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An Efficient Harmonic Balance Method for Nonlinear
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A method is presented which determines the steady-state solution of nonlinear eddy current problems. The unknown potentials are
represented by Fourier-series and the nonlinear behavior of the material is split into a linear and a nonlinear term using a fixed-point
technique. This approach leads to decoupled linear equations for each harmonic component. To take the nonlinearity into account, sev-
eral fixed-point iterations have to be made. The method avoids calculating transient processes which normally have to be stepped through

if using time-stepping methods. The present method is illustrated by two 2-D examples.

Index Terms—Eddy currents, nonlinear equations, nonlinear magnetics, periodic functions.

1. INTRODUCTION

N nonlinear dynamic electromagnetic problems with peri-
I odic excitation the steady-state solution is often sufficient.
With time-stepping methods a lot of periods may have to be
stepped through until steady state is achieved. Such strategies
like the so-called “brute force” method (see, e.g., [4]) are, there-
fore, computationally expensive.

For nonlinear static problems on the other hand, the
fixed-point method is a promising technique [1]. The fixed-point
method means that the nonlinear relation of the material is split
into a linear and a nonlinear term. The nonlinear term is then
updated from the previous solution in each iteration step.
This method can also be used for the time domain solution of
nonlinear dynamic problems with sinusoidal excitation [2]. The
approach in [2] leads to a number of linear equations, where the
equations are decoupled for each time instant within a period.
Several iteration steps have to be made to take the nonlinear
behavior of the material into account.

Another way for obtaining steady state is by introducing
Fourier-series leading to what is known as the harmonic bal-
ance method. In [3] and [5], Fourier-series are used for the
magnetic vector potential A, the magnetic reluctivity v, and
the excitation J. Here, the amplitude of a harmonic component
depend on all amplitudes obtained at the previous iteration step.

In this paper, the harmonic balance method and the fixed-
point method are combined. By using the fixed-point method,
a Fourier-series for the reluctivity v is not needed and the ele-
ment matrices of the equation system became constant. The non-
linear term appears on the right-hand side only and, therefore,
only this side had to be updated in each iteration step. The ex-
citation as well as the unknowns are represented by Fourier-se-
ries with a finite number of harmonics. This leads to a number
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of linear equation systems, which are decoupled for each har-
monic component.

II. METHOD

For eddy current problems with nonlinear materials, the dif-
ferential equation has the general form

d
S(x) - x(t) + - (M(x) - x(t)) = £(2). M
The matrices S and M in (1) depend on the solution x(¢) and
must, therefore, be updated in each iteration step. If the formu-
lation leading to (1) is based on the flux density B, the magnetic
field intensity H can be separated in a linear and nonlinear term

(1]

H(B) = Z/FPB — MFP(B) (2)

Here, Mpp is a magnetization-like quantity which includes the
nonlinear behavior of the material and v¢p is a fixed value which
influences the convergence of the method.

In eddy current regions, the magnetic vector potential A and
the time integrated electric scalar potential v can be introduced
as

0A 0
—_— = graud—V 3)

B=culA —
cur T
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where E is the electric field intensity. With these potentials,
using (2), Ampere’s law and the law of charge conservation can
be written as
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If Galerkin’s method is applied to (4), an algebraic equation
system is obtained

S -x(t)+ M. x(¢t) = f(x,t) (5)

where the vector x(t) contains the unknown time dependent po-
tentials A and v and f(x,t) contains the excitation and a term
which corresponds to Mpp. Since Mpp depends on B, the
right-hand side of (5) depends on x.

Due to the right-hand side of (4), a term N; - curl(Mpp)
occurs in Galerkin’s equation, where the edge-shape functions
are denoted by N;. This term can be rearranged into curl(N;) -
MpFp, and therefore, curl(Mpp) need not be calculated.

Solving (5) iteratively, the vector f can be determined from
the previous solution x(¢) using relation (2). So, the right-hand
side became a function of time only

S-x(t) + M- x(t) = g(t). (6)

The vectors x and g are now approximated as complex Fourier-
series with /N harmonics

N
x(t) 2 Re {Xo +) Xkejk“"t}

k=1

N
g(t) 2 Re {Go +y erﬂ%t} (7)

k=1

where wy is the angular frequency of the excitation. Xy and Gy
are the dc-components and X, and Gy, are the complex ampli-
tudes at frequency kwy. The approximations of x and g together
with (6) lead to N + 1 linear decoupled equation systems

S-Xp=Go
(S +jkaM) Xk :Gk
k=1,...,N. (8)

The amplitudes are calculated from the time signals by
Fourier-transform. This transformation is normally done by the
so-called discrete fourier transform (DFT)

Mi

n=0
M-1
MZ nTeJM
k=1, ..,M—l. )

Here, M is the number of time values for g and 7T is the time
increment.

III. ALGORITHM

Starting from an arbitrary value of Mgp (usually zero), the
time dependent vector g() on the right-hand side of (6) is de-
termined. From this time function, the amplitudes G (k =
0,...,N) are calculated using (9). The equation system (8)
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Fig. 1. Flow chart of the proposed method.

is then solved and the new solution x(¢) is determined by the
relationship (7). With this solution and relation (2), the new
value of g(t) can be evaluated. The solution of (8) is determined
again with the new values for Gy. This procedure will be re-
peated, until the mean and maximum variance of the reluctivity
(Vmean, Vmax) Over all integration points between the previous
and actual iteration step is smaller than a prescribed value. The
flow chart of the present method is shown in Fig. 1.

