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Abstract - The continuous induction steel bar end heating is 
investigated by means of numerical calculations. A numerical 
model is used for the calculation of the three-dimensional eddy 
current and the heating process. The differential equations de- 
scribing the electromagnetic field are integrated as an A+ for- 
mulation. For the calculation of the temperature fields the 
Fourier's heat-conduction equation is used. On principle for the 
numerical solution the finite element method is used. The effect 
of material properties depending on temperature and magnetic 
field are taken into consideration in an iterative manner. The 
results of simulation correspond well to experimental data and 
give good transparent of the process. The computing time, 
however, is too long for an effective realization of optimization 
processes. 

I. INTRODUCTION 

The continuous induction steel bar end heating is used to 
heat up the bar ends for forging or hardening. The bars are 
moving from the left to the right (see fig. 1). The heating 
process should be as fast as possible. The bars leaving the in- 
ductor should have a special temperature distribution de- 
pending on the following process. For optimum inductor de- 
sign the electric losses (heat sources) in the steel bars are im- 
portant. The heat sources and the velocity of the bars deter- 
mine the temperature of the last bar. 

Therefore only a three-dimensional numerical model for 
the whole inductor is very useful to obtain the eddy current 
distribution in the steel bars and the resulting temperature 
distribution. 

11. MATHEMATICAL MODEL 

Assuming that all field quantities are sinusoidal with time 
we can work in the complex domain. Using the magnetic 
vector potential 4 and the scalar potential cp for the 

magnetic field we have to solve following well known 
differential equations [?I. [dl, [51* 
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Fig. 1. Finite element mesh of the inductor with steel bars 
(without air). 

Where p is the permeability, K is the electrical conductivity of 
the material and o is the angular frequency of the generator. 

The calculation of the temperature field is effected on the 
basis of Fourier's heat-conduction equation [ 11: 

-- a(cp6) - div(kgradfi) + pv - Ggrad(cp29.) 
at 

( 3 )  

Where h is the thermal conductivity, c is the specific heat and 
p is the density. The temperature 6 depends on both the 
location (x, y, z) and the time t. 

The velocity vector field G makes it possible to consider 
continuous feed processes. Because the velocity of the mov- 
ing bars is constant the problem becomes steady-state. 
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Fig. 2. Finite element mesh of the inductor with steel bars. 

It shall be possible to use material properties depending 
on temperature and magnetic field in the following way: 

(4) 

111. NUMERICAL SOLUTION 

The numerical calculation of the electromagnetic field and 
the temperature field are possible by the finite-element 
method using the Galerkin procedure for solution of 
differential equations ( I ) ,  (2) and (3). The necessary 
boundary, symmetrical and interface conditions are taken into 
account. 

An exhaustive description of the procedure for the A-cp 
formulation is contained in [3] and [ 5 ] .  

The finite-element method requires the volume element 
discretization of the bounded three-dimensional solution do- 
main. At the nodes thus produced, the discrete values of the 

vector potential A and in the electrically-conductive zones, 
additionally the scalar potential are sought as unknown 

field quantities. The problem of the three-dimensional mag- 

- 
- 

Fig. 3. Isolines of magnetic vector-potential in the plane of symmetry. 

netic field is thus reduced to the solution of a system of linear 
algebraic equations. The matrix is symmetrical, and sparsely 
occupied. A discretization adapted to the specific problem 
leads to grid networks containing up to 100,000 nodes or 
elements. A large matrix is produced, requiring storage forms 
that need small storage space. For the solution of the system 
of equations, the incomplete Cholesky decomposition 
conjugate gradient method is used as an iterative process to 
reach the solution. 

The calculation of the temperature field is also carried out 
with the help of the finite element method (Galerkin 
procedure) on the basis of differential equation (3). Only the 
grid network inside the bars is required. On the outer surface 
area, heat losses due to convection and radiation are taken 
into consideration. The calculation of the temperature field of 
the moving bars is effected on a fixed grid network. 

Because of the continuous movement of the bars from the 
entrance the geometry of the magnetic field problem is 
changing permanently. So for every time step it would be 
necessary to generate a new grid network and to compute the 
electromagnetic field again. Because of a long duration of this 
procedure an assumption was made that the bars are moving 
forward in steps. In this way the following bar occupies the 
place of the one going ahead. 

For the discretization of the area for which the solutions is 
sought, a semi-automatic process using macro-elements is 
used [ 2 ] .  Macro-elements are hexahedral, prisms and 
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set the initial fields for permeability 
and temperature 

Pri = 1, i = l...n 
fii = f i ~ N v ?  i = l...n 

put permeability in memory 

and the heat sources: 

calculation of the temperature field 
(over the time with moving bars 

to the continous state) 

PNEW (R 291, i = l...n 
max. changes: 

Fig. 4. The iterativ approximation of the material properties depending on 
temperature and magnetic field. 

tetrahedral that are automatically meshed and then put 
together for the total discretization. The required manual 
work is limited to the definition of the macro-elements. Grid 
networks with more then 100,000 elements can, using this 
process, be constructed without any problem. The macro- 
element concept does not exclude input faults completely, and 
for this reason, the resulted discretization is tested for the 
meshing faults using a special program. 
Figure 2 shows the finite element mesh used for calculating 
the electromagnetic field (1 12,362 elements and 112,716 
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Fig. 5. Distribution of the magnetic permeability on the steel bars surface. 

nodes). Due to the symmetry of the arrangement, only one 
half of the computation area is meshed. The calculation is 
carried out on an efficient HP 9000/750 work station with 256 
MB main memory. 

The effect of material properties depending on tempera- 
ture and magnetic field is taken into consideration in an 
iterative manner (see fig. 4). 

The permeability as a function of magnetic field strength 
]HI and temperature 6 is given by: 
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Fig. 6. Distribution of eddy current. 

IV. RESULTS 

The parameters for computed system are the following: 

Bar diameter 
Frequency 
Inductor current 
Inductor voltage 
Input power 
Inductor losses 
Inductor efficiency 
Reactive power 

30 mm 
2 kHz 
2kA 
59.9 v 
34.4 kW 
7.6 kW 
78 % 
114.8 VAr 

Fig. 3 shows a representation of the magnetic vector po- 
tential in the plane of symmetry. The areas of high current 
density are surrounded by the isolines of vector-potential. 

The eddy current distribution (real and imaginary part) is 
illustrated in fig. 6. One can see eddy currents are relatively 
high in the region of high permeability (fig. 5) and near the 
coil conductors. 

Fig. 7 shows the temperature distribution on the steel bar 
ends surface. The bars are moving from the left to the right 
and so the temperature is growing. The bars on the left hand 
site with temperatures below 750 "C have a high permeability 
and strong heat sources are produced by the magnetic field. 
That's why the temperature increases in the first bars very 
fast. 

With the help of the numerical model we get the current of 
the inductor by given voltage or the voltage by given current. 

Fig. 7. Distribution of temperature in the steel bars. 

V. SUMMARY 

The above numerical examination shows how it is possi- 
ble to calculate a special inductor for bar end heating when 
material properties depend on temperature and magnetic field. 
Because of the special inductor design only three-dimensional 
calculation can provide correct results. 

The model gives the temperature distribution at the end of 
the process that is very important for the following processing 
e.g. hardening or forging. With the help of the numerical 
simulation are parameter studies very useful. The needed 
time, however, for meshing and iterative computing of one 
example is very high (about one week). So for practical aims 
it is necessary to reduce strongly both the manual work 
expenditures and computing time. 
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