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Numerical Modeling in Induction Heating for
Axisymmetric Geometries

C. Chaboudez, S. Clain, R. Glardon, D. Mari, J. Rappaz, and M. Swierkosz

Abstract—This paper deals with numerical simulation of in-
duction heating for axisymmetric geometries. A mathematical
model is presented, together with a numerical scheme based on
the Finite Element Method. A numerical simulation code was
implemented using the model presented in this paper. A com-
parison between rcsults given by the code and experimental
measurements is provided.

. INTRODUCTION

NDUCTION heating is widely used in today’s indus-

try, in operations such as metal hardening, preheating
for forging operations, or brazing [3]. It is a complex pro-
cess, involving both electromagnetic and thermal phe-
nomena. Since the design and the investigation of an in-
duction heating system usually relies upon a series of
tedious, expensive and long experiments, numerical sim-
ulation can be a valuable help in this field [4]-[20]. The
authors previously dealt with induction heating of long
workpieces, obtaining encouraging results [1], [2].

In this paper, we deal with numerical simulation of in-
duction heating with a rotational symmetry. The aim of
our research was to elaborate mathematical and numerical
models, and- to implement efficient numerical codes for
the simulation of induction heating. Several experimental
measurements have been carried out by the company
AMYSA Yverdon S.A. in order to validate the results
provided by our numerical simulation codes. In this pa-
per, we shall first present the model and the numerical
methods used for the code. Next, we shall describe the
experiments performed and compare them to the numeri-
cal simulation results. Finally, conclusions will be drawn.

Numerical simulation of induction heating clearly in-
volves two coupled phenomena: electromagnetism and
heating. An efficient eddy current computation has to be
performed in order to obtain the source term to be plugged
into the heat equation. _

As far as eddy current computation is concerned, we
opted for a formulation in magnetic potential to solve the
electromagnetic problem. We chose to prescribe voltage
in the conductors, rather than the total current, which was
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dictated by the commonly used generator setup. For com-
putational efficiency reasons, we limited our scope to si-
nusoidal voltages, which allowed us to solve several times
a steady-state equation rather than an evolutive one. In
fact, the experience previously gathered [1] shows that
the shape of the voltage has a limited importance from the
energetic point of view, while solving a steady-state equa-
tion rather than an evolutive one allows significant sav-
ings of computation time. The physical properties of the
heated materials may vary with the temperature. The pos-
sibility of using several coils and several voltage genera-
tors working at different frequencies has been taken into
account.

1I. Taur MobDEL

We consider an induction heating system consisting of
one or several inductors and workpieces, all of them with
an axial symmetry (Fig. 1). It will be assumed that there
are neither displacement currents nor surface currents, and
that the inductors are supplied with a sinusoidal current
having a prescribed voltage. We consider that the prop-
erties of the materials used, i.e., the magnetic permeabil-
ity u, the electric conductivity o, the thermal conductivity
N, the density p, and the specific heat C, may depend on
the temperature.

For the sake of simplicity, we describe a model con-
sisting of one workpiece and one coil. Nevertheless, all
our considerations remain valid for induction setups in-
cluding several workpieces and coils. We shall denote by
Q, the workpiece to be heated, and by @, Oy, - - -, Q,
the windings of the coil. @ = Q, U Q, U L U - -+ Q,
is the whole set of conductors (i.e., the coil and the work-
piece). We suppose that a total sinusoidal voltage v e
(possibly zero) is imposed in the conductor {3;. The choice
of imposing the total voltage rather than the total current
is motivated by the setup of generators used in induction
heating, which generally allows better control of the volt-
age than the current.

A. Mathematical Model

In order to obtain the mathematical model, we shall start
from Maxwell’s equations and Ohm’s law, with displace-
ment currents neglected. We denote by E the electric field,
by H the magnetic field, by B the magnetic induction, by
Jj the current density, and by » the magnetic reluctivity,
i.e., the inverse of the magnetic permeability u. Max-
well’s equations provide the following system:
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Fig. 1. An induction heating setup with axial symmetry.

divB =0 2.1
curl E = | _8_B 2.2)
ot

curl H = j (2.3)
vB=H (2.4)

valid in the whole space. From Ohm’s law, we get
J=oE (2.5)

inside the conductors,

j=0 (2.6)

in the space outside the conductors.

