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Calculating the Forces Created by an Electrodynamic Wheel Using
a 2-D Steady-State Finite-Element Method

Jonathan Bird and Thomas A. Lipo, Life Fellow, IEEE

University of Wisconsin-Madison, Madison, WI 53706 USA.

We present a two-dimensional complex steady-state finite-element method for calculating the lift and thrust or breaking forces created
when a magnetic rotor is translationally moved and rotated over a conducting sheet. The method replaces the magnetic rotor with an
equivalent current sheet by equating the current sheet’s and magnet rotor’s magnetic vector potentials. We validate the steady-state
method by comparing the forces with transient finite-element models. The utility of this steady-state model is that it enables a study of
the effects of parameter changes for such a machine to be undertaken rapidly.

Index Terms—Eddy currents, electromagnetic analysis, finite-element methods, Halbach rotor, maglev.

I. INTRODUCTION

HE simultaneous rotational and translational motion of

magnets above a conductive, nonmagnetic track such as
illustrated in Fig. 1, induces eddy currents in the track that can
simultaneously create lift, F',, and thrust, Frr, forces [1]-[11].
When the circumferential velocity, v. = wrg, of this elec-
trodynamic wheel is somewhat greater than the translational
velocity, v, thrust forces are generated, while larger breaking
forces result when the circumferential velocity is less than the
translational velocity [8]-[11].

In the past, moving magnet inductive devices have been
analyzed using thick and thin plate approximations [10]-[19] in
which the thickness of the plate, d, is assumed to be either much
less than or much greater than the magnetic diffusion depth,
6. The thin plate approximation, promulgated by Maxwell
[20]-[22], has been more frequently used for moving magnet
problems since the conductor thickness is generally less than
the diffusion depth over the speed range of interest. The in-
duced currents are then assumed to be contained within an
infinitesimally small thickness. While the thin and thick plate
approximations have successfully modeled the general relation-
ship between forces at limited velocities, the current density
plots obtained in this paper, using finite-element analysis
(FEA), shows that neither such approximation is reasonable for
this machine (see Fig. 18).

Numerous two-dimensional lumped parameter models of
linear induction motors (LIMs), which have similar changing
and traveling fields, have also been developed [23]-[26]. Such
models are attractive because they enable steady-state and tran-
sient behavior to be studied with minimal computational cost
and often use established rotary machine techniques. However,
developing such a model for this electrodynamic wheel would
be inaccurate as it has a very short length, a nonuniform air
gap, the track is nonmagnetic, and the field within the track
lacks 2-D symmetry.
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Fig. 1. A magnetic rotor translationally moving and rotating above a conduc-
tive, nonmagnetic track.

The solution of Maxwell’s equations directly [14], [27], [28]
or indirectly such as using Fourier transformation techniques
[29]-[34] is also a common approach and can provide exact
steady-state solutions. However, as there are rotating magnets
with a nonuniform air gap this problem is not amenable to a
closed form solution.

The exact modeling of such a device using numerical
methods, such as FEA, is also problematic because of the
need for a transient moving boundary. Although a number of
commercial FEA packages can now model multiple moving
boundaries [35], [36], the use of transient moving boundary
simulations for parameter investigation is tediously time con-
suming. Furthermore, if the track region is transiently moved
it cannot easily model high-speed translational motion since
the moving track invariably reaches the end of the predefined
movement region before attaining steady-state conditions; thus,
leading to erroneous results.

Previously, Fujii used a 2-D transient technique to analyze the
lift and thrust forces generated when radially positioned mag-
nets are rotated over an aluminum track with back iron [36],
[37]. In order to avoid modeling the rotating magnets, Fujii used
a 2-D model with a poly-phase rotating current source in place
of the transiently moving magnets. However, rather than using
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Fig. 2. Problem regions for an “equivalent” current sheet model.

a poly-phase current source, it is shown in this paper that an ac-
curate model of the rotating magnets over a conductive track
can be created using only a current sheet, such as shown in
Fig. 2. When in addition the translational motion is modeled
using the steady-state convective-diffusion equation within the
track, then the magnets motion can be modeled using computa-
tionally efficient steady-state techniques. The accuracy of such a
steady-state electrodynamic wheel model written in FEMLAB
is confirmed by comparing the calculated force and power re-
sults with transient Magsoft Flux 2D FEA simulations.

