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Abstract-Eddy current induced levitation can be employed 
to separate conducting from nonconducting materials as in the 
recycling of aluminum products. To investigate magnetic fields, 
eddy currents, and forces, a multiple strategy involving ana- 
lytical, numerical, and experimental analysis techniques is im- 
plemented. 

In particular, the configuration of an aluminum can over an 
arrangement of multiple coils is investigated with a two-dimen- 
sional parametric finite element model. The results from these 
simulations are compared to measurements of a practical levi- 
tation device. 

To establish the fidelity of the finite element model, we ap- 
plied the method to two simplified geometries of a thick and a 
thin slab extended over a conducting wire. For the first case, 
an analytical inverse Laplace-transform model for the eddy 
current density is developed. For the second case, Lorentz 
forces exerted on the thin slab are analytically obtained by em- 
ploying Maxwell’s moving image method. In addition, an ap- 
proximation to the moving image method is derived which can 
be described by an equivalent resonance circuit. 

I. INTRODUCTION 

A. Background 
LTHOUGH municipal waste contains only approx- 
imately 1 % nonferrous material, it nonetheless ac- 

counts for a large potential revenue that could be achieved 
through the resale of separated products. In particular, re- 
cycling of aluminum helps to reduce landfills and saves 
valuable raw materials. In order to recycle aluminum, it 
has to be separated out of a commingled waste stream, a 
process commonly carried out in source separation facil- 
ities where ferromagnetic materials are first removed via 
head pulley magnets or drum magnets [l] . 

Methods for the separation of aluminum from the re- 
maining waste stream include manual separation as well 
as density separation methods such as hydraulic or pneu- 
matic classifiers [2] .  These methods are either labor in- 
tensive or of limited applicability since many plastics have 
the same density as aluminum. For fine-shredded mate- 
rial, both electrostatic methods 131 and magnetofluid sep- 
arators [4] are employed. 

Manuscript received October 3. 1995; revised May 3,  1996. 
The authors are with the Electrical and Computer Engineering Depart- 

Publisher Item Identifier S 0018-9464(97)00116-7. 
ment, Worcester Polytechnic Institute, Worcester, MA 01609-2280. 

More recently, very promising methods have been de- 
veloped based on the idea of eddy current separation [ l], 
[5].  An alternating magnetic field induces eddy currents 
in conducting bodies which in turn combine with the mag- 
netic field to cause a Lorentz force which is capable of 
accelerating conducting materials away from noncon- 
ducting products. For recycling systems, the altemating 
magnetic field is achieved by a relative motion of the con- 
ducting bodies with respect to one or more permanent 
magnets. This method has been quantitatively investi- 
gated for a ramp separator [ 7 ] ,  [8] as well as a single 
boundary separator 191-[ll]. 

Because of their ruggedness, rotating magnet separa- 
tors are often employed for industrial applications. Here 
the waste stream is transported on a conveyor belt which 
is redirected by a drum. Within the conveyor belt roller, 
a set of permanent magnets rotates in the opposite direc- 
tion of the belt. Lorentz forces act on the conducting ma- 
terials decelerating and lifting them in a different trajec- 
tory from those of nonconducting materials (as shown in 
Fig. 1). 

The objective of this paper is to present a new approach 
whereby the alternating magnetic field is created with ac- 
fed coils. This concept avoids the mechanical limitations 
of a rotating drum. The coils are compact, not subject to 
wear and tear, and readily operational over a wide range 
of excitation frequencies. 

B. Approach 
For the ac-fed coil, a numerical modeling formulation 

based on the finite element method is developed in order 
to calculate the magnetic fields, induced eddy currents, 
and resulting Lorentz forces. The finite element model is 
tested against two analytical solutions. First, it is shown 
that the results for the eddy current distribution, derived 
by an inverse Laplace-transform model of an infinite wire 
suspended under a conducting half-space, is in excellent 
agreement with the predictions made by the finite element 
model. 

