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ABSTRAC

A new formulation for an eddy current analysis is
presented., The formulation is based on EFIE and MFIE
which are deduced from Maxwell's equation by using the
vector Green's theorem, EFIE and MFIE are reduced to
one boundary integral equation on the assumption that
the electromagnetic fields in the metal are attenuated
very rapidly compared with those along the surface.
This method is especially effective in induction heat-
ing frequencies, but is valid in any frequency which
justifies the above assumption,

Introduction

The boundary integral equation method has been used
for analyzing scattering problems of electromagnetic
waves [1], and adopted for analyzing eddy current
problems [2-6]. However, the electromagnetic constants
between a metal object and its surroundings are so
different that it is difficult to analyze low fre-
quency eddy currents numerically.

In this paper, universally applicable boundary inte-

gral equations are deduced from Maxwell’s equation by

applying the vector Green's theorem, and a new, effec-
tive boundary integral equation is derived for the
eddy current analysis in low frequencies. This method
is applied to an induction heating analysis in order
to examine the adequecy of the equation.

FORMULATION OQF
ELECTROMAGNETIC FIELDS
The electric and magnetic fields Ej, H; inside a
homogineous and isotropic medium satisfy Maxwell’s
equation given as [ 7]

VxEi+jo ul;=0 ()
Valli-(og+jo ¢ )E;=0 (?)
7 #H,=0 (3)
2 -E; =0 4

where o is an angular frequency, ¢, ¢ and u are
the conductivity, permittivity and permeability of
the medium and j= /:Ti

The electromagnetic fields E;p, Bip at an observa-
tion point P, inside the medium are given by the
electric field integral equation (EFIE) and the mag-
netic field integral equation (MFIE) as follows [71.

E—;“f;;fs[jw u(oixllis)G

-(uix€;s)xV6;-(a; *Eis) VG; 1dS (5)

@i?h—d—lgjs[iw e (mixEia) G
+(n;xBis)x VG +(m; -His) VG 1dS (6)

where S is the surface of the medium, the subscript

S denotes the value of the surface, m; is the unit
normal from the inside to the outside of the surface,
¢ ' is the complex permittivity given as

e'=¢ero/jw
Gi is the Green’s function given as

Gi=exp(-kir)/r (1)

with the wave number k; given as
kiZjw W

and the distance r from a source point Ps to an obser-
vation point Py and T is given as

T=1 for the value inside the surface

T=2 for the value on the smooth surface

The electric and magnetic fields Eo, M, outside the
medium whose permittivity and permeablity are ¢,
ko satisfy Maxwell’s equation given as

ViEo+jw pollo=-in (8)
Vallo-jw ¢ oBo=ie (9)
V- Ho=pom/ ko (10)
VEo=pe/ o (11)

where e, iin are densities of electric and magnetic
source currents and pe, pn are densities of electric
and magnetic source charges,

The electromagnetic fields Eop, Hop at an observa-
tion point P, outside the medium are given as [7]

E 1
%= E°+Efs[j w ko (UoxHos)Go

-(noxEos)xVGo-(no Eos) VG6o1dS (12)

H 1
=22 = Mo~ [ ([io ¢ olnoxkes)Go
+(noxHos ) x V6o + (0o MHos) V6o 1dS (13)

where § is the surface of the medium, the subscript
S denotes the value of the surface, mo is the unit

normal (mo=-@;) and G, is the Green’s function given
as

Go=exp(-kor)/r (14)

with the wave number ko given as
ko=jw Ypoeo
and Es, He are the electromagnetic fields given as

1 e 1
Bo=p J ([0 HokobominxViot — 0o V6] 4V (15)

i . ) ] 1
IH°:EIV[_“" € onnG°+n,xVGo+;—° pn VGl dV (16)

which are produced by the electromagnetic sources such
as Ke, in, pe and pn in a volume V,

