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EDDY CURRENT EFFECT IN A MAGNETIC BEARING MODEL

Takeshi

ABSTRACT

Eddy current problem in a simple magnetic bearing
model is treated. Such a problem is very important in
the case when solid steel is used as a shaft material.
We have made the calculation about eddy current effect
on a hypothetical, simplified model by finite element
method.

Diagrams of flux distribution in both the air-gap
and the shaft material are obtained at various rotor
speeds. We can clearly see how eddy current induced
in a shaft affects main flux of electromagnets.

The form of current distribution for producing main
flux of electromagnets is taken as both sinusoidal and
rectangular. We have also calculated the characteris-
tics of attractive force and counter torque vs. rotor
speed.

This model is suitable for examining effects of
various parameters. No suspicious rugged aspects were
perceived in our calculation results. This confirms
that our way of making subdivision is good.

OQur results make it possible to predict the realistic
performance tendency and to know the working region
less affected by eddy current.

FINITE ELEMENT ANALYSIS

Model

Fig.l is basic diagram of a magnetic bearing.
Four electromagnets are usually used to suspend the
rotating shaft. Our subject is now restricted to con-
sidering how eddy current induced in a shaft affects
the main flux of electromagnets. For this purpose,
we derived a hypothetical, simplified model such as
shown in Fig.2, in which 8 poles in Fig.l are trans-
formed into 4 poles and current density for magnetizing
4 poles is distributed in a form sinusoidal around. the
inner surface of the stator. We also deal with rectan-
gular form distribution of current density, afterwards.

Finite element analysis has been performed under

the following assumptions:

(1) The field is two dimensional.

(2) The model has 4 poles with the same magnetlc force.

(3) Gap length is uniform around the shaft.

(4) Current is given as a sheet, and therefore there
are no slots for current bars.

(5) Current distribution around the inner circumference
of the stator is either sinuscidal or rectangular.

(6) It is assumed that the shaft is standing still,
while the poles of electromagnets are rotating.

(7) Relative permeability of the shaft is tgken as 100,
and its conductivity is taken as a parameter.

(8) Magnetic saturation and hysteresis of shaft
material is neglected.

Formulation

As for the distribution form of magnetizing
current density, we deal with 2 types, one sinusoidal
and the other rectangular. In the case of rectangular
distribution, we expand it into Fourier series and
calculate vector potentials for each harmonics and

finally synthesize each vector potentials at every node.

After all, it is concluded that calculation under sinu-—
soidally distributed current density is basic.
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Next we show finite element method of formulation for
the case with sinusoidal current distribution.
From Maxwell's field equations, we get equation
. [1
(1). [1] oA
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£ T is supposed to be a vector with rotational fre-
quency » such as J=Jexp(jwt), A will also be a
sinusoidally changing vector such as A=Rexp (jut) .
Then equation (1) can be re-written as follows.

—%—rqt'rot A =J- jwoh 2)

In this case, we can have following well known energy
functional shown in equation (3). [2],[3]

F = [ 2-3irsudor] av -

Both J and & have only z—component.
density distribution is shown as,

Real current

‘J=Jmcos(£(vt+l))

=Jpcos (wt+po) (4)
Expressing it in a complex form,

Texp (Fut)=Ipexp (j (wt+p6)) (5)

T=Im(cos po+jsin pd) (6)
:circumferential relative velocity
:pole pitch
inumber of pole-pairs
:rotational angular frequency 2mp-( RE
telectrical phase from x-axis
icircumferential distance from x-axis

where, v
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By using this current expression, we can carry out FEM
formulation shown in many references such as [2], [31,
[4]. Finally we get the following complex coeff1c1ent
simultaneous equations (7).

E_‘Re] +j.[1mﬂ.[A] = [Jmcosp9+j~Jmsinp93 A )]

The matrices [R,] and [I,] are determined by the
geometries and material properties. We have solved
equation (7) by Gauss elimination method.

Computation by superposition law

Eddy current problems must be solved in at least
1 pole-pair region.[5] Also, because of complex type
equations, about twice the memory used in ordinary .
ones are needed. To make it more difficult, inspec-
tion of eq.(6) shows there are no periodic boundaries.
In other words, .cosine term and sine term do not have
any common symmetrical axes, as can be seen in Fig.3.

‘Fig.l Basic Diagram of
a Magnetic Bearing

Fig.2 Hypothetical,
Simplified Model
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But computation for whole region would not be practical
from the view point of memory, computation time and
accumulated errors.