Second, the model of a thin conducting slab over an 
infinite wire is investigated. A formula for the resulting 
Lorentz forces exerted on the slab is derived by employ- 
ing the moving image method. This method was first in- 
troduced by Maxwell, but it is rarely used in practical 
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1 Fig. I ,  Waste separation with rotating magnets. 

n addition, an analog with an equivalent 
1 circuit provides an easy to handle approxima- 
the force prediction. Although the testing of nu- 

by various analytical solutions has been 
e, the moving image method is a novel ap- 
fy finite element force predictions for thin 

, our numerical model is applied to the geometry 
stic application: the field behavior of an alumi- 

arrangement of multiple coils. The re- 
puter simulations are tested against 
nts, in order to obtain suggestions for 
ement, optimal frequency, and a pos- 

11. FORMULATION 
o find an analytical formulation for the in- 
urrent density J, ,  it is helpful to reduce the 
simplified two-dimensional model in the x-y 
mple geometry consists of four layers 
, 4) as shown in Fig. 2. An aluminum plate 

f the conductivity u3 = uAl is located over a long, 
ctor of width 7 which is extended infinitely 
ion and carries the source current J,,,. All 
elds are sinusoidal functions of the angular 

frequency w .  Since the material is nonferrous, 
tic permeability equals po everywhere. 

for the numerical and analytical treatments of 
y currents is the inhomogeneous, parabolic 

rential equation involving the single compo- 
gnetic vector potential A, in the form 

aA, 

U, = uAI for U = 3 
(1) 

U, = 0 
= -poJ,,, with 

duced eddy current density is identified by the term 

( 2 )  

for U z 3 .  

the z-components of the vectors A ,  J,, and J,, 
the subscript z is subsequently omitted. 

Fig. 2. Geometric arrangement of conducting slab over a strip conductor. 

The boundary conditions in terms of the normal and 
tangential components of the magnetic flux density and 
the magnetic field can be expressed as vector potentials 
and can be applied to the four layers as follows: 

A,+ l  = A ,  (3) 

f"po for U = 1 
(4) 

0 for U # 1. 

Here the current distribution in the strip conductor [, can 
be written as the sum of two unit step functions 

* Z,[U(X + 7) - u(x - 7)] I ,  = 
27 

where I,  denotes the total source current in the strip con- 
ductor, and u(x) is the Heaviside step function. 

A.  Finite Element Approach 
The finite element approach is employed to solve the 

underlying equation (1) for arbitrary two-dimensional 
geometries. This is carried out by employing the well- 
documented weighted residual method [ 1 11, which relies 
on the local approximation of the unknown potential and 
known current density by basis functions + I  (i denotes the 
nodes in the solution domain Q )  such that 

k k 

A = A& and J,  = c Js,J4,. (5)  
J = l  J = l  

Forming the inner product in the Galerkin sense and 
integration by parts yields [12] 

where the brackets ( ) denote the inner product in Hil- 
bert space. The integration of the vector potential over the 
boundary (n  is the outward pointing normal) on the left- 
hand side constitutes the Neumann-type boundary condi- 
tion. Rewriting (6) in conventional matrix notation yields 
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{e} = [SI {AI + j w  [Cl (AI - P I  ( J l  (7) 

where the nodal point values for the magnetic vector po- 
tential and the current densities are given by the vectors 
{ A }  and ( J ) .  The matrices [SI, [ C ] ,  and [D] contain the 
local domain integrals, and ( Q> represents the surface in- 
tegral vector as specified in (6). 

The above elemental matrices and vectors are assem- 
bled into a banded global triangularized matrix which can 
subsequently be solved for the global field ( A } .  From the 
magnetic vector potential, all quantities of interest can be 
derived. The total flux density B is calculated according 

. To obtain the induced eddy current den- 
sity, the complex time derivative of A is formed 

Re(J,) = Im(A) WO and Im(J,) = -Re(A) UO. 

