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Figure 8 shows the  neutral axis angular shift for  both linear machines, where superposition of fields is contemplated. A 
and incremental models as a function of  rotational velocity. comparison of neutral axis shifts  in Fig. 8 shows clearly the 

degree of  error involved in a direct  superposition of main 
DISCUSSION and cross fields in the case of a circular ferromagnetic bar 

The  rather angular appearance of the  flux lines shown in 
rotating in a magnetic field. 

Figs. 5 ,  6, and 7 is due to  both  the small number of triangular 
meshes used,  and  the straight line interpolation  procedure 
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A Field-Theoretical Approach to  Magnetic 
Induction  Heating 0% Thin 

Circular Plates 
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Abstract - A field-theoretical  approach is used to analyze 
the  subject  of magnetic induction .heating of thin circular 
plates by planar coils. Closed-form solutions  for  the  electric 
and magnetic fields are  found  to  the basic field problem of a 
single circular loop carrying current at a frequency w in  the 
presence of a plate characterized  by a permeability p and  con- 
ductivity 0. By  using these fields, expressions are derived for 
the complex  Poynting  vector at  the surface of the plate, and 
for  the induced EMF in the coil. The  theory is extended to 
include  multiturn coils and a field-dependent  permeability, 
and a specific multiturn. coi l  and  plate  combination ischosen 
as an example. The complex  amplitude of‘ the magnetic field 
and  the Poynting  vector are calculated along the surface of 
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the  plate using iterative methods to assure  self-consistency 
with  the field dependent permeability of the plate. By using 
Fourier  transform  techniques, the  transient  coil  current  and 
coil voltage waveforms are calculated under  the experimental 
conditions used to take  data  on  the sample coil and plate. 
The absorbed  power is calculated from these waveforms and  is 
found  to  be within 10 percent of the measured power absorp- 
tion  for all levels o f  operation  from 50 to 2000 W. The calcu- 
lated  coil  current waveform is compared  with the measured 
waveform and is found  to  be in very good agreement in both 
shape and period. 

I. INTRQDLJCTIQN 

In th.is paper a field-theoretical  approach will be used to 
analyze the subject of the magnetic induction  heating of thin 
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circular plates  by  planar coils. A great  deal  has  been written 
on  the  subject  of  induction  heating  and  its  industrial  applica- 
tions  but  the geometries  usually  considered are those of  eithkr 
a solid cylinder  or  a  rectangular slab [ 11, [ 21. A recent  paper 
by  Moreland [ 3 ]  considers  the circular plate geometry but is 
mainly  qualitative in its approach. The purpose  of  this  paper 
will be to  develop an analytical model  that will both engender 
understanding  of  the  physical  processes  involved  in  induction 
heating  and that can  be  used  in  full  quantitative  detail to de- 
s i g n  induction heating  systems  optimally  using  this  geometry. 

The  paper is divided into  two sections. In  the  first  section 
the field-theoretical model is developed  in  which  a  closed- 
form  solution is sought to  the basic field problem  of  a single 
circular loop carrying  current at an  angular  frequency w in 
the  presence of  a semi-infinite plate characterized by  a 
permeability p and  a  conductivity 0. In  the second  section it 
is shown that  the  solution  to  this  problem is a  good  approxi- 
mate  solution to the field problem  of circular plate slightly 
larger than  the coil. Expressions are formulated  for  the com- 
plex amplitudes  in  the  sinusoidal  steady  state  of  the electric 
and  magnetic fields. By using  these fields an expression is de- 
rived for  the  complex  Poynting  vector  at  the  surface  of  the 
plate  which gives the  distribution  of  the  power  flow  into  the 
plate and can  be  integrated to find  the  total power  absorbed 
in the plate. In  addition,  an  expression is derived for  the com- 
plex  amplitude  of  the  induced  voltage in the coil which, to 
within  a constant, is the impedance  of  the  loaded coil. 
Finally, techniques are discussed  for  treating  a  nonlinear 
permeability in the  scope of an  otherwise linear theory. 