Taking the outer and inner surfaces S;, So which
enclose the medium as shown in Fig,1, deriving the
fields at the observation point Pp on each surface S;,
So from eq.(5), (6), (12) and (13), and letting the
fields satisfy the boundary conditions of the surfaces
which are given as
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Eos=(nxE;s)xmn+ ¢ ' (n-E;s)n/ ¢ o amn
Hoa=(nxHis)xa+ u (n-His)n/ uo (18)

ve get boundary integral equations for solving Eis,
Eos, His and Hoa,

aj

Si

Sq 1 V.
:

o

Fig.l The formulation of Es and Hs

(3 +E
mcp; ospxn°p+ Eono; - ?som” - Is jo u(nxHis)G
~(mix€is)xVGi -(ni-Eis)VGi} dS (19)

HopXtosp ;(Hos Xnop+_-L——H°n°2.:l°=pﬂep=—Z—1; Is(jw € ‘(II'HXEH)G&

+(mixHi,)xVG;+(n;-H;,)VGi}dS (20)

aipxE; € 'aip'Eis
i ‘”xni;ﬁ ip i pllip=[':e
2 2eo

—EJS“"’ llo(ﬂnlﬁos)Go‘(noXEos)XVGo
(o *Eos) ¥ Go}dS (Zl)

n;pxHi nip-H;
IDZ "pxnip*'# IZD”QI’D'HD:HB

i fsﬁw ¢ o(oxEos) Go+(0oxHos) xV 6o

+(0oHos) PGo}dS (22)

where the subscript p denotes the observation point.

Each electromagnetic field on the surface Eos, Hos,
Eis, His contains three components., Consequently, 12
surface integral equations can be derived from eq. (19)
-eq, (22) which contain 12 unknowns, By solving these
equations, the surface electromagnetic fields can be
determined.

FORMULATION
OF EDDY CURRENTS
The boundary integral equations eq. (19)-(22) can be
used for general purposes, However, these are so
inefficient for eddy current analyses that new bound-
ary integral equations are derived from them,

Fig,2 The surface integration

As the wave number k; of the metal is the complex
number whose real part is negative and very large,
the surface integrations in eq, (19) and (20) are
deduced as follows,
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Setting Ppson Sz of a metal plate as shown in Fig,2,
we get each integration with respect to S; as

I jowu (niXHisl)G.dS]
51

L ¥
e u(n xH,,,)joo ex;;! gr2+t 2 ir
=Zi(mm,1)exp(-k;t) (29)
ag

jslgﬁ‘“"e")cids‘: 2"Ti(.”xei,)exp(—kit) (24)
[ (l’xinEis)XVGi
MY in
(h.xﬁ.s)xnlp
[t

dSt

2Hzexp( ki Vr2+t2)
t
_(r2+t2)a/‘gexb(~ka Jr2 +2)}lnrdr

=-<nix£i;)xntpexp(-kit) (25)

r (nixHig1)xVG; 45, =
51

21) e )ute gy (i (26)

J' (0 Eis) VG,
S1 iz

= (n;f") ”JU 2+:2 exp(-k; Jre+t?)

t
‘(re,tz)azgexl)(‘ki V2 +t2)} 2z rdr

__@icEis)ap
2

43y

exp(-kit) @n

dS1 =

fs (i -His) VG exp(-kit) (28)
1

_(mi'His)ﬂlb

in 2
wvhere the subscripts 1 and 2 denote the values of the
surfaces Sy and Sp, respectively. The surface integra-
tions with respect to Sz are given by setting t=0 in
these equations, When the observation point is on S,
the surface integrations can be accomplished in the
same way,

By selecting P, on Si and taking account of these
equations eq, (23)-(28) and the boundary conditions
eq. (17) and (18), the tangential components of eq. (19)
and (20) are reduced as

K!
'Z_l=n|1px[

_K=20“h29
2

Usl p+dszpexp(-kit)}

exp(-kit)] (29)