The steady-state current sheet model neglects the perme-
ability change within the magnet regions and the magnet
eddy-current losses. However, since the magnet permeability
is close to one, its neglect has minimal effect. Further, if the
magnets are highly segmented, the eddy-current losses within
the magnets are relatively minimal [38], [39].

II. FORMULATION

The applicable quasi-static Maxwell’s equations are [28]

0B
VXE=—-—— 1
X 5 (D
VxH=1J 2)
V-B=0 3)
J=0c(E+vxB)+J° 4)
V-J=0 5
where
o = conductivity of track;
v = velocity of the conductive material;

Js = an external excitation source;
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For ease of analysis, the conductive material is assumed to
move translationally rather than the magnets. The conductive
material is assumed to be isotropic and linear. Using the gener-
alized constitutive relation

and expressing E and B in terms of the magnetic vector poten-

tial, A, and the electric scalar potential, V'

oA
E=-— —VV 7
e \4 @)

B=VxA ®)

enables (2) and (5) to be rewritten as

A A
oa——I—VX <VX —M)—JVX(VXA)+UVV:JS
ot 1o
©)
A
V~<v><(V><A)—8a—t—VV>o:0. (10)
Using the identity
Vx(VxA)=V(V-A)-V?A (11)

and the Coulomb gauge V - A = 0, (9) and (10) reduce to

ZA A
_Y +U(a—+VV—VX(VXA)>:VXM+JS
1o ot
(12)
V-(vx(VxA)—VV)s=0. (13)

Equations (12) and (13) are known as the convective AV—A for-
mulation [40]-[43]. The electric scalar potential in (12) cannot
be removed by using the A* method [44], [45] because if VV is
removed then trying to impose J - n = 0 on the boundary when
v X B # 0 will give erroneous results [46]. However, Rodger
showed that the electric scalar potential can be replaced if the
velocity term in (12) is rewritten using the identity [28]

vx(VxA)=V(v-A)—(v-V)A
—(A-V)v-Ax(Vxv). (14

The third and fourth terms in (14) involve gradients of velocity,
and are nonzero only when the track is rotating [47]. As it is as-
sumed that the track motion involves only translational velocity
(14) reduces to

vXx(VxA)=V(v-A)—(v-V)A. (15)
Substituting (15) into (12) and taking the divergence on both
sides results in all terms being zero except

V-V(v-A)-V-VV =0. (16)
Therefore, from (16) it can be concluded that [48]
V=v-A [V] (17
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Substituting (17) back into (12) and using (15) yields a formu-
lation in terms of A alone [40], [41], [48], [49]

0A
VA — o <E + (v V)A> = —poV X M—poJ®. (18)
For this simple 2-D model, the conductive track is assumed to
be moving only in the x-direction. Using subscripts to denote
scalar directions enables (18) to be expressed as

0A.
ot

VQAZ—/J,00< +’UmaAz> = —[L(]VXM—/J,()J;. (19)

ox

Within the nonconducting regions, A and B, shown in Fig. 1,
(19) reduces to

?A,

0%A,
Ox? =0

oy?

(20)

In the conductive track region, C, (19) becomes

PA. A, A AN (o)
arz " ayr M7\ Tar T%Tay )T

If the conductivity within the magnets is assumed to be zero,
then the magnet region, D, simplifies to

0%A.  0%A,
-+ —— = —uoV x M.
Ox? + Oy? HoV X

(22)

III. EQUIVALENT CURRENT SHEET DENSITY

Rather than modeling the magnet’s rotational motion in FEA
using a transient time-stepping rotating boundary method, it
is proposed that the magnetic vector potential field created by
the magnets be instead created using an equivalent, one-dimen-
sional complex current sheet function on the outer boundary of
the wheel, r(, as shown in Fig. 2. In this case, the governing
equation in polar coordinates in regions A, B, and D will be

N L e
where
Al = vector potential due to the current sheet;
Ji(6) = current sheet function (to be determined);
o(r —rp) = Dirac delta function [50].

Considering (22), it can be seen that the value of the magnetic
vector potential, on the rotor edge, is due to the magnetization
vector, M. Therefore, if the magnitude of the magnetic poten-
tial, on the rotor edge, caused by the fictitious current sheet, is
made to equal the magnitude of the magnetic potential on the
rotor surface, 7o, due to the magnet’s magnetization vector, i.e.,

Al(ro,0) = A (ro, ) (24)
where
Al = magnetic potential on current sheet surface;
AT = magnetic potential on magnetic rotor surface.

