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On the Nonlinear Eddy Current Field 
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Abstract - A semianalytical algorithm including the Fourier trans- 
form, the quasi-Newton iteration and Galerkin's finite element method, 
has been developed to solve the eddy current field problem and the cou- 
pled heat transfer problem in the presence of a metallic slab. The field- 
dependence of the magnetic permeability and the temperature- 
dependence of the electric and thermal conductivities of the heated slab 
are considered. The results obtained are reasonable and consistent with 
the real operation conditions in the industrial processing. 

I. INTRODUCTION 

Metal parts are often hardened by high frequency induc- 
tion heating where the frequency is about some hundreds 
of kHz. The governing equation of the concerned eddy 
current field problem is 111, [2], [3] 

(1) 
a aB a2B a2B 

a x 2  a y 2  at at 
p ( a + e - ) - = O  -t-- 

where B is the magnetic flux density, p=pr& is the mag- 
netic permeability, E is the permittivity and a is the electric 
conductivity. The governing equation of the heat transfer 
reads 

(2) 
aT - Q *  KVT t c p p Z  = 

where T is the temperature, K is the thermal conductivity, 
cp is the thermal capacity, p is the density and q accounts 
for the heat source which results from the eddy current loss 
in the heated slab. 

This paper considers the field-dependence of the mag- 
netic permeability and the temperature-dependence of the 
electric and the thermal conductivities of a heated slab. To 
avoid the discretization in dealing with a very thin penetra- 
tion depth and an open boundary, the nonlinear eddy 
current field is calculated by the Fourier transform with a 
precondition and the quasi-Newton iteration. 

The temperature-dependence of K ( T )  and a ( T ) ,  and 
the nonlinear magnetic reluctivity I/ = l/p are approximat- 
ed by piecewise linear functions. 

11. ALGORITHM 

1. The quasi-stationary eddy current field is assumed as 
in the steady state and therefore described by phasors. For 
the 2-D rectangular coordinate case, (1) can be written as 

a2Bx a2BX 

a x 2  a y 2  

+- - j w p ( a + j w e ) B , =  0 ,  ( 3 )  

a2By a2By 

a x 2  a y 2  
+ - - j w p ( a +  jwe)By = 0 .  (4) 

The arising boundary value problem can be solved by 
separation of the variables. The space may be divided into 
three regions I, I1 A d  I11 according to the electromagnetic 
property of the medium shown in Fig. 1. Because the 
length of the slab is infinitely long, the Fourier transform 
(FT) is applied to the 2-D boundary value problem. 

The Fourier transforms of B, and By are [4] 

m 

Ex = l B x e - j k X X  dx , 
- m  

w 

6 = l B y e - J k x x  dx . 
-m 

( 5 )  

The FT of (3)  and (4) can then be written as 

- a%, 
-k:B, +-- j w p ( a  + jwe)Ex = 0 ,  

aY 

The solutions of the above equations provide together with 
the incident field the total field as 

- -. 
B, =bxe ay  + c,e -aY +B,", (7) 
- -. 
By =by e aY'+ cy e -aY +BY 

where 
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az = k ; + j o p ( a + j o c )  

and gf and are the transformed incident field com- 
ponents. Substituting (7) and (8) into the Fourier 
transformed Maxwell equation V- B = 0, it is found that the 
relations 

between by, b,, cy and c, must hold. From the geometry 
shown in Fig. 1, the boundary condition equations can be 
established to determine the integration constants. 

According to Maxwell's second equation, it is known 
that in the 2-D case 

aB, aB, 
E, = 1 (---). 

p ( ~ + j w e )  ax ay  (9) 

Substituting (5) and (6) into the Fourier transformed equa- 
tions (9), E, can be obtained 

where 
-. 1 

It is convenient to determine the transforms of the incident 
field components and those of the scattered field by means 
of the discrete Fourier transform (DFI'). By applying the 
inverse discrete Fourier transform (IDFT), the rms of the 
electric field strength can be obtained. The formula for the 
power density P which is the source of the heat transfer of 
the induction heating in the slab reads 

P = oE: (12) 

where E, is the rms. 
2. To take into account the temperature-dependence of 

the electric conductivity, the average temperature of the 
slab is taken to calculate the electric conductivity of the slab 
according to the piecewise-linear characteristic curve of the 
conductivity via the temperature. At x = 0, y = d there is 
the maximum magnetic flux density from which the mag- 
netic reluctivity is computed as follows: 

Precondition: According to the given magnetic permea- 
bility values the corresponding magnetic flux densities are 
calculated by means of DFT and IDFT to obtain the load 
line which is expressed as 

where B is the the magnetic flux density rms for x = 0, 
y = d ,  u = l / p  and a, is piecewise-constant. The 

piecewise-linear curve of the magnetic reluctivity via the 
magnetic flux density rms is described as 

u = a ,  + a,B (14) 

where a, and aj are piecewise-constants. 
Quasi-Newton iteration [2] is applied to search the inter- 

section of (13) and (14). 
The advantages of the quasi-Newton method are its sim- 

ple programming and its high speed of convergence, for in- 
stance, after less than 10 iterations the solution error is less 
than 5% as computation experiments have shown. 

