \ 

fig. 4 Rectangular coil moving over an aluminium rail 
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Fourier transform - + FE-Coarse x FE-Fine 

Even when using upwinding, it is possible for the conjugate 
gradient technique to fail to converge. This has been found for 
Peclet numbers of about 6000 in 3D problems. At this point, 
the only remedy is to refine the mesh, which is likely to be too 
coarse from other points of view (accuracy, skin depth). 
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