In the second  section  the  theory is extended to include 
multiturn coils. A specific coil-plate combination for which 
data were  taken is used as’avehicle  for presenting the results 
of  the  theory.  The  complex  amplitudes  of  the  magnetic field 
and  the  Poynting  vector are calculated  along  the  surface of 
the plate using iterative methods  to assure self-consistency 
with  the field dependent permeability  of the plate. The  com- 
plex  impedance of the  multiturn coil is formed  and  Fourier 
techniques are used to calculate the coil current  and coil 
voltage  waveforms  and  the  absorbed  power  under  the  experi- 
mental  conditions of a step  voltage  excitation  of the  tuned 
circuit formed  by  the coil-plate combination  and  a  capacitor. 
The calculated  absorbed  power and  current  waveforms are 
then  compared  with  experiment  and are found to be  in good 
agreement. 

11. SOLUTION TO THE  FIELD PROBLEM 

A. Problem Definition 

The  basic field problem consists of a single circular coil 
of  radius R carrying a current I at frequency w separated by a 
distance h from a plate of radius Rp > R wkh conductivity 
(T and  permeability p. Neglecting  for  the  moment  nonlinearity 
and  hysteresis  effects  in  ferrous  metals,  superposition  can  then 
be used to obtain  the fields for a coil consisting of many 
turns  placed at various radii R and  distances h from  the plate. 
This will  be done in the  next section. The  methods to be used 
will lead to a solution  that,  although  approximate,  should 
represent  the  actual fields very well. Theoretical  arguments 

and  experimental  evidence to support  this  contention will be 
given in  this  section  and  the  next. 

To solve the  basic field problem,  the  following  equation 
for  the  vector  potential  must be  solved [4] 

For  a  metal  at  the  frequency  of  interest cf= 30 kHz), the first 
time-dependent  term is much  smaller  than the second  term 
and  can be neglected.  In  addition, t@ geometry is cylin- 
drically symmetric so that  only  the 6, component of the 
vector potential need be considered. Finally, assuming har- 
monic  variation of the fields (Fourier analysis will be done 
later)  the field equation to  be solved in the plate becomes 

. 3  

where a (r,z, t) = t,A, (r,z)  eiwt and A, (r,z)  is the  complex 
amplitude  of  the  vector  potential.  Outside  the  metal  both 
time-dependent  terms  can  be  neglected since the wavelength 
of electromagnetic waves in air at 30 kHz  is much larger than 
the size of the coil ( X  = IO4 m  compared to the  radius 
R = 0.1 m) leaving the  first two terms  in (2) as  the field equa- 
tion to be solved. 

Rather  than  attempt  to solve the field problem  for  a  finite 
plate, a  closed-form  solution will be  sought to  the more 
tractable field problem  where the  plate is infinite in extent 
(see  Fig. 1). This  solution  should be a  good  approximate solu- 
tion  to  the problem  with  a  finite plate slightly larger than  the 
coil since, for  the geometries of  interest,  the plate is very 
close to  the coil (h << R )  and  the fields at  the plate surface 
fall off  very  rapidly  for  radii  greater than  the  outer radius  of 
the coil. This issue will be  discussed in the  next  section  in  the 
context of  a specific example. 

B.  Method of Solution 

The  approach to be  taken will be to use a  variation  on the 
method  of images [ 51. If  the  plate were  perfectly  conducting, 
the  problem  would be quite  simple as there  would  be no 
fields within  the  plate  and  the fields on  the  outside would  be 
given by  the  superposition  of  the fields of the  actual coil and 
of  an  image coil placed  equidistantly  from  the  surface  of  the 
plate  at z = h (see Fig. 1) but with  an  oppositely  directed 
current  flow.  However,  for  the case of  interest  where  the 
plate has  finite  conductivity, fields will exist inside of the 
plate as well, and  the  problem  becomes  much  more 
complicated. 

A set  of  trial  solutions  for  the  vector  potential inside and 
outside of  the  plate are given in (3)  and (4). The basis for 
these  choices  of functions will be discussed  below. 

