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Analysis of an Induction Heating System by the
Finite Element Method Combined with
a Boundary Integral Equation

TANROKU MIYOSHI, MeMBER, 1EEE, MUNEHIKO SUMIYA, AND HIDEKI OMORI, MEMBER, IEEE

Abstract—The method, based upon the finite element technique, is
presented for the analysis of an induction heating system in unbounded
free space. In the induction system, a quasistatic magnetic field prob-
lem with cylindrical symmetry is solved. First, a mathematical bound-
ary is defined arbitrarily in free space to contain an induction system
inside. An integral relation is derived on the boundary surface using
the response function excited by a circular line current. The boundary
relation gives a constraint to the finite element analysis in the interior
region. In the finite element discretization, first-order elements are
used, and constant elements are assumed for the discretization of the
boundary equation. To couple the finite element analysis to the bound-
ary integral equation, only the potentials differently approximated on
the boundary are matched reasonably. After the accuracy of the method
is verified for a single coil, load characteristics of a practical induction
heating system are analyzed.

I. INTRODUCTION

N THE BASIC arrangement of an induction heating

system consisting of an exciting coil and a conducting
circular plate, the boundaries are not always closed but
unbounded in free space. We proposed before the field
analysis based upon the finite element method (FEM) to
model exterior open regions satisfactorily {1]. The basic
technique of the method was to draw a mathematical
sphere to enclose an induction heating system. The exte-
rior energy functional was given in a simple form by ex-
‘panding exterior fields in terms of the solutions of a dif-
ferential equation governing exterior empty spaces. The
interior and exterior potentials were matched at the nodal
points on the spherical interface. The magnetic flux leak-
age from an induction heating system and its reduction by
a conducting ring were discussed using the method pro-
posed [2].

In this paper, the alternative method is presénted to

analyze the unbounded field problem based upon FEM. It
would give more freedom in the choice of mathematical
boundaries and hence make the interior region to which
the FEM is applied smaller. First, an arbitrary mathe-
matical boundary is defined in free space to contain an
induction heating system inside. An integral relation is
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derived on the boundary surface using the response func-
tion excited by a circular line current. The boundary re-
lation gives a constraint to the FEM analysis in the inte-
rior region. The method similar to this approach was
presented first by McDonald and Wexler in [3], [4] and
modified in [5] for the two-dimensional electromagnetic
field problems, although a different way of boundary con-
straint was formulated to cope with the singularities of
Green’s functions. The general principle to combine the
finite element and the boundary integral formulation has
been developed by Salon et al. in [6]-[8]. Our paper is
an application of the general principle to a problem of
practical importance.

In the analysis of the induction system, the axisym-
metric problem of quasistatic magnetic fields is solved.
For the discretization of the boundary integral equation,
constant elements [9] are used in this paper, where both
the potential and the flow on the boundary are assumed to
be constant over each section between the nodal points.
On the other hand, in the FEM discretization, first-order
elements are used. Since the approximate functions of po-
tentials are different in two discretizations, the matching
process of potentials is necessary to combine two solu-
tions. The flow is guaranteed to be continuous across each
section in the above approximation because first-order
FEM elements give constant flows on the boundary.

After the accuracy of the method described above is
verified for a single coil, load characteristics of a practical
induction heating system are analyzed.

II. ANALYSIS

The basic system of an induction heating to be analyzed
in this paper is illustrated in Fig. 1. In the system, alter-
nating magnetic fields produced by an exciting coil induce
eddy currents in a conducting circular plate above the coil.
Eddy currents flow in circular paths and give rise to a

-heating effect in the plate.

To analyze the system in free space, we first draw a
mathematical boundary S to enclose the system as shown
in dashed lines in Fig. 1. Because of the cylindrical sym-
metry of the structure, the surface of a cylinder is taken
as the boundary. The FEM is applied only inside the cyl-
inder.
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Fig: 1. Basic arrangement of induction heating system and mathematical
boundary. ‘17’ is the ferromagnetic circular plate, and “2°’ is the ex-
citing coil.

