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A Methodology for Two-dimensional Finite Element Analysis
of Electromagnetically Driven Flow in Induction Stirring Systems
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Abstract—This paper describes an integral closure
approach for 2-D analysis of electromagnetically driven
flow in inductively coupled molten metal using the finite-
element method. This methodology, which restricts the
solution domain to the conducting regions(s), was
demonstrated for flows generated by complex
electromagnetic fields, and computed results were found
to be in good agreement with measurements.

Index Terms— Eddy currents, fluid flow, modeling,
numerical methods.

I. INTRODUCTION

Induction technologies are extensively used for stirring of
molten metal by means of electromagnetic forces generated
from the interaction between induced currents in the melt and
the associated magnetic field. The range of applications
extends from scrap melting in induction furnaces to melt
stirring in continuous casting [1]. With the increased use
metallic shields to modify the force distribution in the melt
and hence the flow, modeling has become an indispensable
tool for the analysis of electromagnetically driven flows in
these applications. The problem with the conventional
differential approach for describing the electromagnetic field
in eddy current problems is the expansion of the solution
domain to infinity. This renders the numerical solution of the
coupled electromagnetic and fluid flow equations using finite
element or finite difference methods to be computationally
inefficient.

The hybrid differential-integral approach, which eliminates
the solution of the magnetic field in free space, provides a
practical framework for the analysis of electromagnetically
driven flow in induction stirring systems [2,3]. An
alternative to the finite element-boundary integral method is
the integral closure method proposed by the authors for the

numerical solution of the field in the conducting region [4,5]. .

It is based on the specification of the magnetic field boundary
condition on the outer surface of the conductor using the
Biot-Savart law.
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The purpose of this paper is to extend this methodology to
complex induction systems comprised of multi-conductor
domains and to present an integrated finite element
methodology for modeling electromagnetlc and fluid flow
phenomena in induction furnaces.

II. GOVERNING ELECTROMAGNETIC AND FLOW EQUATIONS

Consider a liquid metal in a cylindrical or rectangular

- container surrounded by metallic rings and an induction coil

as shown in Fig. 1. The passage of alternating current, I, in
the coil generates a 2-d magnetic field, B (B,,0, B,). The
current in conducting regions has only one component in the
X, direction. For a time-harmonic applied field with angular
frequency ©, the electromagnetic field in the conducting
domains (£,,..,2,) may be represented in terms of the

vector potential, A (0, A,, 0), by:
VA, =c

Vj=1l.n, (0

2

where |, the is magnetic permeability, o is the electrical
conductivity of the conductor, j is V-1, h, is the coordinates’

“scale factor, and c is constant equal to O for cartesian

coordinates, and 1 for cylindrical coordinates.

In order to use this equation to compute the field in the
system without solving for the field in free space, one needs
to know A on boundaries of conducting domains. In this
methodology, the boundary conditions for A are supplied by
Biot-Savart law, which may be expressed as:
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Fig. 1. Sketch of the System
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The force field resulting from JXB in the liquid metal, which
is in the x, and x, directions, generates a two-dimensional
velocity field, U(u,,0,u,). For steady flow, the time-averaged
continuity and turbulent Navier-Stokes equations for u, and
u, are:
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where p is the density, b, is the effective viscosity, p is
pressure and A is the penalty parameter [6]. Using the k-¢€
turbulent model [7], u, is:

Ky =4, +pCk’ [e (6)

where i, is the molecular viscosity of the fluid, k is the
turbulent kinetic energy, € is the turbulent energy dissipation.

The boundary conditions needed to solve (3)-(6) are zero
velocity at solid walls and zero velocity gradients at the melt
free surface and at the axis or plane of symmetry.

III. FINITE ELEMENT FORMULATION

In this work, the finite element formulation of the
electromagnetic field problem was developed using the
Bubnov-Galerkin method, while the fluid flow equations
were discretized using Petrov-Galerkin method.

From the weak integral form of (1), the global finite
element matrix equation of the field problem for any
conducting domain may be expressed as:

Fcleck )] =0 o

[x,]= XX
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>

[k.]= jv(VN" "VN)dV ,

[K,]= jowu, [N'N dv
£2;
where N is the shape function. The value of A at the nodes on
the boundaries of the conducting region are specified by (2).
Upon manipulating the weak forms of (3) to (5), the final
matrix equation of the fluid velocities may be written as:
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where W is the weight function, lul is the magnitude of
velocity vector, and parameter o is defined in [6]. The
superscript n denotes the iteration number.

IV. SOLUTION TECHNIQUE

The developed formulation allows the treatment of each
conducting region as a separate domain from meshing,
assembly and solution of the matrix equations standpoints.
This approach not only reduces the size of the field stiffness
matrix, but also facilitates combining the fluid flow and
electromagnetic field algorithms. The solution of the
governing equations essentially involves the calculation of
the electromagnetic field in the conducting domains followed
by the calculation of the electromagnetic forces and flow in
the molten metal region.