. I  
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Fig. 1. Geometry of the basic field  problems to be solved. 
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In these  equations Y,  R, h, and z are defined in Fig. I, K (k) 
and E ( k )  are the complete elliptic integrals of modulus k of 
the  first  and  second  kinds respectively, p, is the  permeability 
of free space, is the permeability of the  plate, 5 is the con- 
ductivity  of  the plate, w is the  angular  frequency, I is the 
actual coil current,  and I', I", If'', and P are undetermined 
constants.  The first term in (3) is the vector potential of a 
circular current  carrying ring [ 6 ]  of  radius R located at 
z = -h .  The second  term is the  vector  potential of an image 
coil placed at z = h but with  the  current I' unspecified  at  this 
time.  The  third  term is the derivative with  respect  to z of the 
second  term but also with an undetermined  current I". It  
should be noted  that since the  operator a /& commutes with 
the wave equation (2), that is, it  can be operated  through  the 
existing  operators  without  changing  them,  the derivative with 
respect to z of  any  solution to the  equation is also a solution. 
(The same cannot be  said about derivatives with  respect to r.) 

The  solutions  for  the  vector  potential inside the  metal 
shown  in ( 4 )  ar.e product  functions  between  a  term similar to 
the last term in (3) (to be  referred to as the coil factor) and  a 

complex  exponential  in  the  variable z. In  the  first  term in (4) 
the  modulus k is referenced to  the  actual coil and  in  the sec- 
ond  term  the  modulus k' is referenced to  the image coil at 
z = h. These product  functions are not exact  solutions to  the 
wave-equation (2), but are, in fact, very  good  approximate 
solutions. The coil factor will vanish  when  acted upon by the 
first  two  terms a.nd the  exponential  factor will  vanish when 
acted  upon  by  the  Fist  and last terms  of (2). The  problem 
arises because both  factors  depend  on  the variable z so there 
is an  additional  cross  term  left over  involving the  product  of 
the f i s t  derivatives with  respect to z of each of the factors. 
However,  explicit  evaluation  has  shown that this term is only 
S.0376 of the second derivative of the  exponential  term  and 
can thus safely be neglected.  Some insight can  be obtained 
into  this by noting  that  the  factor d a  appearing in the 
exponential is actually the reciprocal of the classical  skin 
depth  and  for an iron  plate  at 30 kHz the skin depth is only 
30 Pm.  Therefore,  neglecting  the  above cross term  in de- 
termining  a  solution to (2) is equivalent  to  noting that in the 
distance  of several  skin depths over which  the  surface fields 
will completely vanish due to  the skin  effect,  the  factor de- 
rived from  the  magnetostatic  current ring solution will remain 
virtually constant. 

C. Boundary  Conditions 

It  now is necessary to show that  the fields derived  from 
the vector  potentials of ( 3 )  and ( 4 )  can satisfy the  boundary 
conditions  at  the  air-metal  interface  and to determine in the 
process the values  of  the  constants  appearing  in  these  equa- 
tions. The  boundary  conditions  to  be  imposed are that  the 
tangential  magnetic field Nand electric field E and  the  normal 
magnetic  flux  density B are continuous at the  interface, 

The  boundary  condition  for  the radial magnetic field in- 
tensity is  given  as 

and  the  boundary  conditions  for  the z directed  magnetic flux 
density is  given 

Since the  boundary  conditions  must be satisfied over the en- 
tire interface, fields on  both sides of the  interface  must have 
the same functional  dependence on  the  radius Y. Thus, the 
reasons  for the choice of  the particular trial functions  in ( 3 )  
and (4) are now seen to be due to the  requirements o f  satis 
fying  .the  boundary  conditions  for  the  two  magnetic fields 
which relate to different derivatives of the vector  potential. 
Satisfaction  of the  boundary  conditions  leads to the  following 
values  for  the four  unknown  constants 
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The  boundary  condition  on  the  tangential  electric field is also 
met by this  choice  of  constants since the  constraint  imposed 
is identical to  that given in (6) for  the magnetic  flux  density. 
I t  should also be noted  that making either u or 0 very large 
causes the  constants I”,  Y’, and 1’ to vanish  and the two re- 
maining  terms are just  those  that make up  the  solution  for  a 
coil and  a  perfectly  conducting plate previously discussed. 