(8) 

The Lorentz force densityf = J,  X B can be divided into 
a time averaged portion fa and a part oscillating at twice 
the frequency. Since the mechanical time constants are 
assumed to be much larger than the oscillation time, only 
fa is of interest for the subsequent applications. The two 
components of the force density are 

f , , ,  = Re(Je) * Re@,) + Im(Je> * Im(By) (9a) 

fa,y = Re(J,) Re@,) + Im(J,) Im(B,). (9b) 

This force density is integrated over the boundary assum- 
ing a unit thickness in z-direction to calculate the total 
force F. 

111. ANALYTICAL MODEL VERIFICATION 

A.  Thick Plate 
In order to test the finite element model against a rela- 

tively simple analytical formulation, it is assumed that the 
thickness w of the plate in the above model (Fig. 2 be- 
comes large with respect to the skin depth 4 = J-k 2lwp U 

whereby layer 4 can be neglected. 
To eliminate x and to obtain a function which depends 

on one variable only, the Fourier transformation 
m 

A(k, y )  = A(x,  y)ePJkX dx (10) 
-m 

is employed [13]. When applied to (I), it yields for the 
layers v = 1 * * * 3 

and for the interface condition (4) 

a&(y = -h, k)  a A l ( y  = -h, k) 
- = f ~ p o  sinc (TIC) 

ay ay 

(124 
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Fig. 3.  Eddy current distribution inside an infinitely thick slab at a fre- 
quency off = 2 kHz calculated by the analytical formulation (15) and by 
using the finite element method. 

where sinc(.rk) is the short-hand notation for sin(.rk)l.rk. 
A general solution for (1 1) can be constructed for the 3 
layers 

Al(k ,  y )  = C1 e-k(-y-h) (134 

A,(k, y )  = C2 . e - k ( - Y + h )  + D2e+k(-Y--h) 

A3(k, y )  = C, . epYy 
( 13b) 

U3C) 

where y = dl? + jwapo. Note that (13a) and (13c) do not 
involve any increasing exponential terms since A l  and A, 
should converge to zero at infinity. 

By inserting (13a)-( 13c) into the boundary conditions 
(3), (12a), and (12b), one obtains a system of four linear 
equations in the k-y space which can be solved for the four 
coefficients. These coefficients are inserted into the ansatz 
for A ,  followed by the inverse Fourier transformation 

m 

A,(x, y )  = S A,(k, y ) e j h  h. (14) 2~ -m 

Substituting A3(x, y )  into (2) yields the final result for the 
eddy current distribution within the slab [12] 

sinc(kT) cos(ky) dk. (15) 

For the numerical evaluation, the real and imaginary 
parts of the integrand are separated. In Fig. 3, the distri- 
bution of the real and the imaginary parts of J, along the 
y-axis inside the conducting slab are shown for the nu- 
merical evaluation of (15) and for the finite element model 
based on the parameters shown in the figure. Successive 
mesh refinements of the finite element model result in very 
close agreement (less than 5 % deviation) between the two 
models. 

Additionally, the real part of J ,  is analyzed within the 
entire x-y plane at two different excitation frequencies. It 
can be seen from Fig. 4(a) and (b) that the current is 
driven toward the surface of the plate as the frequency 
increases. 
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(b) 

a) Real part of J ,  at fixed frequency f = 2 kHz over thick slab, 
ienotes material surface location and y is depth. (b) Real part of 
i frequency f = 10 kHz over thick slab. 

'ce Formulation by Using the Moving Image 
1 
,der to model the problem more realistically and to 
a simple approximation for the total force, we as- 
3r the model shown in Fig. 2 now a thin plate with 
h and w << 6 suspended over a line conductor 
-+ 0 [14]. 
ieoretical Basis: Here the magnetic vector poten- 
:onsists of two parts: A, is caused by the source 
in the conductor, and A, is due to the induced eddy 
s. This leads, for the electric field E = J J o ,  to the 

t Y  
Image conductor 

I l h + v t  X + %  

Fig. 5 .  Path of integration for B field and location of image conductor 
which recedes with velocity U from starting position y = h (h >> w). 

