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Nonlinear Coupled Thermo-Electromagnetic
Problems With the Cell Method
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An application of the Cell Method to a coupled nonlinear problem is presented. The two coupled physical aspects consist of the mag-
netic quasistatic and thermal transient problems. Their investigation is concerned in a wide range of applications such as the analysis of
devices for the induction heating treatment of conductive workpieces. Assuming a cylindrical geometry, that is usual in such devices, the
numerical model exploits a two-dimensional axis-symmetrical formulation to perform the simultaneous analyses of the transient thermal
and ac eddy currents problems. As a consequence of the large temperature rise, typical in these treatments, both coupled problems are
considered nonlinear. The formulation is validated comparing the numerical results against those adopted with commercial codes based
on the finite element method and against the experimental data measured on a test device, too.

Index Terms—Cell method, coupled problems, eddy currents, finite formulations, induction-heating.

I. INTRODUCTION

HE CELL METHOD has originally been proposed by

Enzo Tonti [1] and as long as some years it is gaining
growing interest for the computation of electromagnetic fields.
It presents a lot of affinities with the Finite Integral Technique
[2] and similarly to this one, it does not require any notions
of differential nature such as gradient, curl, divergence, but
considers the electromagnetic field equations in finite (namely
“integral,” in the differential Maxwell’s approach) quantities,
directly written in algebraic finite formulation. The theoretical
basis of the method is the classification of field quantities into
configuration quantities (describing the field configuration),
source quantities (originating the field) and energy quanti-
ties (arising basically from the interaction of a configuration
quantity and a source quantity). This classification of finite
quantities call for a geometrical subdivision of the field space
based on algebraic topology notions that produces two sets of
cell complexes (oriented points, lines, surfaces and volumes),
staggered one to each other.

Configuration quantities are defined on the “primal” cell com-
plex K, whose domains are all endowed with inner orientation
(volumes V, surfaces S, lines L and points P), while source
quantities are related to the “dual” cell complex, whose domains
are all endowed with outer orientations (VSLP).

In the finite approach, configuration quantities are related to
each other by nonmetric structure equations and source quan-
tities are related to each other by nonmetric structure equations
as well, whilst configuration and source quantities are linked to-
gether by metric constitutive equations containing the medium
physical parameters.

During the last two years both the time harmonic eddy
currents and the transient thermal nonlinear problems in
axis-symmetrical geometries have been independently inves-
tigated by the research group at Padua, resorting to the Cell
Method [3]-[5]. In this paper, we present an application where
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the two aspects are investigated together, in the contest of
coupled eddy currents and the thermal nonlinear problems.
One initial assumption is to take into account possible strong
coupling of the two problems, that requires electromagnetic
and thermal quantities to be computed simultaneously. These
requirements are not needed in many industrial induction
heating applications, thanks to very different electromagnetic
and thermal time constants. But our target is to develop an
algorithm able to face more general conditions. In partic-
ular a further version is under development devoted to study
electro-thermal problems in semiconductor structures, where
the two typical times are actually comparable [6].

II. ALGEBRAIC FORMULATION
A. Differential Formulation

In the differential formulation the coupled time harmonic
eddy currents and transient thermal problems in axis-symmet-
rical conditions can be described by the following equations:

{VX(VVXA)—l-j(UUA:js )

V - (=AVT) 4+ veo T = w

where J is the peak values phasor of the impressed current
density with azimuthal direction, A is the phasor of the corre-
sponding magnetic vector potential, 7" the temperature, w the
angular frequency, v, o, A, v, and ¢ the media parameters (mag-
netic reluctivity, electric conductivity, thermal conductivity, spe-
cific heat, and density, respectively). w is the Joule losses power
density, namely the source of the thermal diffusion, that couples
the two problems and can be expressed in terms of the vector po-
tential A as

w = %UszA* 2)
where * stands for conjugate. The coupling between the two
physical aspects also depends on the material coefficients
v,0,A,v and ¢, whose T dependence for large temperature
rises must be taken into account, thus causing the problem to
be nonlinear.
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Fig. 1. Space tessellation in the case of planar symmetry with the cartesian

coordinate system: primal prismatic volume cell (3-cell) with its surfaces
(2-cells), lines (1-cells) and points O-cells), used for both the electromagnetic
and thermal problems; its trace in the 2D «, y plane is the simplicial triangle
with vertices h,7,7. In the case of cylindrical symmetry the depth 6 is
proportional to the radius r.
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Fig. 2. Time tessellation with barycentric primal and dual intervals (1-cells)
and instants (0O-cells), needed for the transient thermal problem evolution.

