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An iterative solution to nonlinear problems of time-periodic eddy currents is performed by directly using the time-harmonic content
of the field quantities instead of time-domain techniques employing successive time steps. A linear sinusoidal steady-state field problem
is solved to determine the magnetization harmonics at each iteration, with the harmonic values corrected in terms of the actual magnetic
induction by applying a fixed-point procedure. To further improve its efficiency, the solution process can be started by retaining a small
number of harmonics, with more harmonics subsequently added as needed to achieve the desired accuracy. The proposed method always
yields stable results, even when the characteristic B — H is strongly nonlinear, and has a superior computational efficiency with respect

to various time-stepping techniques and to the ‘“harmonic balance method.”

Index Terms—Eddy currents, nonlinear periodic fields, polarization fixed-point method.

1. INTRODUCTION

HE nonlinear time-periodic eddy-current problems are
T usually solved by pseudo-linear procedures where the
nonlinear relationship B — H is linearized and the material
permeability is corrected in terms of the magnetic induction B,
based on various criteria [1]. Results produced by following
this approach could be unsatisfactory in case of strong non-
linearities, with the convergence of the computational process
not always insured. On the other hand, a straightforward step-
ping-on-in-time transient analysis follows the actual nonlinear
relationship B — H, but the necessary computation time to
reach the periodic steady state could be prohibitive. An analysis
based on expanding the unknown field quantities in Fourier
series as proposed in [2] yields large systems of nonlinear alge-
braic equations whose solution requires a huge computational
effort. An interesting method has just been proposed [3] where
a particular form of Fourier decomposition is used with the
time-stepping performed through only one period. The number
of systems of algebraic equations to be solved at each iteration
is equal with the number of time steps.

In this paper, we present a new method for a stable and much
more efficient solution of nonlinear periodic eddy-current prob-
lems. The nonlinearity is treated iteratively by the polarization
fixed-point method [4]. Using a Fourier decomposition of the
magnetization, each harmonic of the magnetic induction is com-
puted by solving a linear system and, then, the magnetization is
corrected at each iteration. It can be proven that the iterative
numerical process is always convergent. The number of linear
systems of equations that is to be solved at each iteration step
is only equal to the number of harmonics taken into account,
which makes this method very efficient. The iterative scheme
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can be started with a small number of harmonics in order to fur-
ther increase the efficiency.

II. POLARIZATION FIXED-POINT METHOD

The nonlinear relationship H = F(B) is written in the form
H=vB-M (1)

where v is a constant and M has a nonlinear dependence of B
(4]

M =vB - F(B) = G(B). 2)
v is chosen such that the function G is a contraction, i.e.,

1G(B1) — G(By)[,, < Al|B1 — Ball, A3)

I

where = 1/v,0 < A < 1, and the norm is given by

T
i, = |3 [ [ v e )
0 Q

with 7" being the period and (2 the space region. Starting with
an arbitrary B, M and, then, B are updated iteratively. An ad-
vantageous feature of the proposed method consists in the fact
that the constant 14 can be chosen to be the permeability of free
space, it = fo. This allows the construction of a simple integral
equation for the current density to be solved at each iteration, as
shown in Section IV.

III. HARMONIC CONTENT AND ALGORITHM

The time-periodic M has a Fourier series expansion in the
form

M(t)= Y (M,sin(nwt)+ My cos(nwt)). (5)

n=1,3,...
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For the numerical computation, we retain a finite number N of
harmonics, M = M, = Y (M), the approximation Y being
nonexpansive, i.e.,

IY(M)) - Y(My)||, < IMy — Ma]l,. (6
For each harmonic n of the magnetization M ,, we use the com-
plex representation

M, =M, + M, ()

and obtain the complex magnetic induction
/ -/
by solving a linear system of equations, for instance, satisfied

by the unknown current density (see Section IV). From B,,, we
obtain the time-domain value of the magnetic induction as

>

n=1,3,.,2N—1

B(t)= (B, sin(nwt)+B,, cos(nwt)) =L(M,).

©)
It can be shown that L is also nonexpansive. At each step k& >
1 of the proposed iterative process, we perform the chain of
operations B" SM" YoM (]: X, B*! with B! arbitrarily
chosen. Since the composition of G, Y, and L is a contraction,
the iterative process is always convergent.