J:‘l

9 "l\HpK[‘ (Kslp"‘l(:z;rexl’( ~kit)}
-’—’i"’z"’&’expun)] (30)

vhere Xs and Ks are the surface electric and magnetic
currents defined as

Js=nixtl; s 31
Ke=-n;xE; s (32)

and equations in the case of selecting 'P,7 on Sz are
given by replacing the subscript 1 with 2 and 2 with 1
in eq. (29) and (30).
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K .
- ;29:0129X[% {Ra2o+dstpexp(-kit)}

_‘(51 pX@iip

exp(-kit)] (33)
Jisan__ jw u
== wi2px[~ T KsepKs1pexp(-kit)}
-'“’—”—-—-——;m”exp(—kit)] (34)

From the equations (29) and (33)., the surface mag-
netic currents are obtained as

ki exp(kit)+rexp(-kit)
o1 Ksy =7 (exp(lnnt)—exp(-kiti‘]’1
2
+exv(ki1t)~exn(—kat)""") (35

exp{k;t)+exp(-k;t)
exp(kit)-exp(-kit)

¥s1) (36)

k‘
vz xKa2 =]—'( Js2
2

Texp (ki) -exp(-kit)

where the subscript p has been dropped because these
relations are valid at any point on the surface. The
same relations are also derived from the equations
(30) and (34).

The relations between the normal and tangential
components of the fields can be derived from Maxwell’s
equation [1],

jon- e €s = - Vo (nxfls) 37
jwn- plHs = Va- (nxks) (38)

"

where Vs is the surface vector operator defined as
Ps=(08/3x)2+ (/3 y)y 39)

with unit vectors » and y parallel to the x and y axes
of the local Cartesian coordinates set on the surface.
The operator works just like V.

In most eddy current problems, the fields along the
surface change so gradually that the equations (35)-
(38) reduce the 12 unknowns in eg, (19)-(22) to 4
unknowns which can be obtained by solving the equa-
tions derived from eq. (21) and (22) by substituting
eq. (35)-(38) into eq.(21) and (22). Provided the metal
plate is sufficiently thin, a surface integration with
respect to an area around a position facing Pp can be
given by replacing k; with ko in eq.(23)-(28), and the
surface integration with respect to the surfaces
except this area can be accomplished by approximating
the thickness of the plate as zero while keeping kit
constant, Thus, we have

_ ki 1 . _j w #o
2'_'0 C.lup‘*j‘_‘zw P o'(v: pr)'lQp i ISZJaGQdSZ

k; € J
Y n o fSa (nleh)xVGodSQ*meZVs'Ja ZGodS2
+ €, =0 (49)

Bopxlop #s
2 2Ck;
usC

1
+4—nfselaxVGodSa' Tn kiISZVGo(stjb) ~d32
+He = 0 (41)

i Ck;
(VsXJap)*""‘%';—gU—' sz (n2xdp)GodSz

where ps is the relative permeability, and

Ja=ds2+dst (42)
Io=ls2-Ja1 (43)

_ exp(kit/2)-exp(-kit/2)
€= exp(kit/2)+exp(-k;t/2) h)

By these equations, the eddy currents in microwave
frequencies can be analyzed effectively, but in low
frequencies, both the denominator &, and numerator
Pa-)ds of the fifth term in eq. (40) are almost zero.
Consequently, eq. (40) is inadequate for eddy current
analysis in low frequencies. In order to irom out this
difficulty, we take only eq. (41) which gives 3 equa-
tions, so we need one more equation, that is

Vs+Js =0 (45)

Though eq. (41) has been derived by approximating
the thickness of the metal as zero, with a small
modification, it is valid even in the case of three
dimensional shapes. We can regard the three 'dimension-
al metal object as a box whose thickness is more than
the skin depth, and setting

kit = o (486)
Jo = D “un

in eq. (41), we can get an equation for three dimen-
sional shapes.

The relation between the surface electric and mag-
netic fields drived by substituting eq(46) into
eq. (35) or (36) is called the impedance boundary
condition (8.

EDDY CURRENT ANALYSIS
In order to check the adequacy and accuracy of this
formulation, an induction heating problem is analyzed.