The  formal  expressions for the fields can now  be  obtained.’ 
The radial magnetic field and the cp component of  the elec- 
tric field outside  the plate are given-by’ 
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The z component of  the  magnetic field and  the fields inside 
the plate are not needed  in  the  subsequent  development  and 
are consequently  not given. 

D. Induced Coil Voltage 

Having expressions for  the fields it now  becomes  possible 
to calculate several items  of  experimental  interest  such as the 
induced EMF in  the coil. The  procedure  amounts  to  inte- 
grating  the z directed  magnetic  flux  density over the  area  en- 
closed by the coil with  the  result  being 

u = - dcp = i0(271TAP0(Y,Z)).  
d t  - (13) 

Upon  evaluation,  the  induced coil voltage is  given  as 
P 

w = i w 0 1  X LR X{k X (($- 1) X K ( k )  - k~ 2 X E(K) )  

kt2 

X OM X /&X$ X [ s ) X  E ( k ’ )  - K ( k ’ )  1 
(14) 

where 
2R k‘ i k = f---- 4(R-Ar)R 

&iP-Tx  (2R - Ar)’ 

where Ar is taken  to  be  the radius  of the coil wire. Evaluation 
cannot actually be made  right at r = R since the  first  term  in 
(14); which  represents  the  self-inductance  of  the coil, would 
be infinite. For AY << R the  effect  of  including  the  wire size 
on  the  other  terms is  negligible and  thus  has  not  been in- 
cluded  in  the above. 

The  second  term in (14) is similar in  form to the self-in- 
ductance  term but opposite  in sign and  does  not  depend on 
the electrical and  magnetic  properties of  the plate. This  term 
together  with  the  self-inductance  term  represents  the  total 
coil impedance  when the plate is of  very high conductivity 
and  low  permeability.  The final term  which  has  equal  lossy 
and  reactive components is present  when  the fields penetrate 
into  the  plate  and power is absorbed. 

E. Poynting Vector 

The real part of the complex  Poynting  vector gives the dis- 
tribution of  power  flow into  the plate and  can  be  integrated 
to give an  alternate  way,  that is other  than (14), of  calculating 
the  absorbed  power in the  plate.  For  our  geometry,  the z 
component is the  only  component  of  the real part  of  the com- 
plex  Poynting  vector  that exists and is  given by 

Re (S, (r, z ) )  = - - Re (EP (r, z )  X H,* ( r , ~ ) ) .  (15) 

By including (11) and (12) for  the fields, this  expression was 
evaluated at  the surface  of the plate and is given  by 

1 
2 

Re (S, (Y,o)) = I2 UP X J& 
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F. Nonlinearities and Techniques 

If one is completely  rigorous  and also insists on using a 
nonlinear  parameter  such as amagnetic-field-dependent perme- 
ability  in an otherwise linear system, then  a linear theory, 
such as that  in  this section, is not valid. Furthermore, even if 
it were valid it would not be possible to superimpose solu- 

*tions  to arrive at an  answer to a  composite  structure. How- 
ever, believing  an  approximate  nonlinear  solution is better 
than neglecting the nonlinearities  altogether, two techniques 
were  used to account  for some  aspects of  the nonlinear 
nature  of  the  problem  and  otherwise  preserve  the basis of  pre- 
viously  developed h e a r  theory. 