Instead of systems of equations corresponding to each time
step in time-domain methods, in our method one has to solve
only N linear complex systems at each iteration. In order to
further reduce the amount of computation, we start with a
small number N of harmonics (even with N = 1). Since the
inequality (6) is stronger when the number of harmonics is
smaller, the rate of convergence is now higher and the amount
of computation required is much reduced. When an imposed
accuracy is reached, we increase the number of harmonics
and perform the computation of the new set of harmonics by
using the approximate values of the harmonics determined in
the previous set. The computational effort needed is substan-
tially reduced with respect to that when solving for the final
set of harmonics by starting with arbitrary values for all the
harmonics, especially since the harmonics in the smaller sets
need not be calculated very accurately (see Tables I and II). We
continue this procedure until the resultant field is accurately
determined.

IV. INTEGRAL EQUATION FORMULATION

Choosing the permeability in the computational model to be
everywhere the permeability o of free space, we employ an
integral equation which, in the case of 2-D structures, is written
in the form

pJ(r )+2—% I In L ds'= 0 0

Ho
B2 k.
271'815/

2 ot
Qo

1
() In dS' +Cy

1
Jo(r') In 5 dS’

(10)
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where p and J are, respectively, the resistivity and the current
density in the conducting regions €2, .J is the given current den-
sity in the nonferromagnetic coil regions g, 7 and ' are the
position vectors of the observation and the source points, re-
spectively, R = r — v/, R = |R|, and k are the longitudinal
unit vector. (Y is a constant for each disjoint conducting region
[ and is determined by specifying its total current. To illustrate
the formulation, we choose only one conducting region €2 with
a zero total current, when C; = 0. €2 is divided in I subdomains
w; and g in () subdomains wy,. Equation (10) is discretized as

9 Q
_a ZﬂﬂquO(]
q=1
8t gt ’le, (2

where p,,., Sm, and J,,, are, respectively, the resistivity, the area,
and the average value of the current density of the subdomain
Wm, Jog 18 the imposed current density in the subdomain wyg,
M; is the magnetization in w;, and

Bomi = "0 / / L isias,.

I
0
mSmdm + o miJi =
p + 5 ;/3

m=1,2,....1 (11)

"0 7{ f R2In Rdl,, - dl, (12)
awma%
Bomq = "0 / / —dS’dS
/LO 2 /
7{ jq{R In Rdl,, - d, (13)

dw m Owoq

_ 1oy
Ti = = 52 / 7§ In —dlidS,,

Wm Ow;

Ho /
- 7§ %(211113_ DR - n)dlndl,  (14)

Qwm Ow;

where Ow; is the boundary of the subdomain w; and n; is the out-
ward normal unit vector on Jw;. The system (11) can be written
for each harmonic n in a matrix form as

(<o ") ()= () + (i) 09
where ( is the matrix of (3,,;, 0 is a diagonal matrix with the
entries O,m = PmSm/w, m = 1,2,...,1, J/ and J!/ are the
column vectors of the real and imaginary parts of the complex
current density J,,, Ay, Ag, and A, , A%, are, respectively,
the column vectors of the real and imaginary parts of the com-
plex vector potentials integrated over the respective subdomains
Wm, Aon due to the imposed current density and Ay, to the

magnetization, i.e.,

Q
A[)n = Z /HquJOn,qv
q=1

Ay = (16)

I
i=1
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Fig. 1. Ferromagnetic conductor (2 and current-carrying coil 2 = wo, Uwo, .
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Fig. 2. Differential relative permeability.

Ay, is the same for all iterations, while A/, is to be corrected
at each iteration.

After solving the system (15), the average value of the com-
plex magnetic induction in the subdomain w,, is computed as

I I
Bn,m = _SL nymi‘]n,i + sziMn,i + BOn,m
™ \i=1 i=1

(17)
where By, », is the magnetic induction due to the imposed cur-
rent density, the same at all the iterations

Q
1
BOn,m = _S_ Z’qu(]()n,q (18)
mog—
and
= /'I’O
Comi = 5 7{ j{InR(dlmdl’i) (19)
Ow,, Ow;

the latter being expressed in terms of the dyads (dl,,dl}). The
numerical approximation of B,, ,,, due to the averaging is non-
expansive and, thus, always preserves the convergence of the
iterative process even in the case of large differences in the dif-
ferential magnetic permeability. At any time ¢, the magnetic in-
duction is obtained with (9), the magnetization is corrected with
(2) and, then, used for computing the new complex expression
in (7), with

T
M, = % /M(t) sin(nwt)dt
0
T
M/ = % / M (t) cos(nwt)dt. (20)
0
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Fig. 3. Vertical component of the magnetic induction at point P in Fig. 1.
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Fig. 4. Harmonic content of induction at point P in Fig. 1.