The algorithm for computing the electromagnetic field
begins with the solution of (7) using an estimated A on the
boundaries of the conducting regions from the coil current.
This step is repeated with updated A from the previous

solution until an identical solution is obtained. The
convergence criterion for error definition R, was 10™.
f X)) (10)
E

L X)) |

In computing the Lorentz force (J X B) at the nodal points
of the fluid domain B was evaluated from the Biot-Savart
law. In this work, four-point Gaussian quadrature was used
to evaluate the integral of J in this equation.

The fluid flow algorithm involves the solution of the
velocity matrix equation (8), followed by updating the
pressure field and turbulent viscosity fields using (9) and (6),
respectively. This procedure is repeated till the error between
two successive iterations using the error definition in (10) is
less than 10°. For the cases examined, it took between 100-
130 iterations to obtain converged velocity solution.

V. APPLICATION TO INDUCTION FURNACES

The developed solution methodology was applied to
simulate electromagnetically driven flow in a mercury
physical model of the induction furnace [8]. Two cases were
examined. The first deals with stirring in absence of metallic
shields, while the second involves field modification using
copper rings for the configuration shown in Fig. 1. The
geometrical and electrical data are summarized in Table I.
All calculations were carried out using 725 quadrilateral
elements in the liquid, and 121 elements in the copper ring.

TABLEI

INPUT DATA USED IN THE CALCULATIONS
Inner radius of the container 0.075 m
Height of mercury in the container 02m
Radius of the copper ring 0.0875 m
Major and minor axis of the shield 0.018,0.013 m
Radius of the induction coil 0.15m
Number of coil turns 303
RMS coil current 32.51 Amps
Frequency 50 Hz
Electrical conductivity of mercury 10% mho/m
Electrical conductivity of copper 6 107 mho/m




Fig. 2a and 2b shows the computed magnetic field
streamlines with and without field modification. These
figures show that the induced field in the melt distorts the
applied magnetic field, and the distortion is more pronounced
near the outer surface -of the molten region. Inspectiofizof
these figures indicates that the effect of the shield is to further
distort the magnetic flux lines.

Fig. 3 to 5 shows a comparison between computed and
measured axial profiles of the magnetic field and induced
currents in the liquid mercury for the two cases. Quantitative
agreement is seen regarding the numerical values of these
field quantities within experimental errors. It is also seen that
the measured and computed profiles are quite similar, and the
model predicts reasonably well the distortion of the magnetic
field the shields.

Fig. 6 and 7 shows the axial and radial variation of Fz,
which is the principal driving force of the flow. Again, the
agreement is seen to be very good between the measurements
and predictions. This together with the ability to resolve the
reversal of the force direction by the shields with relatively
few elements demonstrates the viability of the present
method for the analysis of the flow in induction stirrin
systems. :
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Fig. 2. Computed magnetic streamlines: (a) without shields, (b) with
shields.
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Fig. 3. Measured and prédicted axial variation B, at r=0.07 m.
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Fig. 4 Measured and predicted axial variation of B, at r=0.07 m.
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Fig. 5. Measured and predicted axial variation of J, at r=0.07 m.
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Fig. 6. Measured and predicted radial variation of F, atz=0.17 m.
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Fig. 7. Measured and predicted axial variation of F, at r=0.07 m.

1775



1776

Figs. 8a and 8b show the effect of the metallic shield in
modifying the flow. These figures clearly show that the
presence of the shields significantly modifies the flow pattern
from two recirculating loops to four recirculating loops.
Furthermore, it alters the direction of the flow in these loops.
The reversal of the flow is clearly shown in Fig. 9, which
shows the radial variation of the velocity at the axial position
corresponding to the eye of the vortex. The agreement
between the computed and measured velocities regarding
both the direction and magnitude for these two cases not only
validates the model formulation. Also, it demonstrates the
robustness of the model in resolving the electromagnetic and
velocity fields with fewer elements.
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Fig. 8. Plot of velocity vectors in an induction furnace: (a) without shields,
and (b) with shields.
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Figure 9 Comparison between measured and predicted radial variation of V,
at r=0.07 m.

VI. CONCLUDING REMARKS

A finite element based computational approach has been
described for the simultaneous solution of the
electromagnetic and fluid flow equations in 2-D induction
stirring systems. The key to this computational technique,
which limits the solution domain to the conduction region, is
the integral description of the electromagnetic field boundary
condition for closure of the differential field equation. This
alternative formulation to the hybrid FEM-BIM method is
easier to implement specially for systems with many discrete
conducting regions. Through the decomposition and solution
of the field in small domains as well as the calculation of the
flow in the molten region only, the developed method offers
considerable savings in memory and CPU time requirements.
Finally, the robustness of this method has been demonstrated
by accurately predicting the measured electromagnetic
parameters and melt velocities in a physical model of
induction furnace with a relatively small number of elements.
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