Applying Ampere's law to a cross section of the plate 
within the x-y plane (which extends to the infinitely far 
edge of the slab as shown in Fig. 5 )  results under the as- 
sumption w << h in 

m 
l m  
- l," Be, ,  G!x = 2 s, wJe , z  h. (17) 

By differentiating this equation, inserting J, into (1 6), and 
using the relation B, = -aA/ay, one finds 

PO 

a(A, + A,) 2 aA, 
at POWU a y  (18) - 

which is valid inside the thin plate [ 151. For an assumed 
step excitation A, = AO u(t) ,  one can compare (1 8) to the 
generic first-order hyperbolic differential equation 

a+ a+ 
at JY 

U -  = 0 _ -  

which has the solution 4 = 4(y  - vt,  t ) ,  and where the 
velocity v can be identified as 

This means that the flux density and the force on the con- 
ductor caused by the eddy currents in the slab can be cal- 
culated by replacing the slab with an upward-moving con- 
ductor on the upper side of the plate as shown in Fig. 5 .  
This imaginary conductor carries the same current as the 
original conductor, but with an opposite sign. The B field 
below the slab caused by the imaginary conductor results 
in conjunction with the source current ZO in the force per 
unit length 

F,(t) = BxZs = u(t) P G  
27r(2h + ut)' 

2)  Fourier Transform: Equation (2 1) describes the force 
when excited with a step current I, = IO u(t) .  To analyze 
the step response under a steady-state condition, the Fou- 
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Moving Images Method (23) 

Approximation(26) 
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3.01 4 72 8 72 8 72 9.54 9 98 

3 28 4 9 8  8 89 8 89 9 6 7  9 9 9  

rier transformation (10) is applied. Since multiplying by 
j w  in the frequency domain is equivalent to the Fourier 
transform of the impulse response, we obtain for the real- 
Part 

” C O  -7 ”’ sin(wt)dt. (22) 10 27r(2h + ut) 
FJw)  = w 

The imaginary part of FJo)  is irrelevant since only the 
in-phase component of the B, field contributes to the re- 
sulting force. As a solution to this integral we find 

W P C  Fy(w) = ~ [T cos(() - 2Si(() cos(() 
V7i 

+ 2Ci([) sin(()] (23) 
where ( = wh/v. Here Si denotes the sine integral and Ci 
denotes the cosine integral as tabulated in [16]. 

3) Circuit Approximation: A simpler analytical expres- 
sion for F,(w) can be developed by approximating (21) by 
the sums of two decaying exponential functions 

where 7 ,  = 2hlu 111.53 and r2 = 2hlv 110.228. The error 
of this approximation is less than 1.26 % for vtl2h 5 1. 
However, for ut >> 2h, which is equivalent to extremely 
small values of w and low frequencies, significant errors 
occur. 

A useful analog for (24) can be established by an equiv- 
alent electric circuit which gives the same step response 
[17]. For instance, the RC circuit in Fig. 6 fits this case. 
The current i(t) for an excitation with a step voltage is 

(25) 

Either by inspection or by Fourier transformation of (25), 
one obtains 

for a sinusoidal excitation voltage V, = V, cos (wt) .  
Expressing the field quantities 7 , ,  7 2  and poI2I8rh by 

the equivalent circuit quantities RC,,  RC2, and VOIR, we 
obtain the final result 

for the real part of the force per unit length. 
4) Resulting Force Predictions: Table I summarizes the 

forces calculated with the finite element method, the mov- 
ing image method, and the approximation of (27). 

In the finite element model, the 0.1-mm-thick plate 
consists only of 9 element layers, whereas the 1-mm slab 

Fig. 6. 

1 

Circuit analog for moving image model. 

TABLE I 

~ 

(Qm)-’, h ~ 1;m;;; k[ ~~ 

RESULTING FORCES PER UNIT LENGTH ON A THIN S L A B  FOR U = 3 7 10’ 

Thickness w i n  [mm] 

Frequency in [MI21 

Fy in [N/m] calculated by 

I Finite Element Method I 4.44 I 5.40 I 8.69 I 8.67 I 9.45 I 9.97 I 

contains 15 rows of elements with a much better aspect 
ratio. This accounts for the better predictions for the 
thicker plate. As expected, the approximate solution ac- 
cording to (27) yields more accurate results for higher fre- 
quencies or thicker plates. 