In this section  the  solution to  the field problem was de- 
veloped  for  a  generalized  complex  sinusoid at  a specific angu- 
lar frequency a, and, as such, the fields were  characterized 
by their  complex  amplitudes  of this sinusoid. Consequently, 
it is more  appropriate to use an average permeability associ- 
ated with the  amplitude of a  sinusoid  rather  than  one associ- 
ated with the  instantaneous value of the field at  any  point  in 
time.  Therefore,  an average permeability pav(H) is defined as 

n - 

where B ( H )  is the value of  the  magnetic  flux  density at a 
particular field strength H. A  further discussion  of  this average 
permeability will be given later. It should be noted  that  the 
nonlinear  permeability will result in fields at higher harmonics 
being present  and  these fields will in turn induce  voltages in 
the coil. However,  study  of (15) and (11) and (12)  for  the 
fields reveals that,  to first order at least, no  power will be 
absorbed at these  higher  harmonics.  .Furthermore, if the coil 
is part  of  a  tuned circuit at  frequency w, as is the case for  the 
example in the next section, these  higher  harmonic  voltages 
will be  severely attenuated  and should not  affect  the overall 
solution. 

The second issue  is that of  superposition  of fields when 
the  plate  has  a  nonlinear  permeability.  Superposition in the 
normal sense is not possible in a  nonlinear  system  and can 
only be done if it is treated self-consistently. The  approach 
to be  taken  here will be to insure always, through  iteration  of 
the  solution,  that  at all points  along  the  surface of the pIate 
the  permeability  used to calculate the fields is the perme- 
'ability that is associated  with  those fields. 

111. FIELD AND POWER CALCULATIONS AND A  FOURIER 
TRANSFORM APPROACH TO COIL MODELING 

A. Calculations on the Sample  Coil 

In  this section, field and  power  calculations  and  measure- 
ments are presented  for  the coil and plate shown  in Fig.  2. 
The  loaded coil and  a  capacitor  form  the  tuned circuit shown 
in Fig. 3. In  the  experiment  the  circuit was driven  by what 

TOP VIEW 

15 TURNS 
/ 

DIMENSIONS 

a = 3.18cm 
b = 5.155cm 
C = 7.62cm 
d = 10.00cm 
R p  = I I .5 cm 

18 TURNS ' 

PLATE 

SIDE  VIEW 

F = -1.25cm 

Fig. 2. Geometry of the coil and plate  used  in  experimental  testing. 

vs  UJ t 1 
COIL Et PLATE 
COMBINATION 

Fig. 3. Equivalent  circuit used in experimental  testing. 

I I 1 
10 20 30 

MAGNETIC FIELD H loersledsl 

Fig. 4. Permeability of the iron  plate as a function of magnetic field. 

amounted  to  a  step  voltage  source  and  the  power  delivered to 
the  circuit was measured as a  function of the peak  current in 
the  current response. 

The  conductivity  of  the plate which was made  from cold- 
rolled steel was taken as 

r~ = 1.0 X IO5 (ohm-cm)-l. 

The  actual  permeability ( p ( H )  = B ( H ) / H )  of  the plate material 
is not  known and  the  curve  shown  in Fig. 4 will be used in- 
stead. The  shape of this curve is that  for ordinary  transformer 
steel 171 but  the curve  has  been scaled by  a  factor of 2.5 so 
that  the maximum  permeability is approximately  that of cold 
rolled steel [ 7 ]  (p,, = 2000). 

In Fig. 5  the results of  the  steady-state field calculations 
for  the coil in  Fig. 2 are shown  with  a  current I = 51 A  and 
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0 i 
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Fig. 5. Magnetic fields, Poynting vector, and average  permeability at the  surface  of  the  plate for the  sample coil with a 
current of 51 A. 

f =  30.0 kHz. All  calculations are for z = 0, the  surface  of the 
plate, and are shown as a  function of the  distance r from  the 
center  of  the plate. Included  in Fig. 5 are the  magnitude of 
the  total radial magnetic field lH,t (r)l, the  part of the field in 
phase with the  current and  contributing  to  power  absorption 
H,, (r) ,  the real part  of  the complex  Poynting  vector 
Re (S, ( r ) ) ,  and  the average permeability  of  the plate (as de- 
fined  in (17)) that achieved  self-consistency with the calcu- 
lated  total field pav (&I, that is H,t = Hrt(pav (FI,~)). It is 
worth observing that  the field H,, is simply  twice  the field 
that would  be  present  at z = 0 if the  plate  were  removed  and 
would  be the  total radial field if the plate were  a  perfect  con- 
ductor.  The  total absorbed  power  in  the  plate was P = 4475W. 
As  can be seen, the variation  in the  total magnetic field as a 
function  of  radius is accompanied by an inverse type  of varia- 
tion  in  the permeability  pav(H,t).  Since  the real part of the 
Poynting  vector is proportional  to  the  square  root  of  the 
permeability (see (16)), the variation of /.L,(H,~) somewhat 
compensates  for  the  variation  in  the  magnetic field and re- 
sults  in  a  more  uniform  distribution  of  input  power to  the 
plate. In addition,  -the inverse variation  of the permeability 
also smooths  the variations in the  total magnetic field since 
H,t is also proportional to the  square root of the perme- 
ability (see (11)). 

