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Figure 8 shows the neutral axis angular shift for both linear
and incremental models as a function of rotational velocity.

DISCUSSION

The rather angular appearance of the flux lines shown in
Figs. 5, 6, and 7 is due to both the small number of triangular
meshes used, and the straight line interpolation procedure
between nodes employed in the plotting routine. Both effects
could be reduced at the expense of an increase in mesh num-
berand computer time required for solution.

Comparison of Fig. 6a and 6b and Fig. 7awith 7b shows
that the circular fields inside the rotating bar are strongest in
the case of the incremental model approach whereas the
neutral axis shift is greatest in the linear or direct superposi-
tion model. This may seem somewhat paradoxical, however,

in the direct superposition model equation 6 results in a sym-

metrical current distribution with respect to the y axis,
whereas in the 1ncremental model the current distribution is
not symmetrlcal because of the different magmtudes and
directions of BB}, -
circular fields d'o not necessarily correspond to a larger shift in

-, By. Consequently, stronger internal

the neutral axis.

In conclusion, it can be stated from this study that care
should be taken in applying finite element techniques to the
analysis of nonlinear magnetic structures such as electrical
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machines, where superposition of fields is contemplated. A
comparison of neutral axis shifts in Fig, 8 shows clearly the
degree of error involved in a direct superposition of main
and cross fields in the case of a circular ferromagnetic bar
rotating in a magnetic field.
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A Field-Theoretical Approach to Magnetic
Induction Heating of Thin
Circular Plates

M. S. ADLER

Abstract — A field-theoretical apprbach is used to analyze
the subject of magnetic induction heating of thin circular
plates by planar coils. Closed-form sclutions for the electric
and mégnetic fields are found to the basic field problem of a
single circular loop carrying current at a frequency w in the
presence of a plate characterized by a permeability i and con-
ductivity 0. By using these fields, expressions are derived for
the complex Poynting vector at the surface of the plate, and
for the induced EMF in the coil. The theory is extended to
include multiturn coils and a field-dependent permeability,
and a specific multiturn coil and plate combination is chosen
as an example. The complex amplitude of the magnetic field
and the Poynting vector are calculated along the surface of
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the plate using iterative methods to assure self-consistency
with the field dependent permeability of the plate. By using
Fourier transform techniques, the transient coil current and
coil voltage waveforms are calculated under the experimental
conditions used to take data on the sample coil and plate.
The absorbed power is calculated from these waveforms and is
found to be within 10 percent of the measured power absorp-
tion for all levels of operation from 50 to 2000 W. The calcu-
lated coil current waveform is compared with the measured
waveform and is found to be in very good agreement in both
shape and period.

1. INTRODUCTION

In this paper a field-theoretical approach will be used to
analyze the subject of the magnetic induction heating of thin
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circular plates by planar coils. A great deal has been written
on the subject of induction heating and its industrial applica-
tions but the geometries usually considered are those of either
a solid cylinder or a rectangular slab [1], [2]. A recent paper
by Moreland {3] considers the circular plate geometry but is
mainly qualitative in its approach. The purpose of this. paper
will be to develop an analytical model that will both engender
understanding of the physical processes involved in induction
heating and that can be used in full quantitative detail to de-
sign induction heating systems optimally using this geometry.

The paper is divided into two sections. In the first section
the field-theoretical model is developed in which a closed-
form solution is sought to the basic field problem of a single
circular loop carrying current at an angular frequency w in
the presence of a semi-infinite plate characterized by a
permeability i and a conductivity 6. In the second section it
is shown that the solution to this problem is a good approxi-
mate solution to the field problem of circular plate slightly
larger than the coil. Expressions are formulated for the com-
plex amplitudes in the sinusoidal steady state of the electric
and magnetic fields. By using these fields an expression is de-
rived for the complex Poynting vector at the surface of the
plate which gives the distribution of the power flow into the
plate and can be integrated to find the total power absorbed
in the plate. In addition, an expression is derived for the com-
plex amplitude of the induced voltage in the coil which, to
within a constant, is the impedance of the loaded coil.
Finally, techniques are discussed for treating a nonlinear
permeability in the scope of an otherwise linear theory.