Fig.3 A steel box and a heating coil

A cubic box is surrounded by a heating coil as shown
in Fig.3. The box is made of a 0.32 mm thick steel



plate whose electromagnetic constants are 50,000 S/cm
for the conductivity and 200 for the relative permea-
bility, The heating coil consists of 16 turns and
carries a sinusoidal current with 25 A and 25,6 kHz,

Ve divide a part of the surface of the box into 100
elements by straight lines parallel to the X, Y and I
axes as shown in Fig.3, introduce the lumped circulat-
ing current along the periphery of each element in
order to ensure zero divergence of the surface current
¥s (9], and determine J, and J, by solving eq. (41).

Table 1 Power density distribution P W/cm?

Position (Y direction)
1 J2 3 Ja 5 e 7 T8

1 [7.59]7.63[7.65[7 76[7.81]7,98[8 03[8 3
~| 2 |7.43]7.43/7.43]7.54[ 7,59} 7. 76][7.81[8.03
~1 3 Jr.04f 70407, 04]7, 15[ 7. 157, 32]1.37]7.59
|4 s.44]6. 49 6.44]6.49]6.49]6.60]6.60]6.77
2|5 |s.78] 5. 78] 5. 72] 5. 78[5, 72]5, 78] 5.72]5.89
= 6 [4.86[4.86[4,81(4.80]4 714, 68]4.55[4.57
S 7 f3.94]3.93]3.87]3.81]3.69]3, 56]3.37[3.27

8 |2.96/2.94]2.87[2 78/2,63]2,41}2.08/1,53

1 [1.25[1,23]1.17]1.08[0,95]0.76[0.50[0.18
-2 lo.60]0.58[0.54]0.49[0.39]0,30]0.18
<] 3 0.34]0.33[0.30]0.26[0.21]0.14].
=[ 4 Jo.16[ 0. 150, 14]0. 12[0. 09 -
=[5 Jo.09[ 0. 09[ 0, 08}0.06
'z 6 J0.03[0.030.03
=7 Jo.od] 0. 01

8 Jo.o1

The power densities of the elements calculated from
Ja and Jp are shown in Table 1, The power density P is
derived from the Poynting vector as

P ={(EsoxHso#+Eaz*xHa2) *m2
+(EstxHgq*+Es1 ¥xMat) -m1}/2
- }L_( sinh(krt)+sin(krt) (22
20 ' cosh(krt)-cos(krt) '°°

sinh(krt)-sin(k,t)
cosh(krt)+cos (ket) He 12 “®

vhere
ke= Vo uo/l

and * denote the value of the complex conjugate,
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Fig.4 Temperature rises of the steel box
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From the power densities, temperature rises of the
areas of A and B shadowed in Fig,3 are calculated
and compared with experimental data, The results are
shown in fig,.4. In calculating the temperature, it is
assumed that the heating time is 1 s and that the
steel plate has a specific heat of 0.44 J/g- K and a
density of 7,86 g/cm®, The heating time is so short
that the heat comductivity is not considered.

CONCLUSIONS

A new formulation of eddy currents is presented,

The electromagnetic fields are represented by EFIE
and MFIE, Deriving the electromagnetic fields on the
inner or outer surface of the metal from EFIE and
MFIE, and letting the fields satisfy the boundary
conditions on the surface,the electromagnetic fields
on the surface of the metal are formulated by boundary
integral equations,

The relation between the tangential compoments of
the electric and magnetic fields on the surface is
derived analytically from the boundary integral equa-
tons by assuming an area of the surface where the
tangential components of the electromagnetic fields
are regarded as constant is much larger than the
skin depth, The relation between the normal and
tangential components of the electromagnetic fields
on the surface is derived from Maxwell’s equation,
With the help of these two relations, the eddy cur-
rents are finally formulated by one boundary integral
equation on condition that Vs'Js = 0, This method is
valid at any freqency which justifies the above
assumption,

In order to examine the adequacy and accuracy of
this method, calculated values of temperature rises
are compared with measured values, Both show reason-
ably good agreement,
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