IV . LEVITATION ARRANGEMENT 
A .  Field Predictions 

The analytical models prove the accuracy of the finite 
element approach and point out the basic behavior of the 
field quantities for two simplified cases. As a next step, a 
two-dimensional finite element model of an aluminum can 
above an arrangement of coils is developed. In order to 
be flexible, this model must be capable of simulating ar- 
rangements with one, two, or more coils of various 
shapes. Furthermore, the horizontal and vertical positions 
of the can with respect to the coils have to be adjustable. 

To meet these requirements and to solve the problem 
of inhomogeneous mesh densities, which is mainly caused 
by the very thin mantel of an actual aluminum can, a 
parametric discretization is developed. To avoid model- 
ing the current displacement within the coils, the associ- 
ated areas are assigned a high specific resistivity. The alu- 
minum can, which is modeled as a cross-sectional view 
of the mantel, is represented as a 0.1-mm-thick ring, 
which consists of four very densely meshed circular seg- 
ments from where the discretization density decreases with 
distance. The entire modeling area is surrounded by infi- 
nite boundary elements [ 181. 

As an example, a can above an arrangement of two coils 
(as shown in Fig. 7) is investigated. The computations are 
performed on a 190 MHz Alpha Station and require for 
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Fig. 7.  2-D mesh in the region of interest with dimensions in (mm) as well 
as direction and amplitude of source currents. 

neration and finite element solution approxi- 
in CPU time and 95 MByte of disk space. 
) and (b), the solution of the finite element 
shown. The real part of A, originates at the 
enuated by the can. For the imaginary part, 

on the mantel of the can are ob- 
the can, the equipotential lines are almost 

distributed, but at the mantel they exhibit 

not shown in detail, this finite element model 
ght into the distribution and mag- 
nts, as well as forces. For further 

demonstration of the permissibility of the 
tions made for this model, measure- 

dy current levitation system have to be 

an air coil consisting of 170 wind- 
dc resistance and inductance are 

6.65 mH. The coil 
circuit which is driven by a 

shown in Fig. 10. The cir- 
signal at the resonance 

by varying the ca- 

I 

arrangement is capable of feeding the coil with a 
nt of up to 10 A over a frequency range from 200 Hz 

to 20 kHz. The voltage VI = I f i C  over the capacitor 
can attain up to 3 kV. 

To determine the exerted force, the weight of the alu- 
minum can is used. The can rests on a 1.6-mm-thick card 
above the middle of the pancake coil. In order to prevent 
it from rolling sideways, two stripes of tape on either side 
of the can serve as small barriers. 

At a given frequency, the source current is increased 
until the upward-directed component of the Lorentz force 
exceeds the gravity force for the can to be levitated. Since 
the forces to the left- and right-hand side are equal, no 
horizontal force will result as long as the can rests on the 
card above the middle of the coil (see Fig. 11). However, 
as soon as the can starts to levitate, even a small dislo- 
cation to the side results in an immediate sideways accel- 
eration. This unstable equilibrium aids in specifying the 
“lift-off ’ time. 

I )  Results: The measured “lift-off’ current is taken as 
an input parameter for the finite element simulation. It is 
noted that this current has to be multiplied by 1 7 0 h  to 
take into account the number of windings and the conver- 
sion between rms value and amplitude. Since the can ma- 
terial is typically an aluminum alloy, the calculation relies 
on a conductivity lower than that of pure aluminum [7 ] .  
For two frequencies, the results are summarized in Table 
11. 

Comparing the simulated forces to the measurement re- 
sults provides acceptable agreement. Errors are due to the 
fact that the simulations are performed in two dimensions 
which lead to smaller field predictions whereby contri- 
butions caused by currents in the +x-directions are ne- 
glected. Furthermore, the heating of the capacitors and 
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Fig. 8. (a) Real part of the magnetic vector potential A in [Vsim] for ex- 
citation frequency of 2000 Hz. (b) Imaginary part of the magnetic vector 
potential A in [Vs/m] for excitation frequency of 2000 Hz. 
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X 

k 1 2 9 4  

Fig. 9. Pancake coil used in the experiments (dimensions are given in mm). 