Magnetic vector potential [Wbm™']

0 50 100 150
Angular position [degrees]

Fig. 3. Magnetic vector potential field plot for a four pole-pair Halbach rotor.
The value on the rotor surface is also shown (r, = 0.25 m, r; = 0.1865 m,
B, = 1422, p, = 1.055).
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Fig. 4. Magnetic vector potential frequency components.

then the current sheet’s vector potential on the rotor surface
is forced to be equivalent. As shown, this results in equivalent
forces being created.

To illustrate this method, a Halbach rotor with four pole-pairs
is used [51]. The Halbach array creates an almost purely sinu-
soidal magnetic potential. For example, the field created by the
four pole-pair Halbach rotor shown in Fig. 3 creates the mag-
netic potential on the rotor surface as shown to the right of Fig. 3.
The corresponding harmonic component analysis, Fig. 4, con-
firms the field’s almost sinusoidal form.

By using FEA, or analytically, the electrodynamic wheel’s
magnetic vector potential can be determined as a Fourier series.
For the Halbach rotor, the field on the magnet surface can be
modeled accurately using only the fundamental

A™(r,,0) = ATPeK gin(PH) (25)
where
P = number of pole-pairs;
Am-peak = peak vector potential on the rotor surface.

In order to model the mechanical rotation in steady-state, a com-
plex function must be used

Jg(g) — erakejPO.

(26)
Thus, (23) becomes
10AI  0%AI
T Or or?

1 9243
r2 092

= — g P eIl (r —1,). (27)
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Equation (27) must be solved in order to determine the value of
the equivalent current on the rotor surface. By observation, the
potential solution will have the form

Al(r,0) = a(r)JPekei PO, (28)

Substituting (28) into (27) allows the angular dependence in

(27) to be cancelled out, leading to

0%a
or?

1 0a

r Or T

P2a

5 = —Hod(T = T10). (29)

The complementary solution to (29) is obtained by solving

2
5 0%a,
or?

da,

—P%,.=0
T’ar a

+

(30)

which is the Cauchy—Euler equation [52]. It has the solution in
the form

ac(r)y=rm 31
where m must be determined. Substituting (31) into (30) gives
(m? — P%H)r™ = 0. (32)

Thus, m = £ P, and hence, the general solution to (30) is
ac.(r) = crrt 4+ eor™ P, (33)
Knowing the complementary solution enables the complete
solution to (29) to be obtained by using the variation of parame-
ters method [52] whereby the coefficients c¢; and ¢; are replaced

with variables wuy () and us(r) such that

a(r) = uq (T)TP + uz(r)r“D (34)

is a solution to (29). The evaluation of the variables is deter-
mined by integrating [52]

dui  asf(r)
dr w (35
duy a1 f(r)
dr W (36)
where
f(r) = —pod(r — o) (37
ay =7 (38)
as =11 39)
P il —2P
_ ay ‘ag _ T T _
W = %Lrl %er - ‘ P’I“P_l —P’I”_P_l - r (40)

W is the Wronskian [52]. Evaluating (35) and (36) yields

—P+1
uy = —5—103 ; r=Pro(r —ry)dr = —uoT°2P (41)
0o P+1
Uy = 5—107/0 TPT(S(T —71o)dr = uOT;P . (42)
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The presence of the delta function results in 3 and uy being
constants. Substituting (41) and (42) into (34) gives

a(r) = FoTo i _ i
2P \rP P )"
When » > r,, the magnitude of (43) must decrease with in-
creasing radii, therefore, outside the rotor

( ) HoTo T(I;D
a(r) = = ].
2P \rP
Substituting (44) into (28) gives the complete solution for the
vector potential field outside the rotor as

Peak P
Ai(rya) = 7M0Jz "o (Iro ) ejpa.