In the second section the theory is extended to include
multiturn coils. A specific ‘coil-plate combination for which
data were taken is used as a-vehicle for presenting the results
of the theory. The complex amplitudes of the magnetic field
and the Poynting vector are calculated along the surface of
the plate using iterative methods to assure self-consistency
with the field dependent permeability of the plate. The com-
plex impedance of the multiturn coil is formed and Fourier

techniques are used to calculate the coil current and coil

voltage waveforms and the absorbed power under the experi-
mental conditions of a step voltage excitation of the tuned
circuit formed by the coil-plate combination and a capacitor.
The calculated absorbed power and current waveforms are
then compared with experiment and are found to be in good
agreement.

II. SOLUTION TO THE FIELD PROBLEM
A. Problem Definition

The basic field problem consists of a single circular coil
of radius R carrying a current I at frequency w separated by a
distance h from a plate of radius Rp > R with conductivity
0 and permeability u. Neglecting for the moment nonlinearity
and hysteresis effects in ferrous metals, superposition can then

be used to obtain the fields for a coil consisting of many"

turns placed at various radii R and distances h from the plate.
This will be done in the next section. The methods to be used
will lead to a solution that, although approximate, should
represent the actual fields very well. Theoretical arguments
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and experimental evidence to support this contention will be -
given in this section and the next.

To solve the basic field problem, the following equation
for the vector potential must be solved [4]

22 G (r, 1) ad, f _
a5
For a metal at the frequency of interest (f = 30 kHz), the first
time-dependent term is much smaller than the second term
and can be neglected. In addition, the geometry is cylin-
drically symmetric so that only the (},, component of the
vector potential need be considered. Finally, assuming har-
monic variation of the fields (Fourier analysis will be done
later) the field equation to be solved in the plate becomes

v2 8 (r,1) - e (1)

A,z
__ié_) + aar( = (rA, (rz ))) iwpo A, (r,z2)=0 (2)
N N )

where ( (r,2,¢) = i,A, (r,2) et and A, (nz)is the complex
amplitude of the vector potential. Outside the metal both
time-dependent terms can be neglected since the wavelength
of electromagnetic waves in air at 30 kHz is much larger than
the size of the coil (A = 10*m compared to the radius
R = 0.1m) leaving the first two terms in (2) as the field equa-
tion to be solved.

Rather than attempt to solve the field problem for a finite
plate, a closed-form solution will be sought to the more
tractable field problem where the plate is infinite in extent
(see Fig. 1). This solution should be a good approximate solu-
tion to the problem with a finite plate slightly larger than the
coil since, for the geometries of interest, the plate is very
close to the coil (h <<R) and the fields at the plate surface
fall off very rapidly for radii greater than the outer radius of
the coil. This issue will be discussed in the next section in the
context of a specific example.

B. Method of Solution |

The approach to be taken will be to use a variation on the
method of images [5]. If the plate were perfectly conducting,
the problem would be quite simple as there would be no
fields within the plate and the fields on the outside would be
given by the superposition of the fields of the actual coil and
of an image coil placed equidistantly from the surface of the
plate at z=h (see Fig. 1) but with an oppositely directed

_current flow. However, for the case of interest where the

plate has finite conductivity, fields will exist inside of the

_plate as well, and the problem becomes much more
~ complicated..

A set of trial solutions for the vector potential inside and
outside of the plate are given in (3) and (4). The basis for
these choices of functions will be discussed below.

k“o(R) x[(kz-l)X K(k) -2 .E(k):‘

(3

s ) X[ xxe- e

AW (r,z) =
(outside)
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where
P2 - 4rR
C (r+R) + (z+h)?
r2 4rR

(r+R) + (z-h)*

In these equations r, R, h, and z are defined in Fig, 1, K (k)
and E (k) are the complete elliptic integrals of modulus k of
the first and second kinds respectively, i, is the permeability
of free space, y is the permeability of the plate, ¢ is the con-
ductivity of the plate, w is the angular frequency, I is the
actual coil current, and I, I"', "', and IV are undetermined
constants. The first term in (3) is the vector potential of a
circular current carrying ring {6] of radius R located at
z=-h. The second term is the vector potential of an image
coil placed at z = h but with the current I’ unspecified at this
time. The third term is the derivative with respect to z of the
second term but also with an undetermined carrent I". It
should be noted that since the operator 3/0z commutes with
the wave equation (2), that is, it can be operated through the
existing operators without changing them, the derivative with
respect to z of any solution to the equation is also a solution.
(The same cannot be said about derivatives with respect to r.)