B. CM Finite Formulation

The space tessellation used in order to re-formulate both the
electromagnetic and thermal problems of (1) in finite form ac-
cording to the Cell Method is based on the prismatic primal vol-
umes shown in Fig. 1, whose trace in the 2D domain are triangles
with vertices h, 7, 7. The transient thermal problem requires also
a time tessellation in primal and dual complexes of time inter-
vals and instants (1-cells and O-cells): a barycentric choise has
been adopted, as shown in Fig. 2. The CM formulation of (1)
on such complexes leads to the following system of two matrix
equations, already described in detail in previous papers [3], [4]:

(D + jwC)P = Is

(LG +40) T = (26— F) T 4 3w + W)

3)

with P the electro-kinetic momentum vector (namely the line
integral of the vector potential along primal 1-cells with az-
imuthal direction), T" the nodal temperature vector (in primal
0-cells), D and C the stiffness and mass matrices of the elec-
tromagnetic problem, G and F' the mass and stiffness matrices
of the thermal problem, 1 s the vectors of the impressed cur-
rents. The last term in the second equation of (3) is the vector of
the Joule losses power in each 3-cell at the dual instants £": it is
computed as average of the values at the nearest primal instants,
namely W" ™! and W™, deriving from the time barycetric tes-
sellation of Fig. 2. In this way the time integration algorithm for
the temperature evolution corresponds to an application of the
Crank—Nicolson time scheme.

The matrices D, C, G, and F are assembled from the corre-
sponding local matrices which in turn are computed making use
of the affine local coordinates shown in Fig. 3, [7], which allow
to obtain the same matrix coefficients for all primal cells. For
instance, the local matrix for C is

o3 22 7 7
"7 22
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Fig. 3. Affine local coordinates used for the construction of the normalized
local matrices for D, C, G, and F'.

full deduction of which have been given in previous papers [3]
and [4]; S is the dual 3-cell surface and r its mean radius, namely
the normalized azimuthal cell depth.

The Joule losses power, being the source quantity for the
thermal problem, is computed on dual 3-cell, namely volumes
whose trace in the 2-D domain are dual surfaces surrounding
each primal node (S}, for the point of index h). In the present
finite formulation, each of them is obtained from the electro-ki-
netic momentum P, along the primal line through the point of
index h and normal to the 2-D domain
lo 5’ h
2 Th
corresponding to the differential local expression (2), where
Gy, = O'S’h /71 is the normalized conductance of the element
having normalized azimuthal cell depth 7, along which the fa-
sorial induced voltage is wPy,.

In order to take into account possible strong coupling between
the electromagnetic and thermal problems, the simultaneous so-
lution of both equations in (3) has been imposed, leading to the
following recursive nonlinear system:

W =

w2 P Py (6)

M o][P 0] [Is

K PRI v
with

M =D + jwC

N=1G+1F

K::%Wn? . 8)

U= (1G-3F)T" "+ W™}

T

C. Time Integration Scheme

In order to solve (7) at every time step, a Newton—Raphson
iterative algorithm has been adopted. At this aim, the Jacobian
of the fundamental matrix must be computed, that is included
in the following linear equations system with unknown vector
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[AP AT]T, containing the iterative increments of the value at
[P T™]T every time step:

aMP) a(MP) .
oP oT APL g 9
oaNT+K) oWNT+K) AT
ap oT

with R the residual vector of (7) in the iterative approach. As-
suming time step constant values for the physical parameters
1,0, A\, 7y, and ¢ over each time interval, (9) reduces to

M _ 0][AP
-2 w]|5r| ==

The Jacobian matrix of (10) is assembled by means of a cycle
on all primal cell, that makes use of the local submatrices. The
construction procedure of these local submatrices M, and N,
resorts again of the affine local coordinates of Fig. 3, which
provide the same matrix coefficients for all primal cells [3], [4].