V. COMPUTATION EXAMPLES

In a first example, we consider a long, 10 X 20 mm ferro-
magnetic conductor {2 surrounded by a 4 X 12 mm coil with
200 turns, carrying a 50-Hz sinusoidal current of rms value of
50 A, as shown in a cross section in Fig. 1. The B — H char-
acteristic is strongly nonlinear, with the differential relative per-
meability having values between 1.3 and 11374, as specified in
Fig. 2. First, we consider only one harmonic and, then, succes-
sively, the sets of the first 2, 3, 4, and 5 harmonics. The number
of iterations in the polarization fixed-point method, the number
of linear systems to be solved, and the relative error

k k—1
M.

r

are given in Table I. The time dependence of the vertical com-
ponent of the magnetic induction at the point P in Fig. 1 is given
in Fig. 3 and its content of harmonics in rms values at the same
point is plotted in Fig. 4.

In a second example, we determine the magnetic induction
in a conducting ferromagnetic shield 2 of outer cross-sectional
dimensions of 20 x 20 mm and thickness of 2 mm surrounding
a5 x 8 mm coil wy, U wg, which carries a 50-Hz sinusoidal
current that produces a magnetic induction at the point P in
Fig. 5 as plotted in Fig. 6. The magnetic material of the shield
has the same permeability as in the previous example.

The harmonics considered successively, the number of itera-
tions and of linear systems solved, and also the corresponding
errors are given in Table II. For this example, the increase in
accuracy as the number of iterations performed increases is in-
dicated in Fig. 7. The peaks in this graph are due to the fact
that we performed the computation with sets containing an in-
creasing number of harmonics. After the last iteration for a given



1188

ns a)o a)o i

T T T
T T T
T I T
I " I

T T T
T T T
I T T
I I I

Fig. 5. Ferromagnetic shield €2 and current coil wo, Uwo,.
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Fig. 6. Horizontal component of the magnetic induction at point P in Fig. 5.
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Fig. 7. Evolution of the relative error (related to Table II).

TABLE I
NUMBER OF ITERATIONS AND RELATIVE ERROR FOR
VARIOUS NUMBERS OF HARMONICS

Harmonics 1 1.3 1.3,5 1,3,5.7 1.3,5.7.9
considered
No.of iterations 4 9 9 11 57
No.of systems 4 18 27 44 285
Relative error (%) | 521 | 1.75 | 0.58 0.18 0.0096

set, the error (21) has the value shown in Table II. Computation
for a subsequent set is started with arbitrary values for the new
harmonics in the set (e.g., zero values) which determines a jump
in error for the first iteration in this set.

VI. CONCLUSION

We employed a PC with a 1-GHz processor and 1-GB RAM
memory and considered 120 time steps for one period in order
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TABLE II
NUMBER OF ITERATIONS AND RELATIVE ERROR FOR
VARIOUS NUMBERS OF HARMONICS

Harmonics 1 1.3 13,5 1,357 | 1,3,5.7.9
considered
No.of iterations 13 10 9 10 30
No.of systems 13 20 27 40 150
Relative error (%) | 2.56 | 0.86 0.26 0.098 0.0096

to calculate the instantaneous values in (5) and (9) for both ex-
amples. No overrelaxation has been used in the iterative process
and less then 1 min has been required for the entire computation
in the more complex, second example. As shown in Table II,
we had to solve only 60 linear systems to obtain an error [see
(21)] &, =2 0.26% in the case of three harmonics, 100 systems
for £, = 0.1% when considering four harmonics and only 250
systems to reach a high accuracy, with e, = 0.01%, when five
harmonics are taken into account. If, instead of starting with the
fundamental harmonic and then adding successively one more
harmonic, the computation for the second example is performed
from the beginning by taking all the first five harmonics, then a
number of 64 iterations is required to obtain an error of about
0.01%, i.e., a number of 320 systems to be solved. This shows
the advantage of using the proposed procedure by starting it with
a smaller number of harmonics.

Among the methods previously presented in the literature,
the time-domain technique in [3] is superior since it requires
the solution of a number of systems equal to the product of the
number of iterations with the number of time steps through only
one period. The method proposed in the present paper requires
the solution of a much smaller number of linear systems, equal
to the product of the number of iterations with the number of
harmonics taken into account, which shows clearly its higher
efficiency.
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