The solutions for the vector potential inside the metal
shown in (4) are product functions between a term similar to
the last term in (3) (to be referred to as the coil factor) and a
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complex exponential in the variable z. In the first term in (4)
the modulus & is referenced to the actual coil and in the sec-
ond term the modulus k' is referenced to the image coil at
z = h. These product functions are not exact solutions to the
wave-equation (2), but are, in fact, very good approximate
solutions. The coil factor will vanish when acted upon by the
first two terms and the exponential factor will vanish when
acted upon by the first and last terms of (2), The problem
arises because both factors depend on the variable z so there
is an additional cross term left over involving the product of
the first derivatives with respect to z of each of the factors.
However, explicit evaluation has shown that this term is only
0.03% of the second derivative of the exponential term and
can thus safely be neglected. Some insight can be obtained
into this by noting that the factor v/ wuo/2 appearing in the
exponential is actually the reciprocal of the classical skin
depth and for an iron plate at 30 kHz the skin depth is only
30 pm. Therefore, neglecting the above cross term in de-
termining a solution to (2) is equivalent to noting that in the
distance of several skin depths over which the surface fields
will completely vanish due to the skin effect, the factor de-
rived from the magnetostatic current ring solution will remain
virtnally constant.

C. Boundary Conditions

It now is necessary to show that the fields derived from
the vector potentials of (3) and (4) can satisfy the boundary
conditions at the air-metal interface and to determine in the
process the values of the constants appearing in these equa-
tions. The boundary conditions to be imposed are that the
tangential magnetic field H and electric field E and the normal
magnetic flux density B are continuous at the interface,

The boundary condition for the radial magnetic field in-
tensity is given as

1 (3440 (17) 1[04, (%)
K, 0z =0 M oz Z2=0

and the boundary conditions for the z directed magnetic flux
density is given

(5)

?1 (%— (fA¢0 (r,z))) . = rl (% ("A‘pi (r’z))) z=0

Since the boundary conditions must be satisfied over the en-
tire interface, fields on both sides of the interface must have
the same functional dependence on the radius r. Thus, the
reasons for the choice of the particular trial functions in (3)
and (4) are now seen to be due to the requirements of satis-
fying .the boundary conditions for the two magnetic fields
which relate to different derivatives of the vector potential.
Satisfaction of the boundary conditions leads to the following
values for the four unknown constants

(7

1l
i

(8)
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"

M= Z‘)_0.('“‘;2""') (1-i)1 ©)
- (%3“") (1-i)1. (10)

_The boundary .condition on the tangential electric field is also
met by this choice of constants since the constraint imposed
is identical to that given in (6) for the magnetic flux density.
It should also be noted that making either ¢ or w very large
causes the constants I", I'"", and I" to vanish and the two re-
maining terms are just those that make up the solution for a
coil and a perfectly conducting plate previously discussed.

The formal expressions for the fields can now be obtained.!

The radial magnetic field and the ¢ component of the elec-
tric field outside the plate are given by

k2
H, (r,2) =——711{2—3/2X [(z+h)k X(( 1o kz)XE
: £'?
_K(k)) - (z-h)k' X (15_;2,)x E(k) —K(k'))]
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EW (r,z) = —zwI-——- (—)

X [k X ((22;_1) X K(k) - 25 X E(k))
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X Vemo
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1
T X (z-h) X k
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k
[1—7) . ]
X\ /) X EK) - K(¥)

o ARr
(r+R)2 + (z-h)®

(12)
where

4Rr
2 -
and  k (r+R)2+ (z+h)?’

