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Abstract -- A 3D package has been developed to compute the
transverse flux induction heating of flat products. It contains
two vector potential formulations of the electromagnetic
equations and a thermal equation. All these 3D equations are
solved by F.E.M.. Numerical results are compared to
experimental measurements on an industrial-scale prototype.

I. INTRODUCTION

A transverse flux induction heating device is an
electromagnetic device with a travelling load at constant
velocity, where magneto-dynamic and heat transfer
phenomena occur. Transverse flux induction is used to heat
very thin strips of non-magnetic conductive material, such as
aluminium. The source currents induce eddy currents which
heat the strip by Joule's effect (Fig. 1). Resultant heating is
uniform except on the load borders, where under-heating (or
over-heating) can occur as the strip is larger (or narrower)
than the inductor (Fig. 2).

Fig. 1. Transverse flux induction heating device.

An industrial-scale prototype of inductor has been built at
MADYLAM laboratory. The device is one meter high and is
placed vertically. A five-meter high frame supports the
inductors and the rollers which maintain the strip in place
(Fig. 3). As it can be seen in Fig. 1 and Fig. 2, transverse flux
induction heating devices have a true tridimensional
geometry. For this reason, in order to compute transverse flux
induction heating, a 3D F.E. package has been made that
would be of great help to the designer.

The numerical results of this package have been compared
to the experimental measurements made on the MADYLAM
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Fig. 2. The drawing of eddy curent lines
a) The strip is larger than the inductor, including coil heads.
b) The strip is narrower than the yoke of the inductor.
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Fig. 3. General view of the structure showing how the strip and the inductor
are held in place.

prototype. The measurements which were carried out lead to :
- amap of the 3 components of the induction field B in the
air gap between the strip and one half of the inductor (Fig. 4),

Fig. 4. Induction field measurements location.

- a map of the temperature on the strip travelling into the
inductor (Fig. 5).
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Fig. 5. Strip temp

Fig. 6 shows a good agreement between computed and
experimental induction fields [1], in the case of an aluminium
strip, which receives 5.27 kW power density at 1050 Hz
working frequency, with an inductor gap of 10 cm wide.

This paper presents, at first, the 3D F.E. package and then
the experimental thermal validition of the numerical
modelling.

I1. THE 3D FINITE ELEMENT PACKAGE

The electromagnetic field and thermal coupled problems
have been taken into account. Two formulations for the
electromagnetic equations have been used : one with the
modified vector potential A* and the other with (?,v), where
2 is the vector potential and the scalar potential & is a time
derivative of v [2], the gauge is Coulomb's. Complex

numbers are used for time treatment. Laplace eddy currents,

6Vx B are neglected, where o is the electrical conductivity.
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Fig. 6. Induction field along the vertical facing the coil heads.

The heat transfer equation, with a travelling load at
constant velocity V. expresses the steady state in the
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inductor referential. The thermal power density in the load
proceeds from Joule's losses. Since the electromagnetic
properties are not strongly temperature dependent in the
studied process, it is not necessary to solve the two equations
simultaneously. From the solution of the electromagnetic
equation, the thermal power density can be deduced. Then,
solving the heat transfer equation, gives the temperature map
in the strip. Both equations have been solved with nodal
elements and 274 order Lagrange polynomials as shape
functions. The package has been realised with FLUX
EXPERT [3].

It is well known that nodal elements with second order
Lagrange polynomials do not insure the conservation of eddy
currents in the modified vector potential formulation, even if
the condition divA* = 0 is imposed by penalization in the
induction equation [4]. Eddy currents are better conserved by
(Z v) formulation than bya A* formulation.

The variational formulation for the modified vector

potential equation is:

Iﬂu,cﬁl?.cﬁl WdQ+ bupdiv(l*).div(W)dQ
+bjm0'uoﬁ.WdQ =]QIlo7ex-WdQ

The variational formulation for (Z,v) equation is :

Iﬂu,cﬁl?.cﬁle(h hupdiv( 2)div(WhdQ
+]Qjmcmo7.Wdﬂ+jﬂjmq10g¥3dv.WdQ=buo7a.WdQ

and
;Qjmmz’.gﬁdem+bjm Mo Sradv.gr2dwd Q=0

The variational formulation for the heat transfer equation
is:

;Qpc 6V .grddTdQ + hk gradT.grdd 0dQ + {_h(r-r,,) edr
e eop(T4-T,4 © dIr ?’lf %7.7"6&

Nomenclature

: modified vector potential

& : 4 vector potential - scalar and vector -
: time primitive of ®

: -eddy currents density

: complex electrical source density

. electrical conductivity

: relative reluctivity

: penalty coefficient

: electrical angular frequency

: complex number, j> = - 1
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: conjugate of a complexe number

: normal vector

: vector basis functions for Galerkin's projection
: basis functions for Galerkin's projection
: temperature