A. Formulation of FEM

In the above system only the angular components of the
current density and the magnetic vector potential dre con-
sidered and denoted by J and A, respectively. They are
all assumed to have the conventional exp ( jwt) harmonic
time dépendence. For the axisymmetric problem of quasi-
static magnetic fields, the following form of equation
holds in cylindrical coordinate system (r, 8, z):

A 3> 19
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o

where u denotes the permeability of the conducting plate.
J is given by —jwoA in the plate with the conductivity o
and by zero in empty spaces. For simplicity the normal
derivatives of A on the boundary are represented from now
on as

v? =

-uJ,

o4 _
am 7

Then the energy functional /, which is the variational rep-
resentation of (1), is given by

I=§l{]VA]2 IA\}dV S(JA*+J*A)dV
a0 r v
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where the asterisk means a complex conjugate and

9 . .
=1 + — 1.

Ss (4% + AqFY dS (3)

q'F) will be shown to satisfy the integral relation between
g and A on the boundary in the next section.

For the discretization of the functional I, the interior
region is subdivided into axisymmetric triangular ele-
ments. Let A; be the nodal potential of the ith vertex and
£, the first order approximate function in the kth element,
then an approximate solution in this element is con-
structed by the equation

(4)

(2).
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where by definition £; takes on the values.of one only at
node i and zero at other nodes. The functional I, for the
kth element is approxirriated by using (4) as

3
Zl 21 AiAfS; — % (ATT, + A TY)
i=1j =
3
B i§1 {At* szI(cF) + Aileqk } (5)
where
‘ w

. S uir b & drdz + 2n Sjworz,.gj drdz (6)

T, =2« S JrE drdz (7)
2 .
Dik = _’I‘r‘ g r£,~ dSk. (8)
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Here T; take values only for the elements inside the coil.
D, is not zero only for the nodal points on the boundary.
Further, it should be noted that both the vector potentials
and their normal derivatives on the central axis always
vanish due to the cylindrical symmetry of the structure.
The total functional / is approximated by the sum of [, in
(5) for every element. The stationary points of / can be
selected by evaluating the equations 3/ /34, for every no-
dal point. This immediately gives the following matrix
equation:

{4}i”
{a}e’

1] [Sic] {1}
| [Scird [Sccl [D] {Q}(CF)

where the nodal vector potentials are divided into two
parts and written as {A}; ) and {A}(F) {A}gF) denotes
the vector for the nodes inside the region, and {A}%
denotes the vector for the nodes on the boundary.

(9)

B. Boundary Integral Equation

The vector potential in free space satisfies the following
equation as explained in (1)

A4
r2

V4 — 5 =0. (10)

We now introduce the response fiinction G satisfying
G
VZG—ﬁ= —8(r — rp, 2 — ). (11)
The free space response function that is the vector poten-
tial at (7, z) excited by a circular line current at (ry, zy)

is known as {10]
1 |
kN 7

1- %2> K(k) - E(k)l

(12)

G(ra rO/za ZO) =
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Fig. 2. Path of integration around a singular point on the boundary.

where K (k) and E(k) denote the complete elliptic inte-
grals of the first and second kinds, respectively, and k is
given by '

@ =am/l(r+nf + G- (13)

Multiplying (10) by G, (11) by A, subtracting the result-
ing equations, and 1ntegrat1ng over the exterior reglon we
obtain

A ]
S (G?—" — Aﬁ) as = 27rr0A(ro, Zo) (14)
s

where Green’s theorem is applied. Further, considering
that A and G are constant in the angular direction, (14) is
rewntten as

y 04 G
S <G}§; - A— o >rds = roA(r0, 20) (15)

for any point (ry, zo) in the exterior region on the r-z
plane.

When we apply (15) to the point (7g, Zo) just on the
boundary, a little algebra is required because of the sin-
gularity of the response function. A minute semicircle C,
with radius R is now described having the center at (ro,
2) as shown i in Fig. 2. On the semicircle, because k = 1

from (13), using the approx1mat10ns of K (k) = In

(8ry/R) and E(k) = 1, the response function and its
normal derivative are approximated by

1 8ry oG 3G 1
=z < In R 1>’ n R 2R
Then, the integration along C, in (15) are obtained as fol-
lows:

(16)

oG 1
SC‘ Ag}; rds = —<‘2‘ rOA(rO, Zo) (1‘7)
a4 0A4 1. 8
Zrds = — In =2 — 8
SCIGanrds pm r0R<2 n 1) (18)

Next, when R tends to zero, the right side of (18) vanishes
and hence (15) results in the following 1ntegral equation
in terms of 4 and 94 /dn:

, Y| oG 1
S’ <Gan - A3n> rds = 2r0A(r0_, z). (19)
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Fig. 3. Approximate functions of vector potentials on the boundary. @
denotes the nodal point used in the FEM, and O is the sampling point
used in the boundary integral equation.