Let (¢,, €5, €, be the natural tangent system associ-
ated with the cylindrical coordinates (r, #, z) such that the
Oz-axis is the symmetry axis of the induction heating sys-
tem. The current density is supposed to be in the form j
= j(r, 7)€" €y, where w is the angular frequency of the
current and ¢ is the timne. It is also assumed that the com-
ponents of the fields H, E, B in the system (€,, €;, €,
depend only on 7, z, and 7 (not on 0). Equation (2.3) yields
then that H(r, z) is of the form

H(r, z) = (HSr, €, + H(r, 5€)e. 2.7

Let A be a magnetic vector potential, i.e., a magnetic field
satisfying

B = curl A. 2.8)

We take A to be divergence-free (Coulomb gauge). Using
(2.4), (2.7), and (2.8), it can be shown that A may be
expressed in terms of a continuous scalar potential ¢ de-
pending only on r and z:

A = P(r, 2)&,.

Using the notation B(r, z) = (BJr, 2)€, + B,(r, 2)€,)e"",
we get from (2.8)

_ 9%
B.= -5

B, — 1209 2.9)
r or
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From (2.2) we have
curl E + iwoB =0

and using (2.8) we get that
curl (E + inA) = 0.

In any conductor (workpiece or inductor), Ohm’s law
(2.5) holds, and therefore

curl (67 + iwd)éy = 0.

It follows that (o0 ~'#j + iwre) is a constant in each con-
nected component of a conductor, and we can show that
this constant is equal to v3/2w, where v, is the total voli-
age imposed in the conductor. Finally, we will have in
any conductor £, '

. _.¢)+&
j=0 iw o)

Using (2.3), 2.4), (2.9), and (2.10), we get inside the
conductors (coils and workpieces) the equation

o (vare)\ L 9 [ d\\ .
—<5;<; or >+6—Z<V5;>>+Z(Iw¢—02ﬂ_r.
(2.11)

In a similar way, the relations (2.3), (2.4), (2.6), and (2.9)
combined together provide the following equation in the
space outside the conductors:

8 [v d(re) 3 [ 9o\ _

6r<r ar >+6z<vaz> =0
Since there are no surface currents, the following inter-
face condition holds at the boundary of any conductor:

v [0(r¢) o(red) _
{;< dr ot dz nzﬂ—o

where [¢] denotes the jump of a function y at the bound-
ary of the conductor and » = n,€, -+ n,é, is the normal
vector on the interface.

For the electromagnetic computations, we shall con-
sider a rectangular box in the (r, z)-plan, surrounding the
induction heating system, and big enough for the mag-
netic field to be weak at the boundaries of the box (Fig.
2).

The Biot-Savart hypothesis implies that the field B be-
haves like 1/(r*> + z°) far from the conductors. For big
values of r, the behavior of ¢ can be considered to be
similar to 1/r2. Therefore, on the boundaries of the box
which are parallel to the symmetry axis, we impose a so-
called Robin condition [21, p. 162]

o(re)
or
For those boundaries of the box which are perpendicular
to the symmetry axis, a Robin-like condition is difficult
to enforce. Instead, we set the condition
00¢) _
0z

2.10)

(2.12)

(2.13)

+ ¢ = 0. (2.14)

0 (2.15)
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Fig. 2. Cross section of an induction heating setup together with the
boundary conditions.

which stems from the assumption that the radial compo-
nent of the magnetic field is close to zero on these bound-
aries.

Finally, the natural symmetry condition along the rev-
olution axis is

¢ =0.

To sum up, the eclectromagnetic model to be solved
consists of (2.11) and (2.12), together with the interface
condition (2.13), the boundary conditions (2.15) and
(2.14), as well as the symmetry condition (2.16).

In order to study the thermal effects of the electromag-
netic phenomena, the above model will be coupled with
the heat equation. We shall assume that the workpieces
do not interact thermally. This assumption will allow us
to solve the heat equation individually for each work-

‘piece. The Joule effect power term is ¢ ~'| j,,|*, where j,,
is the mean current density, equal to j/«/i in our case. The
value of j is directly obtained by (2.10). Therefore, the
equation to be solved in order to get the temperature field
in the workpiece is

oT [ . Uy
pCPE — (N\VT) = 2‘ <~lwq§ + ﬂ;)
This equation is completed by the following radiation
condition on the boundary of the workpiece, which is jus-
tified if the workpiece is convex and there is a large dif-
ference in temperature between the workpiece and the
surrounding space:

(2.16)

2
(2.17)

aT
N+ o(TH—T2) =0

on
where « is the product of the Stefan-Boltzmann constant
by the material emissivity coeflicient, d7/dn is the normal
derivative of T on the boundary of the workpiece, and
T,.» is the ambient temperature.

