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Abstract - In order to reduce computer resources for the 
analysis of eddy current distribution of cold crucible 
models, the authors employed a current sheet 
approximation for eddy current distribution because 
penetration depth of the eddy current is relatively small in 
comparison with the dimension of the conducting bodies. 
The eddy current distributions approximated by current 
sheets are solved for by an integro-differential method 
using an electric vector potential. Furthermore, magnetic 
flux density, power loss, Lorentz force and lifting force 
of the molten metals are obtained from the solved eddy 
current distribution. 

I. INTRODUCTION 

Eddy current analysis can be performed by 
practical methods: finite element methods, integral 
equation methods and boundary element methods. 
However, in the case of small penetration depth in 
comparison with the dimension of the conducting bodies, 
required computer resources become large because the 
dimension of volume elements for finite element methods 
and boundary elements for boundary integral methods 
have to be smaller than the penetration depth. On the 
other hand, boundary integral methods seem to be 
practical for three-dimensional problems [ 11. 

Here, eddy current in molten metal and cold 
crucible is approximated by a current sheet and the eddy 
current distribution is obtained by integro-differential 
method using an electric vector potential [2]. In the 
integro-differential method, the dimension of boundary 
elements does not depend on the penetration depth 
because the penetration of eddy currents is approximated 
by a thin current sheet. Therefore, the required computer 
resources can be reduced. In this paper, the distributions 
of eddy current, magnetic flux density and Lorentz force 
of a cold crucible model are investigated. Futhermore, 
power loss and lifting force are obtained from the 
calculated results. 

11. INTEGRO-DIFFERENTIAL METHOD 

The governing equation of the electric vector 
potential T with sinusoidal time dependence is given by 

where CJ is the conductivity and B is the magnetic flux 
density [3], [4]. The eddy current density J is given by 
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When the penetration depth is small and the active 
parts of the conductor can be approximated by thin 
plates, the integro-differential equation for the normal 
component of the electric vector potential T is  obtained as 
follows [ 5 ] :  

P P  

+ jwB,.n (3) 

where r is the unit normal vector, B, is the magnetic flux 
density by the external source, h is the thickness of the 
active parts and S is the surface of conducting body. The 
penetration depth can be chosen for the thickness h but 
the distribution of eddy current does not depend on the 
value of h. 

The power loss W and the Lorentz force f are 
calculated by 

(4) 

f = { v x ( nT ) } x B ( 5 )  

111. COMPUTATION MODEL AND RESULTS 

The three-dimensional cold crucible model and 
triangular mesh are shown in Fig. 1. The molten metal is 
approximated by a sphere whose conductivity is 2x107 
S/m. The conductivity of the crucible is 5x107 S/m. The 
crucible is divided into eight segments. The current of the 
coil is 7,000 At at 3 kHz. The number of unknowns is 
3,968 for the whole region. The region to be analyzed 
can be reduced to one sixteenth by rotational symmetry 
and reflective symmetry [6]. The final number of 
unknowns is 150 and the computation time and memory 
storage are 56 minutes and about 900 kbytes using 
SONY NEWS ( 20 MIPS ) : NWS-3860 with R3000,20 
M H Z .  

Figure 2 shows the real parts of the equipotential 
lines, the eddy current density and magnetic flux density 
on the surface of the cold crucible model where a half of 
the crucible is removed to show inner surfaces. 

Figure 3 shows the equipotential lines and the equi- 
power-loss-density lines of the molten metal, which is 
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Fig. 1. Cold crucible model, (a) arrangement, (b) triangular mesh of the model, (c) molten metal approximated by a 
sphere, (d) a segment of the crucible. 
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Fig. 2. Distributions of the potential, eddy current density and magnetic flux density of the cold crucible model, (a) 
equi-potential lines of real part of the electric vector potential, (b) eddy current density vectors, (c) magnetic 
flux density vectors. 

approximated by the sphere. The eddy current density 
and the power loss density increase on the lower part of 
the opposite surfaces of the crucible slits. 

The equipotential lines and the equi-power-loss- 
density lines of the segment of the crucibles are shown in 
Fig.4. There is a large difference for the eddy current 
distributions and the power loss distributions between the 

cases loaded with molten metal and without molten metal. 
Figure 5 shows the experimental model and results of the 
12-segment-type crucible without molten metal for the 
measurement of temperature distribution [7]. The high 
power loss region in Fig. 4(f) calculated by the proposed 
method coincides with the high temperature region in 
Fig. 5(b). The calculated total power loss of the molten 
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I w AT = 3~105(A/m) w AT = 3x104 (Nm)  

Fig. 3. Distributions of the potential and the power loss of the molten metal approximated by the sphere, (a) real part 
of the equi-potential lines, (b) imaginary part, (c) power loss . 

106 (W/m3) 

Fig. 5. Experimental model, (a) overview, (b)  high 
temperature region. 

AT = 3x105 (A/m) AT = 1x10s (Nm) AW = 3x107 (W/m3) 

(d) (e) (0 

Fig. 4. Distributions of the potential and the power loss of the 
crucible, (a) real part of the equi-potential lines, (b) 
imaginary part, (c) power loss without molten metal, 
(d) real part of equi-potential lines loaded with molten 
metal, (e) imaginary part, (0 power loss loaded with 
molten metal. 

metal is 693 W. 
Figure 6 shows the distribution of the Lorentz 

force. The force on the surface of the molten metal is not 
uniform. Figure 7 shows the shape of the melting metal 
in the experiment [7]. It seems that the slight difference 
of the force causes the transformation of the molten 
metal. The calculated lifting force of the molten metal is 
0.735 kg-weight. The mass of the levitated sphere is 
0.657 kg. The calculated lifting force agrees with the 
experiment. 
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Fig. 6. Distributions of the Lorentz force, (a) real part, (b) 
imaginary part. 

Fig. 7. Meltingmetal. 

IV. CONCLUSION 

The eddy current distributiQns of the cold crucible 
model were solved by the integro-differential method 
using the electric vector potential. The magnetic flux 
density, the power loss, the Lorentz force and the lifting 
force were obtained from the eddy current and 
investigated. The calculated results of the power loss and 
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the Lorentz force gave good agreement with the 
experimental results. Furthermore, for the design of cold 
crucible, dynamic behaviors of temperature and changing 
the shape of molten metal have to be solved as coupled 
problems. 
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