For the discretization of (19), we divide the boundary
into sections by the nodal points used in the FEM and set
sampling points defined at the center of each section.
When we assume that A and 34 /dn are uniform across
each section, the above integral equatlon results in a ma-

trix equatlon

[F1{a}c” - [H] {4} = {o}.  (20)
The elements of the matrices [F ] and [ H] are given by

S Grds = Gyriw;, i #j (21)
G
Fy =
nih 1n16r’-—1>, i=j
27 W; ,
2 G
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where r; denotes the r coordinate of the ith sampling point
and w; is the length of the ith section. G; and (8G /dn)
in (21) and (22), respectively, are formulated easily by
using (12) because 3G/ dn takes the values computed from
dG/dr and dG/ 3z, which correspond to the position of
the observing point on the boundary

C. Coupling of the FEM to the Boundary Integral
Equation

In Sections II-A and II-B, the different approximate
functions of vector potentials are used in the discretiza-
tions. In the FEM discretization, first-order elements are
used and constant elements are assumed for the discreti-
zation of the boundary integral equation. On the other
hand, the normal derivatives across each section on the
boundary are guaranteed to be continuous in the discreti-
zations because first-order FEM elements give constant
flows on the boundary:

~{q}c.

F

{4} = (23)
Consequently, to couple the FEM analysis to the bound-
ary integral equation, only the vector potentials differ-
ently approximated on the boundary should be matched

reasonably. It is easy to understand from Fig. 3 that the
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following relation must apply to make the average poten-
tial over each section equal. Thus

B _ 1§ F) | F)
Ai -2 {Ai' + Ai'+1

(24)
where the superscripts (F) and (B) correspond to the
FEM analysis and the boundary integral equation, respec-

tively. In a matrix form, the relations are written as

{4} = [c] {4} (25)
where [ C] is constructed only by the components of zero
or one half, Coupling the three matrix equations (9), (20),
and (25), we can finally obtain

[Su] [Sic]
[Sa] [Sccl + [D][F] [H][C]
{a}i” {1}
(0|~ | o) 20

The equation indicates that the vector potentials in the
interior region are determined only if the excited currents
of the coil are given. \

II. NuMmERICAL RESULTS
A. Single Coil with Square Cross Section

As an example of the method described, the magneto-
static fields due to a single coil with square cross section
shown in Fig. 4 are computed first to check the compu-
tation accuracy. The current distributions are assumed to
be uniform throughout the cross section. A total of 240
of axisymmetric triangular elements are used to divide the
interior region, and 32 nodes are set on the boundary. The
computed nodal vector potentials along the mathematical
boundary are shown in Fig. 5 and compared with the an-
alytic solutions that are determined by the integration of
(12) over the cross section of the coil. Discrepancies are
observed around the boundary near the coil, but the com-
putational error is within about 3.6 percent.

Inductance L of the coil will give another measure of
the computational accuracy for this problem. L is known
to be computed from the magnetic energy functional (3)
if it is multiplied by 2 / (total current)>. However, since it
is the variational representation of inductance, this method
should not be applicable to check the accuracy of the com-
puted potentials. Therefore, inductance is computed here
from the input voltage when the total exciting current is
taken to have unity value:

L= 1 S 2wrA(r, 2) dr dz. (27)
S Jooil
The computed inductance is found to be 0.185 pH while
the exact inductance determined by the analytic solutions
is given as 0.189 uH.

B. Induction Heating System

Before analyzing the practical induction heating sys-
tem, a simple induction heating model shown in Fig. 6 is
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Fig. 4. Single coil with square cross section. @ = 2 ¢m, b = 7 cm, and ¢
= 10 cm.

2.5 4 . FEM

analytic solution

VECTOR POTENTIAL 1510 Hb/n1

A B c D
POSITION
Fig. 5. Computed nodal vector potentials along the mathematical bound-
ary compared with the analytic solutions, 4, B, C, and D on the abscissa
indicate the positions on the boundary shown in Fig. 4.

[oX
jiry
2)
h=
ﬂ
Q
~
-

78
A

Q.