The z component of the magnetic field and the fields inside
the plate are not needed in the subsequent development and
are consequently not given.
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. D. Induced Coil Voltage

Having expressions for the fields it now becomes possible
to calculate several items of experimental interest such as the
induced EMF in the coil The procedure amounts to inte-
grating the 2 directed magnetic flux density over the area en-
closed by the coil with the result being

d . ‘
y = Zz‘f = it (2174 4 (1,2). (13)

- Upon evaluation, the induced coil voltage is given as

. ,
v = il X [R x{k X ((k%- 1) X K(k)= X E(k))
! 2 ! 2 ; ’ E .
-k X(F-J) X K(k') - 7 X Ek ))}:| + (i+1)
k2,
X X xhkx[ITXEk Kk:I
wpl wHo R 1 k’2 ( ) ( )
(14)
where

Y = ___ 2R _ A(R-Ar)R
VAR? + 4k% v (2R-Ar)?
where Ar is taken to be the radius of the coil wire. Evaluation
cannot actually be made right at r = R since the first term in
(14); which represents the self-inductance of the coil, would
be infinite. For Ar << R the effect of including the wire size
on the other terms is negligible and thus has not been in-
cluded in the above.
The second term in (14) is similar in form to the self-in-

ductance term but opposite in sign and does not depend on
the electrical and magnetic properties of the plate. This term

together with the selfinductance term represents the total

coil impedance when the plate is of very high conductivity
and low permeability. The final term which has equal lossy
and reactive components is present when the fields penetrate
into the plate and power is absorbed.

E. Poynting Vector

The real part of the complex Poynting vector gives the dis-
tribution of power flow into the plate and can be integrated
to give an alternate way, that is other than (14), of calculating
the absorbed power in the plate. For our geometry, the z
component is the only component of the real part of the com-
plex Poynting vector that exists and is given by

1
Re (S; (r,2)) = ~ 2 Re (E, (r,2) X Hf (r, 2)). (15)
By including (11) and (12) for the fields, this expression was
evaluated at the surface of the plate and is given by

Re (S, (r,0)) = I wp X

k2' 2

o[ ]
X Terps X |\g7 )X E®) - K(R) (16)
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where
4Rr

F. Nonlinearities and Techniques

If one is completely rigorous and also insists on using a
nonlinear parameter such as a magnetic-field-dependent perme-
ability in an otherwise linear system, then a linear theory,
such as that in this section, is not valid. Furthermore, even if
it were valid it would not be possible to superimpose solu-
‘tions to arrive at an answer to a composite structure. How-
ever, believing an approximate nonlinear solution is better
than neglecting the nonlinearities altogether, two techniques
were used to account for some aspects of the nonlinear
nature of the problem and otherwise preserve the basis of pre-
viously developed linear theory.

in this section the solution to the field problem was de-
veloped for a generalized complex sinusoid at a specific angu-
lar frequency w, and, as such, the fields were characterized
by their complex amplitudes of this sinusoid. Consequently,
it is more appropriate to use an average permeability associ-
ated with the amplitude of a sinusoid rather than one associ-
ated with the instantaneous value of the field at any point in
- time. Therefore, an-average permeability My, (H) is defined as

2“’f

where B(H) is the value of the magnetic flux density at a
particular field strength H. A further discussion of this average
permeability will be given later. It should be noted that the
nonlinear permeability will result in fields at higher harmonics
being present and these fields will in turn induce voltages in
the coil. However, study of (15) and (11) and (12) for the
fields reveals that, to first order at least, no power will be
absorbed at these higher harmonics. Furthermore, if the coil
is part of a tuned circuit at frequency «, as is the case for the

B(Hsin wt)

H sin wt 17)

u =

example in the next section, these higher harmonic voltages
" will be severely attenuated and should not affect the overall
solution.

The second issue is that of superposition of fields when
the plate has a nonlinear permeability. Superposition in the
normal sense is not possible in a nonlinear system and can
only be done if it is treated self-consistently. The approach
to be taken here will be to insure always, through iteration of
the solution, that at all points along the surface of the plate
the permeability used to calculate the fields is the perme-
ability that is associated with those fields.