: ambient temperature

: volumic mass

: calorific capacity

: thermal conductivity

: load velocity

: basis functions for Galerkin's projection
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III. EXPERIMENTAL THERMAL VALIDATION

A. Modified vector potential in conductive regions

Using A* 10 compute eddy currents may seem audacious.
However, there are some cases in which the modified vector
potential is suitable. The inconvenience of A*, when it is
used with nodal elements and second order Lagrange
polynomials, is that it does not allow normal discontinuity of
the electric field B at the boundary between regions of
different electric conductivities, since E = - jwA*. Therefore,
it can be used if there is no problem of discontinuity of
E. 7. For instance, when the nearby eddy currents are
parallel to the boundary between regions of different electric
conductivities, or when there are no eddy currents near this
boundary, it is judicious to choose the modified vector
potential as it leads to only 3 complex components per node,
versus 4 with the formulation (Z ,v).

Fig. 7 refers to the heating of an aluminium strip which is
much larger than the inductor, at a frequency of 300 Hz. It is
in good agreement with another numerical simulation where
the electric field is computed by a hybrid finite element-
boundary integral method. The finite elements are Whitney
edge elements and the mesh is made of tetrahedra [5] [6].

Fig. 8 relates the comparison between experimental
measurements on the inductor prototype of MADYLAM
laboratory, in the case where the aluminium strip is larger
than the inductor, at a frequency of 1500 Hz, and numerical
results of the two formulations A% and (? ,v) coupled with
the thermal problem. Both formulations predict an under-
heating on the border of the strip.

These two examples demonstrate that the A* formulation
can be used when there are no normal eddy currents near the
edge of the strip, and it is worth choosing this formulation in
order to save memory.

B. Using ( 2y ) formulation

However, when eddy currents come normal to the interface

of two regions with different conductivities, the A
formulation should not be used, as it imposes on the electric
field, a normal continuity which must not exist. In that case,

the (7f),v) formulation has been chosen to simulate transverse
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Figure 7 : The strip is much larger than the inductor.
a) Monopale inductor geometry.  b) Joule loss density on the strip.
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Figure 8 : Rise in temperature when the strip crosses half pole.
The strip is larger than the inductor.
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Figure 9 : Rise in temperature when the strip crosses half pole.
The strip is narrower than the inductor.



flux induction heating of strips which are narrower than the
inductor. Numerical and experimental results are shown in
Fig. 9, with an aluminium strip, at a frequency of 1500 Hz. In
spite of a satisfactory agreement, they pointed out a third
problem : the existence of bifurcation points.

IV. BIFURCATION POINTS

When the strip is narrower than the inductor, the source
currents force the eddy currents to follow them, so the eddy
currents come normal to the border of the strip. As they can't
go out of the strip, they have to corner sharply very close to
the border. But they have the choice to turn right or left hand.
In fact, the layer of currents divides into two equal parts. As
Fig. 10 shows it, point P is singular, it is a bifurcation point.
There are bifurcation points on the border of the strip, facing
every side of each pole, if the inductor is larger than the load.

Special attention should be paid to computing eddy
currents at those points. The current density vector, which is
parallel to Oy at node 2, must be parallel to the border (Ox)
at node 4. Which direction has this vector on node 3 (Fig.
11) ? The answer to this question should take into account the
conservation of the currents, and must avoid a loss of
computed power in the neighbourhood of point P, because it
is in that region that the tightening of the current lines
produces a maximum of thermal power density, which is
responsible for the over-heating of the border of the strip.

The problem comes from the strong decrease of the values
of the y-component of the eddy current density vector,
between nodes 1 and 3, and from the strong increase of its x-
component value, between nodes 3 and 5. As thermal power
density proceeds from the interpolation of 7 between the
electromagnetic mesh and the thermal mesh, those variations
produce a numerical loss of power on the border of the strip.

Decreasing the size of the meshes would be a solution. In
spite of the use of 22572 unknowns, the problem of the
bifurcation point produces numerical oscillation in this area,
even with the (Z) ,v) formulation. The matrix was ill-
conditionned for each formulation. Further it is non
symmetric for the A* formulation, because it is necessary to
impose the condition A% 7’=0 on the boundary between the
load and the air gap, to insure the conservation of eddy
currents there. This condition is set as a boundary condition
and turns out to break the matrix symmetry.

CONCLUSION

The 3D FE package which is presented in this paper can be
useful for designing transverse flux induction heating
devices. Two formulations are proposed. The A* formulation
is to be used when the normal discontinuity of the electric
field is weak at the edge of the load. The (?,v) formulation
will be used for strong discontinuities, that is when the strip
is narrower than the inductor. In fact the (Z’,v) formulation
can be used in every case, but the A* formulation lcads to
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fewer unknowns per node.

k source currents;

A eddy currents

Figure 10 : A bifurcation point

Figure 11 : The eddy current density vector in an element with a point P
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