B. Complex Impedance of the Coil 

Equation (14) of th f  last section  and the associated dis- 
cussion. will be used as a  guide  in  forming the complex im- 
pedance of  the  loaded coil. This  equation  shows  that  there are 
three reactive terms  and  one  lossy  term.  The  first  two  terms 
represent  inductances  and  the  value  of  these  terms  can  be 
calculated  for  a multiturn  coil by  summing the  flux linked by 
each coil, produced by fields of all of  the coils under  the  con- 
dition  that  the  plate is of infinite  conductivity.  The flux pro- 
duced  by  a single coil  carrying  one  ampere  of  current  located 
at  Ri, and linking an area (Rj - Ar)2 is given by 

X K ( k )  - - X  2 E ( k ) )  - k' .(($-,I.) 

(18) 

k 2  

where 

k = $""" kt =, I-' 2 (Rj - Ar) Ri 
(Rj - Ar + Ri)2  (Rj - Ar + Ri)2 + 4h2 

and  where Ar is the  radius  of  the  wire  used to make the coil. 
If one now sums pij (Ri,  Rj) over all of  the coils Ri, the  total 
flux  linking  a coil located  at Rj results. Then, if this is done 
for each  of the coils and  the  results  summed,  the  total  flux 
linked is calculated. This  procedure was done for the coil in 
Fig. 2 with  the  result  that  the  self-inductance  term  was 

L11 = 154.2 pH 

and  the  total  for  both  terms in (18) was 

L11 - L12 = 66.7 pH. 

The  measured value for  the  self-inductance was 

L11 = 142 pH 

and  the  measured  inductance  when  an  aluminum plate was 
located 1.25 cm  above  the coil, thus  approximating  the  highly 
conducting-low  permeability plate, is given  as 

L11 - LIZ = 67 pH. 

As can be seen, the  agreement is quite good. 
The values for the  lossy  term  and the  third  term  in (14) are 

evaluated  using the results of "the field and  power  calculations 
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shown in Fig. 5. This is done by noting that  the  fourth term in 
(14) is a resistance in  the sinusoidal steady  state,  and  the 
power dissipated by this resistance is P = 112 I2 R. Since the 
only loss in the system is the power dissipated in  the  plate, 
the integral of the real part  of  the  Poynting vector over the 
area of the  plate  must be identical to the power dissipated in 
the lossy term in (14)  and can be used to infer  the equivalent 
coil resistance for examples  with nonlinearities and compli- 
cated geometry. This method was explicitly tested  for  the 
case  of a single  coil and  plate ( R  = 10 cm, h = 1.25 cm)  where 
the permeability was constant ( p  = 1000).  The results were 
that  the  two values of resistance were identical  when  the 
integration was extended  to twice the coil radius and  differed 
by only 3% when  the  “plate radius” was just 20%  larger than 
that of the coil. With this  justification,  the equivalent re- 
sistance in the sinusoidal steady  state at frequency f = 30 kHz 
is shown in Fig. 6 as a function of the complex  amplitude of 
the  current. As  can be seen, the resistance is quite  nonlinear 
changing by a factor of  two in the range between 10 and 60 A. 

f : 30 kHz 

Req E ___ 2 5 . 4 5 6 3  

~I-0.0012909~12t 7.22911 
a 

I I I I I I 
IO 20 30 40 50 60 

CURRENT AMPLITUDE I l amps)  

Fig. 6 .  Equivalent  resistance  of  the  loaded  coil as a function  of  the 
amplitude  of a 30 kHz  sinusoidal  current. 