2.18)
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One can also consider an empirical convection law, re-
placing (2.18) by the condition

0T (T = T) + BT — Ty = 0

Non

2.19)
where (3 is a proportionality coefficient.

The complete model consists in coupling the electro-
magnetic problem (2.11)-(2.16) with the thermal problem
(2.17), (2.18), or (2.19), where we assume that 7 depends
only on the spatial coordinates r and z, and on the time ¢.

This model includes two kinds of nonlinearities: the first
due to the heat source term in the heat equation (2.14),
and the second due to the dependence of physical prop-
erties of the conductors on the temperature and possibly
on the magnetic field.

B. Numerical Solution

We adopted the standard P, finite element method for
the discretization of equations (2.11) and (2.12), while
finite differences in time and standard P, finite elements
in space were used to solve the heat equation. The mesh
used for the thermal problem is the same as the part of the
mesh used for the electromagnetic problem inside the

conductors. It is worth noticing that the skin effect re-

quires a particularly refined mesh close to the boundary
of the conductors. On the other hand, too coarse a mesh
inside the conductors would result in an inaccurate solu-
tion of the heat equation. Therefore, a reasonable com-
promise has to be found.

The electromagnetic problem we have to solve is sta-
tionary in time, while the heat equation gives rise {0 an
evolutive problem. Due to the different time scale of the
two phenomena, we will assume that the solution of the
electromagnetic problem is valid on a time interval during
which the physical properties of the workpieces do not
change too much due to the increase in temperature re-
sulting from the Joule effect. We will then use the result
to compute the source term to be plugged into the heat
equation. The evolutive heat equation will then be solved
using finite differences on the same time interval. The new
value of the temperature field thus obtained will be used
to update the values of the physical coefficients of the
workpieces (v, o, p, C,, and A). This will allow us to
proceed to another computation of the magnetic potential,
followed by the computation of the temperature field, and
SO on.

We have developed a numerical simulation code on the
basis of the above model. It can deal with any induction
heating system having an axisymmetric geometry. Only
sinusoidal voltage is allowed, but the restriction on the
shape of the voltage does not have a big effect from the
energetic point of view. The possibility of having several
electric current generators, characterized by different fre-
quencies, voltage amplitudes, and possibly different
phases, has been taken into account. The company

"AMYSA Yverdon S.A. carried out several measurements

for different cases of induction heating in axisymmetric
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Fig. 3. A three-dimensional representation of the workpiece to be heated.
A two-dimensional cross section of the whole induction heating setup.

geometries, in order to get a comparison between numer-
ical simulation and measurements in an industrial envi-
ronment.

III. CoMPARISON BETWEEN MEASUREMENTS AND
NUMERICAL SIMULATION

A. The Measurements

A measurement bank was set up, providing the tem-
perature, the voltage, and optionally the current intensity
and the magnetic field in various cases of induction heat-
ing processes. A detailed description of this measurement
bank can be found in [2].

We consider here the heating of a stainless steel work-
piece represented in Fig. 3. The upper part of the work-
piece is placed inside a coil consisting of six irregularly
spaced windings made of copper. The aim is to obtain as
smooth a temperature distribution as possible inside the
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TABLE 1
GEOMETRIC CHARACTERISTICS OF THE EXPERIMENT
total length of the workplece 135 mm
length of the lower cyllndrldal part 85 mm
diameter of the lower cylindrical part 30 mm
length of the upper cylindrical part 20 mm
diameter of the upper cylindrical part 20 mm
length of the intermediate part 30 mm
external cross-section of the windings | 5§ x 10 mm
wall thickness of the windings 1 mm
|iwo first windings 3 mm
2nd the 3rd winding S5 mm
dlstance between the 8 mm
two middie windings )
Internal dlameter of the coil 50 mm
external diameter of the coll 60 mm
distance from the top of the
workplece to the 5mm
firsi thermocouple
distance from the top of the
workplece to the 35 mm
second thermocouple
TABLE II
ELECTRICAL PARAMETERS OF THE EXPERIMENT

total voltage 77V

actlve current 40-45A

total current ~1203 A

electrical power 13 - 15 kW

capacitance 0.0172 mF

frequency ~10 kHz

upper part of the workpiece a couple of seconds after the
voltage cutoff, in spite of the corner effect.