+ 7 0 V  

8 transistors 4 x 2.2 mF 
in parallel 

" 1  L 
6.65mH 2.3 SZ Y 8 transistors 

T 
-70 V 

Fig. 10. LRC resonance circuit excited by transistor amplifier. 

ELEM=6 187 
MIN=28.674 
MAX=939928 

Fig 1 1  Can located 1 6 mm above coil The vectors denote the force 
density f in [N/m2] for drive current of Z = 6.7 A at a frequency of 1980 
Hz . 
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8 

6 

Gravity Force on Can [NI 0 17 4 

2 

Frequency [kHz] 1980 1225 

Lift Off Current [A] 6 2 2.7 
~ _ _ _ ~  

Simulated Force [NI 0.1203 0 1596 

20 
f in [kHz] 

0 2  
the can causes a drift of the resonance frequency and thus 
influences the conductivity. Fig. 12. Force per length unit F ( f )  exerted within a thin plate of thickness 

w (logdrithmic s d c )  

C. Implementation Considerations 
The transistor amplifier arrangement described in Fig. 

10 is a relatively inexpensive and adaptable circuit to in- 
vestigate a wide range of excitation frequencies. How- 
ever, for industrial applications, much higher forces have 
to be exerted on the object to be levitated as discussed 
below. 

1) Currents: Since the forces arc proportional to the 
square of the current, increasing the current is the most 
efficient way to achieve higher levitation forces. To gen- 
erate higher currents, static converters with thyristors 
could be employed for excitation frequencies up to 10 
kHz. These systems, consisting of a thyristor rectifier, a 
smoothing inductance, and a thyristor converter, are 
widely used, such as for the inductive melting of metals 
[ 191. Advantages include efficiency of more than 90 % and 
low cost. Furthermore, they can be used for pulsed op- 
eration to prevent overheating of the coils. 

2) Drive Frequency: Another way to enhance the force 
is to increase the excitation frequency. In Fig. 12 the fre- 
quency dependence of the force is compared for two slabs 
of different thicknesses w according to (27). One finds 
that for the thicker slab, the force is higher at low fre- 
quencies, but reaches saturation earlier than for the thin- 
ner slab. The reason for saturation is that at higher fre- 
quencies the inductive properties of the material come into 
effect and add to the reactance in such a way as to increase 
J, more slowly. Since at high frequencies the eddy cur- 
rents are concentrated in a very thin layer beneath the sur- 
face, the thickness of the plate has less influence on the 
force. 

For our application, this implies that for the levitation 
of thinner bodies higher frequencies arc desirable. In the 
mantel of the aluminum cans (0.1 mm), a significant in- 
crease in force could be achieved by increasing the fre- 
quency up to 10 kHz. Unfortunately, losses in the exci- 
tation circuit increase at higher frequencies, requiring a 
careful optimization for the specific application. 

V. CONCLUSIONS 
This paper presents a finite clement analysis approach 

capable of calculating magnetic fields, eddy currents, and 
forces in flat or circular bodies located above a multiple 
coil configuration. The validity of the numerical approach 

is established through comparisons to two analytical 
methods: the Laplace-transform technique for a conduct- 
ing half-space, and the moving image method for a thin 
plate. These methods are important tools in their own right 
as they can be applied to a range of other problems, for 
instance, in the area of shielding or magnetic traction. 

The numerically predicted forces are in acceptable 
agreement with experimental measurements. We intend to 
employ this numerical method as a flexible tool to design 
and optimize levitation devices. In particular, future ef- 
forts will be directed toward replacing the permanent 
magnets in the rotating drum shown in Fig. 1 by an array 
of coils. Furthermore, through variation of drive current 
and levitation frequency in conjunction with geometric 
changes of the coils, the separation of small particles such 
as shredded metal will be analyzed. 
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