Because the DFT limits the length of the slab, the heat 
transfer of the slab can be calculated by means of the FEM. 
The backward Euler scheme for the heat transfer (2) reads 

3. Heat transfer 

cPp(T"+' - T " )  -Q* IcQT"+' = q , (15) At 

According to Galerkin's FEM, (15) is multiplied by tbe 
shape function JI and integrated by parts: 

where C l  is the field domain, \k is a linear shape function, 
an is the boundary of the field domain Q and n is the unit 
vector outward normal to the boundary. 

The finite element algebra equation corresponding to 
(16) can be expressed by means of the matrix equation 

where [ S , ]  and [S,]  are stiffness matrices, [T"] is th 
of the node temperatures for the n -th time step an 
a vector whose entries are the average powe 
the three nodes of the triangular elements 
discretization. 

The time step of the transient calculation is ev 
from the temperature-dependence of the thermal co 
tivity. The thermal conductivity can be expressed as 

l c = a  + b T  (18) 

where a and b are piecewise-constant. According to the 
permitted error of IC due to the change of the temperature 
a vector [AT] can be 
[T"+'] according to 

[ T n t 1 ] S  [T"] 

given. In (17) [T"] is known, set 
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then the matrix [S, ] influenced by the thermal conductivity 
can be calculated. For the i-th equation of (17) a value of 
Ati can be derived. Let the vectors 

where ui and vi are the i -th entries of [VI and [VI, respec- 
tively. Taking the average value of them yields an upper 
bound for the time step At : 

where nr is the number of the elements. The time step can 
be taken equal to or less than h, . Thus the time step can be 
estimated, provided that the thermal conductivity has no 
evident change in this time step, that means the transient 
can be calculated step by step without iteration. 

(i) 

(Z) 

(G) 

4. Iteration loop for the coupled fields 
The initial condition T(x , y , 0) = To is given, calcu- 
late the loss of the eddy current field. 
By the loss, the new temperature can be computed 
for a time step. 
Taking the average value of the new temperature as 
the temperature of the slab, the loss of the slab can 
be calculated again. 
Calculate a new time step, if t < I, go to (ii). (iv) 

111. EXAMPLE 

An infinitely long steel slab is heated by an inductor 
(Fig. 1). The boundary conditions for the 2-D heat transfer 
are shown in Fig. 2. In order to calculate the eddy current 
field by the DR, the origin of the coordinate system is 
chosen at the center of the inductor. To calculate the heat 
transfer of the slab, the y-axis is moved to the left end of 
the slab. The eddy current field problem is solved in the 
whole space by applying the DFT, while the heat transfer is 
evaluated in the heated slab. 

The temperature responses at x = O S 1  and x = 1 of the 
surface of the slab are shown in Fig. 3. The scattered elec- 
tric field strength has an odd symmetry with respect to the 
x-axis of Fig. 1 shown in (10). In the middle of the slab the 
temperature increases slowly. This phenomenon is shown 
in Figs. 3 and 4 where the temperatures at the left and right 
ends have the highest values. In Fig. 4 the temperature 
difference between the surface and the center of the slab is 

about 15" C. The difference between the highest value and 
the lowest value along the x -axis is about 22" C. 

Based on the calculations of the magnetic flux density in 
the whole space, the equivalent circuit inductance has been 
computed, and the resonance capacitance of the oscillator 
has been determined. The calculated inductance L is 
113.35pH and the required capacitance C is 22.37nF, 
which is consistent with the capacitance of a real oscillator 
operating in our industrial application, and shows the vali- 
dity of the proposed model and the algorithm. 

IV. CONCLUSION 

(1) A semianalytical algorithm for the solution of the 
eddy current field problem coupled to the heat transfer 
problem is presented. The advantage is that the formu- 
las for the field variables are analytically available and that 
there is no difficulty with the discretization due to the very 
thin penetration depth and the open boundary. 

(2) The nonlinear heat transfer is computed by 
Galerkin's FEM together with the backward Euler scheme 
where a criterion of the time step is suggested. 

(3) The results show the temperature response at the 
surface and the local distribution of the temperature along 
the x-axis. Because the scattered electric field strength is of 
odd symmetry to the x-axis shown in (lo), both the eddy 
current density and the temperature are lower in the mid- 
dle part of the slab. In the y -direction the temperature at 
the surface is higher than the temperature at the center of 
the slab. The difference between the temperature on the 
surface and the temperature at the center of the slab is 
determined by the cooling condition of the slab. 
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Fig.1 Inductor and slab 
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Fig.2 Boundary conditions of the heat transfer 
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