The Fourier  transform of the  impedance of the coil can 
now be formed  and is  given as 

where X (I) = R ( I )  /d 27~ X 30 kHz = R ( I )  / 434.2 and 
L = Lll  - L12 = 66.7 X H. As  can be seen from (14),it 
was  necessary to divide R ( I )  by the square root of the angular 
frequency that was used to formulate R ( I )  in order to include 
all of the  correct frequency dependent behavior in  the trans- 
form. Also in (19), the use of the  absolute value of 0 is 
necessary to preserve the  correct behavior of the transform 
under reversal of the sign  of W. 

C. Comparison  Between  Theory and Experiment 

The  theoretical  and  experimental  data  on  the  power ab- 
sorbed by  the coil-plate combination as a function of the 
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Fig. 7. Theoretical and experimental  curves  of  the  absorbed  power 
in the  plate  as a function of the peak  in  the  current  response. 

peak current is shown in Fig. 7. The experimental data is the 
input power into  the tuned circuit in Fig. 3, as a function of 
the peak current sensed by a 0.021-f2 resistor and measured 
on an oscilloscope. External  circuitry  reset  the  circuit 34 ps 
after the start of the voltage step  and  the  entire sequence was 
repeated’every 50 ps, The  theoretical curve was obtained by 
calculating both the coil current and in-phase  voltage with 
inverse Fourier  transforms using (19)  and  integrating  the prod- 
uct  up  to t = 34 ps and normalizing by  the  repetition  rate 
T = 50 ps. Because of the  nonlinearity in the expression for 
the  coil  impedance in-(19), it was necessary to iterate  the re- 
sulting current  at each instant  in time to assure  self-con- 
sistency. The peak current  was  monitored  during  the calcula- 
tion. As can be seen, the agreement  between theory  and 
experiment is within 10 percent. It should be emphasized that 
the  theory does not  represent a fit of the  data in any  way. 
Because  of the  nonlinearity of the equivalent resistance shown 
in Fig. 6 ,  a linear circuit model will never be able to predict 
accurately  the behavior of the loaded coil. 

’ \ \  ,EXPERIMENT I 

Fig. 8. Comparison  between  the  experimental  and  theoretical  cur- 
rent-response  waveforms. 
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In Fig. 8 is shown  a  drawing  of  an  oscilloscope  picture  of  a 
typical  current  response  to  a  step  .function  of  voltage  (labeled 
experiment). As can  be seen, there is a  small  “wrinkle”  in the 
waveform at t = 17 /LS. Also shown  in Fig. 8 is the  theoretical 
cuirent response that was calculated using the inverse Fourier 
transform as  above. The  two  waveforms are quite similar in 
shape  and have identical periods. However, the  theoretical 
curve  exhibits slightly more  damping  and  a  more  pronounced 
“wrinMe”. This  “wrinkle”  has  been  shown to occur as a re- 
sult of the  nonlinearity in the  function X ( I )  appearing in the 
Fourier  transform  in  (19).  Improved  agreement  could  be 
achieved  by  decreasing  the overall size  of the  permeability  in 
Fig. 4 as  this will have the  effect  of  reducing  the  amount of 
nonlinearity  and  decreasing  the  damping.  A  decrease  in  the 
damping will also  have the  effect  of  bringing  the  calculated 
power  curve even more in line with the measured curve in 
Fig. 7. A change in  the shape of the permeability curve  will 
also be necessary if one insists on 100 percent  accuracy  in 
modeling  the  “wrinkle” in the  experimental  waveshape  in 
Fig. 8. The closest approximation to the  actual  shape  has  been 
achieved  by  including  hysteresis effects. However,  doing  this 
has  the  effect  of  substantially increasing. the  complexity of 
the calculation without materially  improving other aspects of 
the results. 