Q.
131
L) L)

Fig. 6. Simple induction heating model. r, = 16 cm, r, =2 cm, r; = 11
cm, dy =2 mm, d, = 8mm, d; = 5mm, ¢ = 3.61 X 10°S/m.

tested first. In the induction heating system, since fields
are expected to be concentrated strongly around the sur-
face of the ferromagnetic conducting plate due to skin ef-
fect, axisymmetric triangular elements with height about
a half of skin depth are arranged along the inside surface
of the conductor. In calculation, 708 elements are used in
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Fig. 7. Computedbmagnetic field-distributions at 20 kHz. (a) Ferromagnetic conducting plate with u, = 1270. (b) Normal
conductor with p, = 1.

the interior region and 37 nodes are set on the boundary.
The computed magnetic field distributions are illustrated
in Fig. 7(a) and (b) for ferromagnetic and normal con-
ducting plates, respectively. They show the distributions
at the operating frequency of 20 kHz. In Fig. 7(a) for
ferromagnetic plate with relative permeability p, = 1270,
the magnetic fields are found to be concentrated to the
bottom of the plate with the skin depth of 0.05 mm. On
the contrary, for the normal conducting plate with g, =
1, due to the relatively thick skin depth of 1.9 mm, a large
amount of currents induced inside the plate push out the
magnetic flux from the plate, cancelling the originally ex-
cited magnetic fields. Further, there is more' leakage of
magnetic flux over the top of the plate because of the
weaker shielding effect of the normal conductor.

Next, the practical induction heating system with more
complicated cross section shown in Fig. 8 is analyzed. A
ferrite disk placed under the coil is practically used for
shielding strong magnetic fields produced by the exciting
coil. In the analysis, two mathematical boundaries are de-

fined in the induction system. One contains the exciting

coil and the ferrite disk, and the other contains only the
vessel. When the separation between the two regions is
varied to analyze the load characteristics of the exciting
coil as a function of distance between the vessel and the
exciting coil, the numerical method mentioned before is
applied without any change of the finite elements in the
interior regions. In calculation, 790 elements are used in
the interior region and 220 nodes are set on the boundary.
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Fig. 8. Practical induction heating system. R, = 98 mm, R, = 90 mm, R,
=25mm, T, =1.2mm, T, = 3mm, T, = 5Smm, D, = 79 mm, D, =
10 mm, D, = 2.5 mm. Vessel: g = 6.28 X 10"* H/m, ¢ = 1.02 x 10’
§/m. Ferrite: p = 1.69 X 107° H/m, ¢ = 0. Coil: 22 turns.

In order to determine the input impedance Z of the ex-
citing coil, the input voltage is calculated from the follow-
ing equation when the input current is taken to have unity
value:

_ joN
i

where N is the number of turns of the exciting coil and §
denotes the total cross section of the coil. If the input
impedance is represented simply as Z = R + jwl, the
variation of R and L as a function of the distance D), be-
tween the vessel and the exciting coil are computed as

S ; 2wrA(r, z) dr dz (28)
Col.
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Fig. 9. Input impedance of the exciting coil as a function of distance D,
between the vessel and the exciting coil Z = R + jwL.

shown in Fig. 9 at 25 kHz. R is found to decrease with
distance because the induced current decreases with dis-
tance, which makes the power dissipation in the vessel
smaller. On the other hand, L increases with distance. This
is due to the fact that the original magnetic fields excited
by the coil are cancelled less by the smaller induced cur-
rent in the vessel as the separation increases. In the limit
of infinity of the separation, L approaches to 74.4 uH,
which is the inductance of the exciting coil without any
load in free space. ‘

A real equivalent circuit describing the induction heat-
ing would be more complicated than that discussed here.
A mutual coupling circuit model may be a candidate for
a one-port equivalent circuit to represent the load char-
acteristics of the exciting coil. We will study this model
further in order to design the inverter circuits that drive
the induction heating system.

IV. CONCLUSION

The FEM combined with the boundary integral equa-
tion has been discussed to solve the magnetoquasistatic
unbounded problems with cylindrical symmetry. The ap-
proach described here is superior to the method proposed

before in the sense that the mathematical boundary can be
defined arbitrarily. The method has been applied well to
obtain load characteristics of a practical induction heating
system. The load characteristics of an exciting coil may
be important in the design of the inverter circuits that drive
the induction heating system.
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