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A Nonlinear Eddy-Current Integral Formulation for Moving Bodies
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Abstract- This paper presents an integral formulation for
the calculation of the eddy-current problems in moving
conductors in the presence of magnetic media. The
quasistationary Maxwell equations are written in local
reference frames associated with moving bodies. Only the
conducting and ferromagnetic domains are discretized. The
eddy current is described in terms of a two component electric
vector potential for which edge elements are used along with
the tree-cotree decomposition. The magnetization is assumed
to be uniform in each element of the ferromagnetic domain.
Time stepping is used for time integration. The nonlinear
problem is solved wusing Picard iteration, for which
convergence is guaranteed. Only a part of the relevant
matrices must be formed at each time step. The features of the
methed are illustrated with the aid of some numerical results.

Index terms — Eddy currents, integral equations, finite
element methods, nonlinear magnetics, moving conductors.

1. INTRODUCTION

The eddy current analysis in moving conductors is of
interest both in the case of rigid motion (especially for
electrical machines) and deformable bodies (e.g., fluid
conductors, study of vibrations; and so on).

Two main classes of methods have been proposed for
the calculation of the electromagnetic field in moving
bodies: differential and integral formulations.

The differential methods show a number of
disadvantages. The number of unknowns needed to obtain a
desired accuracy is rather huge, the analysis of unbounded
domains requires a special treatment, and the mesh nodal
coordinates and incidence matrices must be modified
during the time evolution. Differential formulations have
been proposed in terms of the magnetic vector potential
[1,2] or scalar potentials [3]. In the case of deformable
conductors, as suggested in [4], it is possible to take
advantage of lagrangian approach and differential
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geometry.

As stated in [5], the integral methods appear more
promising. They are characterized by full matrices, but the
number of unknowns needed to get a required accuracy is
relatively small. In addition, the regularity conditions at
infinity are automatically taken into account by the
formulation. Finally, in the case of rigid motion, the topology
of the mesh is not modified, and only a part of the stiffness
matrices must be changed during the movement. The integral
formulation proposed in [6] is an extension of the approach
presented in [7] to take into account the presence of linear
moving media. A similar approach is presented in [&].

The possibility of including magnetic materials into the
models with fixed conductors has already been discussed by
several authors using different approaches [9-15].

In this paper, the methods proposed in [7] and [12] are
combined to take into account the presence of non-linear
moving media.

II. PROBLEM FORMULATION

The model is based on the magnetoquasistatic limit of

Maxwell equations and the following constitutive
relationships: ‘
E=nJ in Ve ey
H = f(B) in Vi )

where J is the current density, E is the electric field, 1 is the

- resistivity, H is the magnetic field M is the magnetization

vector, B is the flux density, V, is the conducting domain and
Vi is the ferromagnetic domain.
Constitutive equation (2) is equivalent to:
B =y, (H+M) 3)
M = g(B)= voB ~ f(B) C))
where o is the vacuum permeability and vo=1/n,. We
assume f to be uniformly monotonic and verify Lipschitz
condition.
For the sake of simplicity we assume zero initial
conditions for all fields.
We consider a set of N conducting and/or ferromagnetic
bodies By, each of them moving with a rigid velocity vy. In
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the local frame of any moving body the time integral of the
electric field is given by:

jE(x,T)dr =—A(x,0)-VV )
0

where V is the time integral of the scalar electric potential

and A is the divergence-free magnetic vector potential

given by:

A= [0,
|Ax(t)]

| Mg@dv.w(x,t) ©

4r |Ax(®)|

where Ax=x-x’ and Ay is the contribution of the external
current density Jsin the volume Vo moving with velocity vy
J, x, t)

Aq(xn=E2 j ™)
’ le(t){

The magnetic fleld B=VxA can directly be obtained
using Biot-Savart law.

With this choice the Maxwell equations in the moving
frame are automatically satisfied. Therefore only the

constitutive equations (1) and (4) must explicitly be
imposed.

III. NUMERICAL APPROACH

The current density J is expressed in terms of cotree
edge shape functions Ty [7]:

Jxn=Y LOVXT, ®)
k=1

whereas the magnetization M is approximated as a
piecewise uniform field:

M(x0)=) M, (P, ©)
k=1

where Py’s are n, unit vector pulse functions obtained by
multiplying the unit vectors along the coordinate axes by
the usual scalar unit pulse functions p,’s, which are
different from zero only for x belonging to the kth finite
element of Vy

We apply Galerkin approach in the following form:

”V VXT,-(E-nJ)dV =0 VT, (10)
0 ¢ )

J'v P[g(M)-BldV =0 VP, (11
2

obtaining the system of nonlinear equations:

{
{L} 1] + {F} [M] + {R}J.[I(T)]df= [U] (12)
0
(D} 6L (MD) - {E}[M] - {E}" [1] = [W] (13)
where:

L, poj j VT, -VXT,

fx—xf

—dqvav’ (14)

R, ='[/'V><T,. NVXT,dV (15)

J‘ J' Vx Ti(x)- J(x ,0)

— AVdV’ (16)

gt e

k avav (17
V.V x|
py=] v PRV (18)
Uy n-P(x)n"P,(x') X
=i [Popavo o [ [ LEWTHE) 19
B ‘uOJ‘l J 471:J. J. lx—x‘l asds: (19)
v, oV, o,
Ly Px) Jg(x', Ox(x-x")

Wi=— avdv’ 20
I A7 "‘9{3_Vc Vf lx-x‘|3 ( )
Im
G (MD)=(D}"! fo Peig (Y MP 1 aV @1)
k=1

The nonlinear system of equations (12)-(13) is solved

~ using time stepping and a Picard-Banach iteration at each

time step. The convergence of the iterative procedure has
been already discussed in [12], with reference to a system of
bodies fixed in the space. The approach here discussed for
taking into account moving bodies, due to the particular
choice of the reference frames, allows for a similar treatment
of the nonlinearity. In the Appendix we briefly recall the
main aspects of the convergence properties of the iterative
procedure. Here we recall the main steps of the formulation,
from the numerical point of view.

At each time instant ty,; = ty + At, the average values

[B]E:l] of the flux density components in each element of the

ferromagnetic domain, corresponding to the (k+1)-th
iteration .are given by the Biot-Savart law using the

N+1

magnetization [M]N“ the eddy currents [I]""; and external

currents as:

[B] = {D}"({E}[M] + {F}" [1] + [W]) (22)

From this estimate of [B] the magnetization [M] can be
corrected using the numerical counterpart of the function g,
leading to the following Picard-Banach scheme [16]:



[M] = G([B]) = G({D} '({E}M] + (F}" [1] + [W])) (23)

where G is the mapping from [M] to the local average
values of [B], i.e. the inverse of the operator defined by
(21).

Notice that the existence of gfl, which is used in (11),
(13), and (21), is not implied by the existence of 1. On the
other hand, equation (23), which is equivalent to (13) in
case g exists, still holds beyond saturation. We adopted
g! in the weak form (11) to explicitly remark that we
update M as the magnetization corresponding to the
average value of B [12,16]. However, in (23), the final
form of the numerical formulation, we only refer to the
function g.

The nonlinear system of equations (10) and (23) is
solved by time stepping and Picard-Banach iteration:

(LN +HRIA VIR =

N
[N (RN MR - (R} 2T A (24)
i=0

M =
G((D} (EINTMIFH 4 RN I 4w NH) (25)

here superscript N refers to the time instant ty, whereas
subscript k refers to the k-th Picard-Banach iteration.

Motion is taken into account in (24)-(25) in the source
terms [U], [W] as well as by updating parts of matrices
{L}, {F} and {E} at each time step. The procedure is
similar to the approach presented in [17]. For instance, the
source term [U] defined by (16) is affected by the motion
whenever v, #v,, because in this case the distance between
the two material points xe V. and x’ €V varies.

IV. NUMERICAL RESULTS

Firstly, we study the problem of the moving coil over a
non-ferromagnetic conducting plate presented in [18]. Two
sets of results are presented for this problem for the
velocity v=138.9 m/s (500 km/h). For a coarse mesh, using
1000 tetrahedra and 541 active edges, we obtained the total
Joule losses Py = 7.1-10° W. Using a fine mesh, with 2975
tetrahedra and 1239 active edges, we obtained the total
Joule losses P = 8.9-10° W. These values can be compared
with the analytical value indicated in [18] for an infinite
conductive plate, which is 9.0-10° W, and with the
corresponding numerical results 7.5-10° and 8.5-10° W
[18]. In Fig. 1 we show the eddy-currents plots obtained
with the fine mesh.
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Fig. 1 The eddy-current density plot in the conducting plate for a fine
mesh and for velocity of the moving coil v =138.9 m/s at t = 2.5 ms.

Results were also obtained for nonlinear magnetic media
in movement. First, for testing the linear solver for moving
bodies, we have considered a permanent magnet (with
imposed magnetization M = 1 MA/m) moving near a fixed
conductor non-magnetic plate, as it is represented in Fig. 2.
The mesh used for M approximation (hexahedra) can be
different from the eddy-current mesh (tetrahedra). Figure 3
shows the eddy current distribution at two different time
instants, during the motion. The velocity considered is v = 1
m/s, the time-step is 1 ms.

Figure 4 shows the eddy current distribution for a
ferromagnetic plate with the same geometry moving with a
different velocity with respect to the magnet. In this case the
velocity is 4 m/s, and the time step is 0.1 ms. Although the
diffusion time is longer than in the previous case, the time
step has been reduced because of the higher velocity. The
maximum power is also higher because of the higher velocity
and magnetic field.