The local submatrix OW/ OP is diagonal, being related to a
primal cell whose trace in the 2-D domain is the triangle with
vertices h, ¢, j of Fig. 1. It has been approximated by the matrix:

(10)

aI/Vh
0 0
oP, 5
ow W,
— = 0 0
oP oP, (an
ow;
0 0 !
aP;
with
BWh O'Sh 2
= 2P
8Ph Th W
8I/Vq USi 2
= P; 12
8PZ ’I‘i~ v ( )
8Wj _ O'_SJ 2Pj
8P]- Tj

III. NUMERICAL AND EXPERIMENTAL VALIDATION

This algorithm for the solution of coupled electromagnetic
and thermal problems has been developed as a general purpose
tool, possibly with comparable electromagnetic and thermal
time constants, as can happen in a wide class of semiconductive
media, so involving a strong coupling among the two physical
aspects [6]. Nevertheless during first validation stage it has
been applied to the numerical simulation of industrial devices
for induction heating treatments, for which experimental data
were soon available at the Laboratory of Electro-Heat (LEP) of
the Electrical Engineering Department of Padua University.

In order to perform the experimental test validating the CM
algorithm, the simple induction heating apparatus shown in
Fig. 4 has been set up. It consists of a 32 turn coil with a
magnetic steel billets inserted into its hole. The geometrical
dimensions are shown in Fig. 5. In order to provide the adiabatic
boundary condition to the cylinder, a thermal insulation cover
not show in Fig. 4 has been used. The coil has been fed at 300 A
at 2.8 kHz and several thermocouples have been applied on the
cylinder surface in order to measure the billet temperature at
different axial positions on the cylinder surface.

Fig. 4. Experimental setup used for validation. In the picture, the workpiece
is shown inside the inductor without its thermal insultaing cover, used during
measure tests. The workpiece is made of steel and the inductor consists of 32
turns fed at 300 A at 2.8 kHz.
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Fig. 5.

Geometrical dimensions of the experimental setup used for validation.
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Fig. 6. Comparison among the experimental temperature measured on the
apparatus of Fig. 4 and the corresponding numerical results obtained with the
CM algorithm and the FEM code. The test point is on the billet surface at the
equatorial plane.

The billet has been heated up to 500 °C measuring the main
electrical quantities and the temperature. A comparison has also
carried out with the results obtained from a commercial FE code
(Flux 2D), able to cope with the electromagnetic and thermal
coupled problems, taking into account the temperature depen-
dency of the electric and thermal material parameters.

Fig. 6 shows a comparison among temperature data from ex-
perimental device, FE and CM codes in a point on the equato-
rial plane. Fig. 7 shows a similar comparison between temper-
ature data from FE and CM codes in the hottest point. As can
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Maximuum Temperature vs Time - Hottest point { Point Coordinates [0.02;0.48])
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Fig. 7. Comparison between the numerical temperature results obtained with
the CM algorithm and the FEM code in the hottest point on the billet.

be seen, discrepancies within 10% are encountered. At this con-
cern, some comments must be pointed out. First, the tempera-
ture dependence of the physical parameters of the C40 steel used
in the test is not known with high accuracy: some reasonable
assumptions had to be adopted. Further, both numerical codes
assume a constant rms coil current, whilst in the experimental
apparatus it presented some variation, due to voltage control of
the power supply. Another reason of difference is related to the
coil current distribution between the FE and Cell codes. In the
former an external circuit is used and the total current is imposed
accounting for a nonuniform current density distribution in the
coil turns; in the second a uniform current density has been im-
posed in each turn. Taking into account all these statements, we
can say that the results obtained are satisfactory. It must also be
noted that while Flux adopts a second order approximation, the
present CM algorithm makes use of a first order one. To this re-
gard, a second order CM procedure is under development in our
Lab and a related paper is referred in [8].

IV. CONCLUSION

The Cell Method proves to be a interesting and promising for-
mulation for dealing with coupled numerical problems encoun-

IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006

tered in technical and industrial applications, due to its simple
theoretical formulation. The implementation here presented ac-
counts for strong thermal and electromagnetic coupling, and
the results obtained up to now suggest that future development
can provide wider simulation capabilities. But more work re-
mains in order to achieve a full operational package, able to
deal with a wide range of problems encountered in industrial
applications such as induction melting, structural stress inves-
tigations in electrical machines, or thermal stress in semicon-
ductor structures.
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