We have managed to overcome these difficulties
by using law of superposition. It leads to two
separate computations for J cos p8, and for Jy sinp6,
each of which has periodic boundaries. The solution
for region A-E for Jp cospB is found to correspond with
the solution for region B-F for Jp sinpf.

- A—E‘
cos _po
X sin pg
L
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Fig.3 Current Distribution and Periodic Boundaries

We have only to get vector potentials AP(I) for
Jp cospB. The following equation makes it possible
to get the final vector potentials VP(I).

VP (1) =AP(I)+ j-AP (I+IAD) (8)
(I=1,2,""*,31IAD)
where, IAD is number of nodes for 1/2 pole pitch.

Rectangular form current distribution

In this case we expand this wave form into
Fourier series up to 29 th harmonic.
Nth harmonic amplitude is
shown in the following

¥

equation. 14 wt
. . TI s 1 R i
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DEG ® 190

where, RATIO = T80'P
i lar
Iq : amplitude Fig.4 Rectangula

Current Density

Vector potentials are obtained for each harmonics, in
the way shown above. For Nth Harmonic, mesh is shrunk
to have 1/N angle of the mesh diagram for the fundamen-
tal wave. Vector potentials for each harmonics are
finally synthesized for each node. When RATIO(or DEG)
is specified, amplitude I4 is changed so as to have
same ampere turns as in the sinusoidal excitation.

I = Jp/(DEG-T/180) (10)

FLUX DISTRIBUTION

Fig.5 shows flux density in the air-gap, distri-
buted over one and a half pole pitch, (a) for sinusoi-
dal, (b) for rectangular (RATIO=2/3, DEG=60°), (c) for
rectangular (RATIO=1/6, DEG=15°). In each case, it is
observed that flux density is gradually skewed and
demagnetized as the rotor speed increases.

It is what we call eddy current effect.

Fig.6 shows equi-potential diagrams for RATIO=1/6
rectangular excitation, (a) N=10 rpm, (b) N=100 rpm,
(c) N=400 rpm. This time we can observe eddy current
effect in the whole. 1In proportion as the rotating
speed increases, it is recognized that the flux lines
are skewed towards revolving direction and concentrat-
ed towards surface of a steel shaft at the same time.
The thick line shows zero potential line.

ATTRACTIVE FORCE AND COUNTER TORQUE

Attractive force per pole is calculated by inte-
grating radial magnetic force density around the shaft

surface.

Counter torque is also calculated by inte-

grating electro-magnetic force torque density around

the inner surface of the stator.
Their characteristics for the sinusoidal excita-

[6]

tion case are shown. in Fig.7 and Fig.8, where gap

length is taken as a parameter.

In both figures, the

rotor speed multiplied by conductivity is taken as x-

axis variable.

Both attractive force and counter

torque is normalized by the square of the maximum

current density.

Attractive force starts to decrease

by eddy current effect beyond a certain rotor speed.
It is confirmed that when a low conductivity material
is used, the fall-down of attractive force delays,
because of reduction of eddy current. As the eddy
current increases, the main flux is skewed gradually
by its cross-magnetizing effect.
This is what causes the increase of counter torque in

Fig.8.

two characteristics.

Beyond a certain rotor speed, counter torque
starts to decrease owing to the demagnetizing effect
of eddy current.
In the case when current distribution is of
rectangular form, characteristics of attractive force
and counter torque per pole versus rotor speed are
similar to those in the sinusoidal excitation.

In the case above DEG=60°, fundamental component,
which is dominant over all other harmonics, governs

In the case below DEG=30°,

components of harmonics which become to be comparable
with fundamental's, affect two characteristics.
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In Fig.9, we show the ratio of counter torque to
attrctive force. The upper and the lower lines are
the ratios, respectively for sinusoidal excitation and
for DEG=15° rectangular form excitation. When DEG
varies from 15° to 90°, the corresponding ratio enters
the range between the two lines.

CONCLUSION

The effect of eddy current induced in a shaft of
a magnetic bearing model were calculated under the
condition of constant permeability by finite element
method. By obtaining flux distribution in the air-gap
and the rotating shaft, we have clarified demagneti-
zing effect and cross-magnetizing effect of eddy
current. Also we obtained the characteristics of
attractive force and counter torque per pole vs. rotor
speed. Though magnetic saturation of a shaft material
must be considered hereafter, our results make it
possible to predict the realistic performance tendency
and also to know the working region which is less
affected by eddy current. Consideration as to the end
effect and measuring in an experimental model are also
the problems we must carry out from now.
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