The geometric characteristics of the induction heating
setup are shown in Table I. It should be mentioned that
the coil starts 12.5 mm above the workpiece.

The power supply is a 10 kHz rotating convertor, and
the heating time is 25 5. The characteristics of the electric
setup are summarized. in Table II. The workpiece is made
of a nonferromagnetic stainless steel X5CrNi 18/9
(1.4301).

Two thermocouples were spark welded on the surface
of the workpiece, at the locations represented in Fig. 4,
in order to ensure a good thermal contact. Temperatures
as well as voltage were recorded on a calibrated plotter.

B. The Numerical Simulation

The mesh used for the numerical simulation is repre-
sented in Fig. 5. We can notice that this mesh is very
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point 1

point 2

Fig. 4. Location of the measurement points on the workpiece.

refined in the area around the workpiece and the coil,
while it becomes gradually coarser close to the boundary
of the space area considered. Enlargements of the mesh
on the workpiece and the coil can be seen in Figs. 3
and 4.

The timestep used for the computation was 0.1 s. The
formulas providing the physical properties of the stainless
steel and of the copper used in the numerical simulation
are given in [2].

Fig. 6 shows the isotherms at the end of the heating and
7 s later. The isotherms are equally spaced: every 100°C
att = 25 s and every 50°C at t = 32 5.

Finally, Fig. 7 shows the isolines which correspond to
the maximum values in the sinusoidal cycle of the mag-
netic field inside the workpiece. These isolines are equally
spaced: every 2 kA/m for the radial component H,, and
every 10 kA/m for the vertical component H,. It is worth
noticing how the radial component increases close to the
upper end of the workpiece and in the area corresponding
to the lower extremity of the coil.

C. Comparison and Conclusions

Figs. 8 and 9 below show a comparison between the
temperatures obtained by numerical simulation and the

743

Fig. 5. The mesh used to solve the problem.

temperatures measured during the experiment, at the
points shown on Fig. 4.

A generally good agreement is found between experi-
mental results and numerical simulation. However, some
sources of experimental and data errors have to be con-
sidered, as was extensively discussed in [2]. In this ex-
periment, the difference between the experimental curve
and the simulation during the first 10 s can be explained
by the fact that voltage cannot be set as a perfect step
function. About 2.5 s were necessary to obtain the 77 V
steady, and thus the simulation provides higher tempera-
tures at the beginning of the heating. This phenomenon
can be observed as a difference in the slope during the
first 2.5 s on Figs. 8 and 9. Another cause of discrepancy
is the fact that we model a helical coil by an axisymmetric
geometry, which is an idealization of the reality. More-
over, the coil was produced without using high precision
methods, and the gap between two windings is not con-
stant. The width of this gap cannot be measured very ac-
curately, and numerical simulation shows that moving a
winding by a small distance can have a considerable in-
fluence on the resulting temperature field. A further factor
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Fig. 6. Isotherms inside the workpiece at r = 25 sand at t = 32 s.

of relevance is whether the workpiece is truly concentric
within the coil bore, and aligned on the same axis. Other
possible causes for discrepancy lie in the fact that the
model itself is an idealization of the reality, and that its
solution is obtained using numerical methods whose re-
sults can never be exact. However, we do not believe that
the latter causes weigh much in the total discrepancy be-
tween the experiment and the simulation presented above.

In conclusion, we can affirm that the results presented
above are valuable. The case described in [1] and [2] re-
lied upon the assumption that all the induction heating
setup is invariant in one dimension. Such a geometry ob-
viously does not exist in reality, but a model based on the
invariance assumption provides results that are close to
the experiment in the case of long induction heating set-
ups with constant cross section. On the contrary, the
model presented in this paper deals with axisymmetric
geometries which do exist in the reality. It enables us to
tackle intricate workpiece and inductor setups, and puts
forward interesting phenomena, such as corner effects,
which could not be observed using the two-dimensional
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Fig. 7. Isolines of the magnetic field inside the workpiece at r =
25 s: modulus of the radial component H, and of the vertical component
H. (kA/m).
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Fig. 8. Comparison of the temperatures obtained at point 1.

code. The benefits of numerical simulation stated in [2]
have thus been extended to further situations encountered
in industrial practice.
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Temperature evolution at point 2
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Fig. 9. Comparison of the temperatures obtained at point 2.
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