IV. NUMERICAL EXAMPLES

A. Conductor Near Conducting Ferromagnetic Wall

The first 2-D problem consists of an aluminum conductor
with a sinusoidal voltage per unit length of 0.66 V/m. Parallel
to the aluminum conductor is a conducting ferromagnetic wall
(see Fig. 2).

With the “brute force” method, six periods have to be stepped
through until steady state is reached (see [2]), where each pe-
riod was discretized in 20 time steps. The stopping criterion was
chosen to be 0.1% for the mean relative variation and 1% for the
maximum relative variation of the reluctivity in the integration
points.

For the time domain method presented in [2], the same stop-
ping criterion was used and the value of the relative permeability
corresponding to vpp was taken to be 490.

With the method presented in this paper, two calculations
with N = 3and N = 7 harmonics have been made. For N = 3,
the relative permeability (i, pp has been chosen to be 490 and
for N = 7 u, rp has been set to 150 to achieve faster conver-
gence. The stopping criterions are the same as for the previous
methods.
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Fig. 2. Aluminum conductor with & = 3.5 - 107 S/m and a sinusoidal voltage
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of 0.66-V/m peak, 50 Hz. Ferromagnetic steel wall with ¢ = 1.0 - 107 S/m.

TABLE I

NUMBER OF EQUATION SYSTEMS TO BE SOLVED

method parameters # of equations
brute force [2] - 1,139
fixed point, time domain [2] vep =490 210
harmonic N=3 9%
balance Vvep =490
harmonic N=17
balance vep= 150 399
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Fig. 3. Spectra of the total current in the ferromagnetic wall.

The three methods are compared in Table I. It can be seen, that
the more harmonics are used, the more equation systems had
to be solved. So, if it is a priori known that certain harmonics
cannot occur, the number of equations can be reduced. If three
harmonics are used, only 96 equations had to be solved, which
is about 12 times lower then for the “brute force” method. For
seven harmonics, the number of equation systems to be solved
is about three times lower.

The spectra of the total current in the ferromagnetic wall ob-
tained by various methods are shown in Fig. 3. It turned out that

1231

— -step-by-step (6th period) — N=3
400

300 <

7 \\
v
200 /’ \
100 \

<
£
§ 0
3 -100 \ /

-200 XS

-300 NS 1 /

-400

0 5 10 15 20
time in ms

Fig. 4. Comparison of the total current in the ferromagnetic wall by present
method and by step-by-step method.
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Fig.5. Copper conductor (¢ = 5.7-107 S/m) driven by a sinusoidal voltage per
unit length of 1.4-V/m peak and 50 Hz. The conductivity of the ferromagnetic
screen is ¢ = 1.0 - 10° S/m.

only the first (50 Hz) and third harmonic (150 Hz) are dominant.
The amplitudes at 50 Hz and 150 Hz does not change a lot, if
the number of harmonics taken into account rise from N = 3
to N = 7 (see Fig. 3). Hence, for the present method only the
first and third harmonic had to be considered to achieve accurate
results.

In Fig. 4, the sixth period of the current obtained by the
step-by-step method is compared with the current obtained
by the present method. Although only three harmonics are
used for the Fourier-decomposition, the two curves show a
good agreement. It turned out, that the applied time-stepping
method strongly depends on the time increment 7". Therefore,
the agreement between the two curves can be improved, if the
time increment for the time-stepping method is decreased.

B. Conductor Shielded by Conducting Ferromagnetic Screen

The second example consists of a copper conductor within
a conducting ferromagnetic screen. The copper conductor is
driven by a sinusoidal voltage. The dimensions are given in
Fig. 5.
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Fig. 6. Spectra of the total current in the copper conductor.

TABLE II
NUMBER OF EQUATION SYSTEMS TO BE SOLVED

method parameters  # of equations
brute force [2] - 19,058
fixed point, time domain [2] vep=450 980
harmonic N=3 87
balance Vep =450
harmonic N=17
balance vrp =450 231

The “brute force” method has required 60 periods to practi-
cally arrive at steady state [2], where each period has been dis-
cretized in 20 time steps. As in the example before, the stopping
criterions are 0.1% for the mean and 1% for the maximum rel-
ative variance of the reluctivity.

For the time domain fixed-point method and for the harmonic
balance method the relative permeability i, pp is taken to be
450. Again, the present method has been carried out for three
and seven harmonics.

The spectra of the total current in the conductor are shown
in Fig. 6. Again, the first and third harmonic are dominant. The
agreement of the amplitude at 50 Hz between the time-stepping
method and the presented method is better than in the previous
example. The amplitudes of the first and third harmonic com-
ponent slightly vary with increasing the number of harmonics.
Hence, only three harmonics are necessary for the Fourier de-
composition in (7).
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The number of equation systems to be solved is shown in
Table II. Due to the slower transient process, about 220 times
(N = 3) and about 83 times (N = 7) more equations had to
be solved with the step-by-step method than with the presented
method. In this example, the convergence is better than in the
previous example and, therefore, less iteration steps are needed.

V. CONCLUSION

The fixed-point method together with the harmonic balance
method allows to linearize the finite-element Galerkin equa-
tions. For weak nonlinearities, just a few harmonics are neces-
sary. If it is known a priori that certain harmonics cannot occur,
the number of equations to be solved can be further reduced.
Another advantage is, that the matrices S and M must be deter-
mined only once.
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