IT1. FIELD AND POWER CALCULATIONS AND A FOURIER
TRANSFORM APPROACH TO COIL MODELING

A. Calculations on the Sample Coil

In this section, field and power calculations and measure-
ments are presented for the coil and plate shown in Fig. 2.
The loaded coil and a capacitor form the tuned circuit shown
in Fig. 3. In the experiment the circuit was driven by what
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DIMENSIONS
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d =10.00cm
Rp=11.5¢
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2=-].25¢cm
Fig. 2. Geometry of the coil and plate used in experimental testing.
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Fig. 3. Equivalent circuit used in experimental testing.
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Fig. 4. Permeability of the iron plate as a function of magnetic field.

amounted to a step voltage source and the power delivered to
the circuit was measured as a function of the peak current in
the current response.

The conductivity of the plate which was made from cold-
rolled steel was taken as

o= 1.0 X 105 (ohm-cm)™
The actual permeability (u (H) B(H)/H) of the plate material
is not known and the curve shown in Fig. 4 will be used in-
stead. The shape of this curve is that for ordinary transformer
steel [7] but the curve has been scaled by a factor of 2.5 so
that the maximum permeability is approximately that of cold
rolled steel [7] (M., = 2000).

In Fig. 5 the results of the steady-state field calculations
for the coil in Fig. 2 are shown with a current I =51 A and
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Fig. 5. Magnetic fields, Poynting vector, and average permeability at the surface of the plate for the sample coil with a
’ current of 51 A,

f=30.0 kHz. All calculations are for z = 0, the surface of the
plate, and are shown as a function of the distance r from the
center of the plate. Included in Fig. 5 are the magnitude of
the total radial magnetic field |Hy; (r)l, the part of the field in
phase with the current and contributing to power absorption
H,o(r), the real part of the complex Poynting vector
Re (S;(r)), and the average permeability of the plate (as de-
fined in (17)) that achieved self-consistency with the calcu-
lated total field w,y (Hrt), that is Hyt = Hyy (May (Hre)). It is
worth observing that the field H,, is simply twice the field
- that would be present at z = 0 if the plate were removed and
would be the total radial field if the plate were a perfect con-
ductor. The total absorbed power in the plate was P = 4475W.
As can be seen, the variation in the total magnetic field as a
function of radius is accompanied by an inverse type of varia-
tion in the permeability u,, (H,;). Since the real part of the
Poynting vector is proportional to the square root of the
permeability (see (16)), the variation of u,, (H,;) somewhat
compensates for the variation in the magnetic field and re-
sults in a more uniform distribution of input power to the
plate. In addition, the inverse variation of the permeability
also smooths the variations in the total magnetic field since
H,; is also proportional to the square root of the perme-
ability (see (11)). '

B. Complex Impedance of the Coil

Equation (14) of the last section and the associated dis-
cussion. will be used as a guide in forming the complex im-
pedance of the loaded coil. This equation shows that there are
three reactive terms and one lossy term. The first two terms
represent inductances and the value of these terms can be
calculated for a multiturn coil by summing the flux linked by
each coil, produced by fields of all of the coils under the con-
dition that the plate is of infinite conductivity. The flux pro-
duced by a single coil catrying one ampere of cutrent located
at R;, and linking an area (R; ~ Ar)? is given by

9ij (Ri, Rj) = Ho R}?'X (Rj- Ay X [k X ((k—zz_k)
X K (k) - k% X E(k)) -k X((I;—z-_-‘l)‘

X K (k') - %E(k')ﬂ (18)
_ where

k - (Rj _Ar) Ri k’ - 2 (Rj_Ar) Ri
V (Rj~Ar+R;)? "V (Rj~Ar+R;)* +4h?

and where Ar is the radius of the wire used to make the coil.
If one now sums ¢3j (R;, Rj) over all of the coils R;, the total
flux linking a coil located at R; results. Then, if this is done
for each of the coils and the results summed, the total flux
linked is calculated. This procedure was done for the coil in
Fig, 2 with the result that the self-inductance term was

Ly = 1542 uH

gnd the total for both terms in (18) was

Ly - Lip = 66.7 uH,
The measured value for the self-inductance was

Ly = 142 pH

and the measured inductance when an aluminum plate was
located 1.25 cm above the coil, thus approximating the highly
conducting-low permeability plate, is given as

Ly - Lyp = 67 uH.
As can be seen, the agreement is quite good.