Fig. 2 Two moving bodies, -a permanent magnet moving with respect
to one conducting plate, considered non-magnetic, in the first example and
ferromagnetic, in the second example.
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Fig. 3 The eddy-current distribution for the. conducting non-
magnetic plate which is moving with respect to the permanent magnet;
the velocity is v= 1 m/s along z direction a) t= lms; b) t= 12 ms.

V. CONCLUSIONS

The main features of the procedure presented in the
paper are here summarized.

The non-linear constitutive relation B-H (2) is replaced
by a linear one (3) where the magnetization M 1s a
nonlinear function of the flux density B given by (4).
Therefore, the magnetic vector potential A can be
calculated from J and M using the linear relationship (6).

The coordinate frames are fixed on the rigid moving
bodiés. As a consequence the velocity does not appear in
Faraday’s law (5).

In (10) the time integrals of the electric field and of the
current density are considered when applying Galerkin

Fig. 4 The eddy-current distribution for the conducting ferromagnetic
plate which is moving with respect to the permanent magnet; the velocity is
v=4 m/s along z direction a)t=1ms;b) t=12 ms.

procedure. In this way, the associated integral equation (12)
is similar to that obtained for non-moving media. Motion is
taken into account in the source terms and by the time-
dependent behavior of the relevant matrices.

The numerical solution is carried out using an extension
of the approach proposed in [7], based on a two-component
electric vector potential T approximated via cotree edge
shape functions. The magnetization vector M is instead
approximated as a piecewise uniform field.

The matrices used for the solution of system (24)-(25)

‘may depend on the time, but do not change throughout the

Picard-Banach iteration at a time step. Therefore parallel
processors can be exploited to compute to update the
matrices for the next time step.



APPENDIX
Non-expansive character of the mapping from M to B

It can be shown that if the speeds of the bodies are
given, if two quasi-stationary electromagnetic fields have
the same boundary initial conditions, then the difference
(AB,AH,AE,A)J) of these fields verifies the relationship:

t :
j J ABAH AV d1=(AB, AH)<0 (A1)

0Q
Let us assume the magnetization M to be defined by
the following constitutive equation:
B = (H+M) (A.2)
where U is a constant.
For a given magnetization M we obtain a unique flux
density B, since the function involving Biot-Savart formula
Z:Ly (€2) > L,, () is well defined, where B=Z(M) and

(X, Y)H =(X,LY). From (A.1)-(A.2) we get:

2 .
|2B], <(aB, av)<[as], [am],

Therefore function Z is non-expansive:
|z -z, < m-m| u (A3)

Contractive character of the mapping from B to M

We suppose that the constitutive relation (2) verifies
Lipschitz condition:

lrew )= sw f<afp -

and is uniformly monotorne:

(B'—B", f(B')— f(B")>27\,”B’—B””2, VBB e 12(Q)
(A.5)

where A 2 2> 0. We may choose v so that the function g
defined by g(B)= vB-f(B) is a contraction:

leB) - g )[]u <olB-B,. VB B"el2(Q) (A6

VB, B"cL2(Q) (A4)

where 6 < 1. Indeed, if we choose p=1/v € (0, 2A/A), then
the contraction factor 8 of the function g is:

. Ilg(B')—g(B"ﬁ

2
[ -]

i -8 -2 < BB, B - By > 42| ) - |

2
[ -2
<1-2uA +p2A% <1 (A7)

Convenient criteria for the choice of the permeability p
are given in [16]. There is proof that u = g may be used
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and in this case we obtain @=1-lo/Hyax, Where Umyy is the
maximum value of the differential permeability in .

Convergence of the Picard-Banach procedure

The method is a Picard-Banach iteration yielding the
fixed-point of the contractive function goZ. .

It is possible to obtain a posteriori error estimates. There
is the following upper bound for the error in comparison with
the exact solution:

||B Bk” IMkH—Mk" /(1-6) (A8)

Convergence of the numerical approach

In the numerical formulation a number of additional
approximations are introduced. The current density and the
magnetization vector are approximated by (8) and (9), the
Galerkin approach (10)-(11) is used to impose the
constitutive equations, time-stepping is employed for the
integration of (12), and the Picard-Banach iteration for the
nonlinear system at each time step is carried out by (24)-(25).

Here we focus on the convergence of the Picard-Banach
iteration used in the numerical approach.

The numerical approximation of the linear mapping Z
used in the iterative procedure is given by:

(MY =G [B] ) D (A9)
[BIR =Ty MY +(s (A.10)

where p=,  {T}= (D} ({ E)-F)MHAPHE)T T,
{A}={L}™'4+{R}At/2, and [S] is a term that does not depend

on [M]N+l

The contractive character of (A.9) follows from (A.6)
and the non-expansive character of the average operation
[16]. The non-expansive character of (A.10) follows from the
analysis of the eigenvalues of the iteration matrix {T}, which
are all real and less than pg [13].
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