(43)

(44)

—= 45

2P rP 45)
Therefore, once the peak magnetic vector potential on the

rotor surface is determined, the equivalent peak sinusoidal cur-

rent sheet value on the rotor surface will be

2P

erak _
HoTo

Am,Peak. (46)

IV. THE COMPLEX STEADY-STATE MODEL

The steady-state magnetic potential solution has the form

AL(z,y,t) = As(z, )", (47)

Therefore, the steady-state form of (21) is then

0%A,  0%A, 0A,
—_— = jwA . " =0 48
52 T gz Moo (Jw t ) (48)

and the problem boundary conditions are
QPAm,Peak .
napx (BA=BB)=""2__ PP onT,5 (49
HoTo

n.x (B =B*) =0onT, (50)
n.- (B -B*) =0onT, (51
A, =0onTy. (52)

The complex steady-state model was validated by using a
number of transient FEA simulations. The validation was made
difficult because the available commercial FEA versions could
not simultaneously model translational and rotational motion or
fictitious current sheets. Therefore, three transient models were
created in order to validate the steady-state current sheet model.
First, the current sheet model was compared with a transiently
rotating Halbach magnet array rotor over a conductive track,
with no translation. Second, a three-phase steady-state current
source model, as used by Fujii [36], [37], was validated. Third,
a combined transient three-phase current source model with a
transient moving track model was created. The three transient
models and their comparisons with the steady-state model are
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TABLE I

SIMULATION PARAMETERS
Translational Velocity, v, 0ms’”
Angular Velocity, v. Varied
Outer radius, ry 0.3 m
Inner radius, r; 0.1725 m
Track Thickness, ¢ 15 mm
Track Conductivity, 6 3.5x10" Sm’!
Air gap, ¢ 10 mm
Pole pairs, P 4
Magnet Width, w 0.3 m
Magnet Residual Flux Density, B, 1.42T
Magnet Permeability, 4, 1.08
Peak Vector Potential on Rotor Surface, g7~ [ 0.069 Wbm''
Peak Current Sheet Density, ; pe 1.46x10° Am™

Fig. 5. Steady-state vector potential contour plot for a current sheet rotor at
1000 RPM.

@

G

Fig. 6. Magsoft Flux 2D Halbach rotor magnetic field transient simulation con-
tour plot at one time step value.

presented below. The force in the track was computed using
Lorentz’s force

Fr=w / Re(J.)Re(B,)dS (53)

Fp=w / Re(J.)Re(B,)dS (54)

where w is the magnet and track width.

A. A Steady-State Current Sheet Model and a Transient
Halbach Rotor Model

Using the parameters given in Table I, the steady-state current
sheet model created in FEMLAB v3.1, and shown in Fig. 5,
was compared with a Magsoft Flux 2D transient Halbach rotor
model, Fig. 6. The flux compression is clearly visible between
the track and the wheel. A comparison of the thrust, lift, and
power loss between the steady-state and transient FEA models
is shown in Figs. 7 and 8. The Magsoft transient force and power
results for the 0.3 m Halbach rotor at 1000 RPM is shown in

s | Lift Force A Transient
—0 thrust force
30 O Transient lift
_ 25 force
é 20 - Current sheet
o 154 lift force
2 T
L!?. 10 Current sheet
5 Thrust Force thrust force
0 + - T 1
0 500 1000 1500 2000
RPM

Fig. 7. Thrust and lift force comparison for the steady-state current sheet model
and the Magsoft Flux 2D transient Halbach model with four pole-pairs.
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Fig. 8. Error comparison between the steady-state current sheet model and the
transient FEA model with four pole-pair rotor.
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Fig. 9. Magsoft Flux 2D transient results at 1000 RPM for the four pole-pair
Halbach rotor.

Fig. 9. Similar accuracy was obtained for three and five pole-pair
models.

B. A Steady-State Current Source Model and a Transient
Halbach Model—No Translational Motion

Due to the need to transiently model both the rotating magnets
and a moving track using Magsoft Flux 2D, the rotational mo-
tion of the magnet was modeled using an equivalent three-phase
current, as shown in Fig. 10. The value of the current density,
that created the equivalent rotor surface magnetic vector poten-
tial, was determined to be 3.17 x 10" Am~2. It was chosen by
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Fig. 10. Three-phase current source model of a four pole-pair Halbach rotor.
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Fig. 11. Thrust and lift force comparison for the three-phase current source
model and the Magsoft Flux 2D transient Halbach model with four pole-pair
rotor.
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Fig. 12. Numerical error between the three-phase current source model and
transient Magsoft model for a four pole-pair rotor.

comparing the current source with Halbach rotor’s vector poten-
tial, AZ*. The validity of the three-phase model was confirmed
by comparing it with the transient model. The force and power
loss comparison is shown in Figs. 11 and 12.