The values for the lossy term and the third term in (14) are
evaluated using the results of ‘the field and power calculations
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shown in Fig. 5. This is done by noting that the fourth term in
(14) is a resistance in the sinusoidal steady state, and the
power dissipated by this resistance is P=1/2 IPR. Since the
only loss in the system is the power dissipated in the plate,
the integral of the real part of the Poynting vector over the
area of the plate must be identical to the power dissipated in
the lossy term in (14) and can be used to infer the equivalent
coil resistance for examples with nonlinearities and compli-
cated geometry. This method was explicitly tested for the
case of a single coil and plate (R =10 cm, & = 1.25 cm) where
the permeability was constant (4 = 1000). The results were
that the two values of resistance were identical when the
integration was extended to twice the coil radius and differed
by only 3% when the “plate radius’” was just 20% larger than

that of the coil. With this justification, the equivalent re- .

sistance in the sinusoidal steady state at frequency f = 30 kHz
is shown in Fig. 6 as a function of the complex amplitude of
the current. As can be seen, the resistance is quite nonlinear

changing by a factor of two in the range between 10and 60 A."

= 30 kHz

6 . 25,4563 .
Req 2 Q

V1-0.0012909 12+ 7.2291

EQUIVALENT RESISTANCE Req (ohms)

o | | ’1 | 1 l
0 10 20 30 40 50 60

CURRENT AMPLITUDE I (amps}

Fig. 6. Equivalent resistance of the loaded coil as a function of the
amplitude of a 30 kHz sinusoidal cutrrent.

The Fourier transform of the impedance of the coil can
now be formed and is given as

Z(w) = iwl + X + Vil X (19)

1
Viwl

where X (I) = R(I)/+/2m X 30kHz = R (I)/ 434.2 and
L= Ly - L1 = 66.7X 107 H. As can be seen from (14),it
was necessary to divide R (I) by the square root of the angular
frequency that was used to formulate R (I) in order to include
all of the correct frequency dependent behavior in the trans-
form. Also in (19), the use of the absolute value of w is
necessary to preserve the correct behavior of the transform
under reversal of the sign of w.

C. Comparison Between Theory and Experiment

The theoretical and experimental data on the power ab-
sorbed by the coil-plate combination as a function of the
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THEORY /
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PEAK CURRENT [ {omps)

Fig, 7. Theoretical and experimental curves of the absorbed power
in the plate as a function of the peak in the current response.

peak current is shown in Fig. 7. The experimental data is the
input power into the tuned circuit in Fig. 3, as a function of
the peak cutrent sensed by a 0.021-2 resistor and measured
on an oscilloscope. External circuitry reset the circuit 34 us
after the start of the voltage step and the entire sequence was
repeated’ every 50 s, The theoretical curve was obtained by
calculating both the coil current and in-phase voltage with
inverse Fourier transforms using (19) and integrating the prod-
uct up to t=34 ps and normalizing by the repetition rate
T =50 us. Because of the nonlinearity in the expression for
the coil impedance in (19), it was necessary to iterate the re-
sulting current at each instant in time to assure self-con-
sistency. The peak current was monitored during the calcula-
tion. As can be seen, the agreement between theory and
experiment is within 10 percent. It should be emphasized that
the theory does not represent a fit of the data in any way.
Because of the nonlinearity of the equivalent resistance shown
in Fig. 6, a linear circuit model will never be able to predict
accurately the behavior of the loaded coil.
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Fig. 8. Comparison between the experimental and theoretical cur-