D. Discussion of the Approximations in the Theory 

The  theory given  in this paper is an  approximate  one  with 
the  approximations falling into  two classes: those  associated 
with the  solution  of  the linear field problem  and  those  used 
to include  a field dependent permeability into an otherwise 
linear theory. In  the  first class, two  approximations  were 
made  as  discussed in Section 11 of  the paper.  The  first of 
these was that  the z coordinate  dependence of the fields in- 
side the plate is dominated by the  exponential  “skin  effect” 
type of  variation  and it was shown that this is indeed  a  good 
approximation.  A  second  approximation was that  the solu- 
tion  to  the field problem  with a semi-infinite plate would  be 
a  good  approximation  to  the  solution  of  the field problem for 
a  finite plate that was  larger in  radius  than  the coil and  located 
a  small  distance  above  the coil. Some  comment  will’now be 
made  on this. 

For  the  example  discussed in this section  where the coil 
radius is 10  cm and the coil-plate separation is 1.25 cm, the 
power  absorbed  by  the semi-infinite plate within  the  plate 
radius  of  11.5  cm is  97 percent of the  power  absorbed by 
the  entire plate. It is thus likely that  the  theory presented 
here  when  applied to this  finite plate will not be in error  by 
more than 3 percent in the power  absorbed.  The  error  could 
possibly be  less since the  integrated  power  within  the plate 
radius  should be closer to  the  true power  absorbed  by  the 
finite plate than  that absorbed  by  the  entire semi-infinite 
plate. The  calculated fields themselves  should be accurate 
within  the coil radius  and  undoubtedly largely in error out- 
side the plate radius. However,  these fields are quite small 
and  of  little  interest in themselves. 

Some  comment should also be made about the  approxi- 
mate  technique  used in treating  the  nonlinear  permeability 
and,  in particular, the  method of  formulating  the average 
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permeability  shown  in (17). The  entire  concept  of  this aver- 
age permeability is an  approximation but  the  method used 
here is probably not the  best that  could,be done, in  general. 
The  problem arises because  in  zorming  the Poyntingvector  at 
the plate surface  when  calculating  the  absorbed  power, the 
surface  Permeability as determined by the  surface fields is 
used. The  theory  inherently  assumes  that  the  permeability is 
the same inside the plate and, since the fields are decreasing 
in strength,  this will not actually  be the case. Consequently, 
an  additional average of  the  permeability  should  be  made  with 
the average weighted by the absorbed  power  density  within 
the plate. This was not  done  for  the example given here  be- 
cause, with  the  uncertainties  in  the  permeability  curve  that 
was used,  this  additional  refinement did not seem worthwhile. 

IV. SUMMARY 

In  this  paper  a  comprehensive  model  for  the  induction 
heating of  a circular plate by a  planar coil has  been  developed 
using  a field-theoretic approach.  Closed-form  expressions  were 
derived for  the  complex  amplitudes in the sinusoidal  steady 
state  for  the electric and  magnetic fields, the real part of the 
Poynting  vector,  and  the  induced EMF in  the coil. A non- 
linear dependence\\of  the  plate  permeability  on  magnetic field 
was incorporated  into  the  model  and  a specific multiturn 
coil was used in an  experimental  test  of  the  theory.  The  non- 
linear complex  coil  impedance was formed,  and  using  a self- 
consistent  application  of  Fourier integral techniques  the ab- 
sorbed  power was calculated. The results agreed with meas- 
urements  on  the  actual  circuit  within  10%  over  the  entire 
range  of  power levels tested  (50-2000 W). Over the same  range 
of  power levels the equivalent coil resistance at 30 kHz was 
found to change  by  a  factor  of  more than two.  This large non- 
linearity and  the  fact  that  the coil impedance  depends on  the 
square root of the  frequency  indicates  the  futility  of at- 
tempting to use  a linear circuit to model  the coil. A  com- 
parison was also made  between  the  theoretical  current wave- 
form  and  the measured  current  waveform  and  they  were 
found  to be  in excellent  agreement  in both shape  and  period 
including the presence  of  a small inflection. 
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