C. Steady-State Current Sheet Model and a Magsoft Transient
Moving Track With a Three-Phase Current Source

Lastly, the current-sheet steady-state model with translational
motion was verified by comparing it with the Magsoft Flux
2D transient model that had both a translationally moving con-
ducting track and a three-phase rotating current source. The field
lines for the Magsoft model is shown in Fig. 13. The transient
translational motion in Magsoft is accounted for by defining a
moveable track region, therefore in order to ensure steady-state
values are reached only low translational speeds are used. The
transient results for 1 ms~! translational speed and 150 RPM
(ve = 4.7ms™1) is shown in Fig. 14. Interestingly, the transient
results almost reach a non-oscillatory steady-state. The compar-
ison between the two models is shown in Figs. 15 and 16. The
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Fig. 13. Magsoft Flux 2D transient model with a rotating three-phase current
source and a translationally moving track at one time step.
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Fig. 14. Magsoft transient results for 1 ms—! translational velocity and
150 RPM.
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Fig. 15. A thrust and lift forces comparison between the steady-state current
sheet model and transient Magsoft Flux 2D model at 150 RPM.

comparison confirms the accuracy of this steady-state current
sheet method.

V. DISCUSSION

The use of rotating magnets to induce the track currents rather
than using a linear induction motor circumvents the problems
associated with operating at a low power factor. To observe just
how inductive the operation of the electrodynamic wheel is, the
power factor can be computed from the complex power, S, on
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Fig. 16. Error between the steady-state current sheet model and the transient

three-phase Magsoft model.

TABLE II
PARAMETERS USED TO COMPUTE THE COMPLEX POWER

Translational velocity, v, 89.4 ms™' (200miles/hour)

Slip, s Varied
Outer radius, r, 0.24 m
Inner radius, r; 0.13m

Pole pairs, P 3

Track conductivity, o 3.5%x10" Sm’!
Track thickness, d 10 mm
Model width, w 0.4 m

Air gap, g 10 mm

1.3394x10° Am™

Current sheet density

the fictitious current sheet boundary

2w
5= / JFO)E.df = P+jQ [VA]  (55)
0
where
w = width of track and magnet model;
P = real power loss;
Q = reactive power.
The input power can also be computed from
P=Tw [W] (56)
= FTUt + PLoss [W] (57)

As an example, using the parameters shown in Table II the
thrust and lift force relationship, as a function of slip, calcu-
lated using the current sheet model for a 200 mi/h translational
velocity is shown in Fig. 17. Using (55) the complex power at
20 ms~ ! slipis S = 2.22 x 10° 4 334 x 107j VA. This result
corresponds to a power factor, pf = 0.007. Clearly, this is an
untenable operating regime if the rotating field was created by
three-phase currents rather than rotating magnets.

The current density distribution within the conducting track
at the slip value of 20 ms~" is illustrated in Fig. 18. Its nonuni-
form distribution shows that it would have been unreasonable to
assume that the current is uniformly distributed throughout the
track thickness.

4 T T 40
3.l..
. + 35
2 +
I T—— 11111 J~~t=<sd=+085
z 30
= 0 Z
5 ko 3
£ -1 T 25 5
- 14
£ .
3 , 20
Thrust Force
4 -
----- Lift Force r1s
-5 - :
6 =10

Slip [m/s]

Fig. 17. Example of the lift and thrust force relationship for a 200 mi/h
(89.4 ms—1) translational velocity.
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Fig. 18. Current density [Am—2] within track for the steady-state simulation
with a 89.4 ms~! translational velocity and a 20 ms~* slip.
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VI. CONCLUSION

The modeling of the high-speed rotational and translational
motion of magnets above a conductive, nonmagnetic track is
typically highly time consuming and computationally expensive
if transient models are used. However, modeling the rotating
magnets with a complex current sheet and using the convec-
tive-diffusion equation to account for the translational motion
enables a fast steady-state model to be used. The accuracy of
such a steady-state model was confirmed by comparing it with
transient finite-element simulations. A steady-state model en-
ables a parameter investigation and performance assessment of
an electrodynamic wheel to be quickly undertaken. A 2-D pa-
rameter and performance investigation of the electrodynamic
wheel is presented in a companion paper [53].
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