rent-response waveforms.
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In Fig. 8 is shown a drawing of an oscilloscope picture of a
typical current response to a step function of voltage (labeled
experiment). As can be seen, there is a small “wrinkle” in the
waveform at ¢ = 17 us.. Also shown in Fig. 8 is the theoretical
cufrent response that was calculated using the inverse Fourier
transform as above. The two waveforms are quite similar in
shape and have identical periods. However, the theoretical
curve exhibits slightly more damping and a more pronounced
“wrinkle”. This “wrinkle” has been shown to occur as a re-
sult of the nonlinearity in the function X (I) appearing in the
Fourier transform in (19). Improved agreement could be
achieved by decreasing the overall size of the permeability in
Fig. 4 as this will have the effect of reducing the amount of
nonlinearity and decreasing the damping., A decrease in the
damping will also have the effect of bringing the calculated
power curve even more in line with the measured curve in
Fig. 7. A change in the shape of the permeability curve will
also be necessary if one insists on 100 percent accuracy in
modeling the “wrinkle” in the experimental waveshape in
Fig. 8. The closest approximation to the actual shape has been
achieved by including hysteresis effects. However, doing this
has the effect of substantially increasing the complexity of
the calculation without materially improving other aspects of
the results.

D. Discussion of the Approximations in the Theory

The theory given in this paper is an approximate one with
the approximations falling into two classes: those associated
with the solution of the linear field problem and those used
to include a field dependent permeability into an otherwise
linear theory. In the first class, two approximations were
made as discussed in Section II of the paper. The first of
these was that the 2z coordinate dependence of the fields in-
side the plate is dominated by the exponential “skin effect”
type of variation and it was shown that this is indeed a good
approximation. A second approximation was that the solu-
tion to the field problem with a semi-infinite plate would be
a good approximation to the solution of the field problem for
a finite plate that was larger in radius than the coil and located
a small distance above the coil. Some comment will now be
made on this. '

For the example discussed in this section where the coil
radius is 10 cm and the coil-plate separation is 1.25 cm, the
power absorbed by the semi-infinite plate within the plate
radius of 11.5 cm is 97 percent of the power absorbed by
the entire plate. It is thus likely that the theory presented
" here when applied to this finite plate will not be in error by
more than 3 percent in the power absorbed. The error could
possibly be less since the integrated power within the plate
radius should be closer to the true power absorbed by the
finite plate than that absorbed by the entire semi-infinite
plate. The calculated fields themselves should be accurate
within the coil radius and undoubtedly largely in error out-
side the plate radius. However, these fields are quite small
and of little interest in themselves.

Some comment should also be made about the approxi-
mate technique used in treating the nonlinear permeability
and, in particular, the method of formulating the average
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permeability shown in (17). The entire concept of this aver-
age permeability is an approximation but the method used
here is probably not the best that could be done, in general.
The problem arises because in forming the Poynting vector at
the plate surface when calculating the absorbed power, the
surface permeability as determined by the surface fields is
used. The theory inherently assumes that the permeability is
the same inside the plate and, since the fields are decreasing
in strength, this will not actually be the case. Consequently,
an additional average of the permeability should be made with
the average weighted by the absorbed power density within
the plate. This was not done for the example given here be-
cause, with the uncertainties in the permeability curve that
was used, this additional refinement did not seem worthwhile.

IV. SUMMARY

In this paper a comprehensive model for the induction
heating of a circular plate by a planar coil has been developed
using a field-theoretic approach. Closed-form expressions were
derived for the complex amplitudes in the sinusoidal steady
state for the electric and magnetic fields, the real part of the
Poynting vector, and the induced. EMF in the coil. A non-
linear dependenceiof the plate permeability on magnetic field
was incorporated into the model and a specific multiturn
coil was used in an experimental test of the theory. The non-
linear complex coil impedance was formed, and using a self-
consistent application of Fourier integral techniques the ab-
sorbed power was calculated. The results agreed with meas-
urements on the actual circuit within 10% over the entire
range of power levels tested (50-2000 W). Over the same range
of power levels the equivalent coil resistance at 30 kHz was
found to change by a factor of more than two. This large non-
linearity and the fact that the coil impedance depends on the
square root of the frequency indicates the futility of at-
tempting to use a linear circuit to model the coil. A com-
parison was also made between the theoretical current wave-
form and the measured current waveform and they were
found to be in excellent agreement in both shape and period
including the presence of a small inflection.
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