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Abstract - To control the shape of the free surface of 
a molten metal in a cold crucible for 
obtaining a good product. In this paper, an inverse 
problem in which the currents in the induction coils are 
to be calculated to obtain the given free surface of a 
molten metal in a cold crucible is solved by using the 
boundary integral equation method and the least square 
met hod. 

is very important 

I. INTRODUCTION 

The schematic view of cold crucibles is shown in Fig. 
1. There are two types of the problem of the free sur- 
face of a molten metal in a cold crucible. The first is: 

The direct problem, to calculate the free surface 
given the coil currents[l],[2],[3], 

The inverse problem, to calculate the coil currents 
and the second is: 

given the free surface. 

,-Charge 

the acceleration of gravity, respectively. The 
pressure at the point P(r(z),z) is given as: 

pm(r(z) .z) = [z(r(z) ,z)12/2y, 

where 2 and ~0 are the magnetic flux density 
permeability of free space, respectively. 

F 

magnetic 

( 3 )  

and the 

Fig.2 A given free surface 

- B is calculated from the magnetic vector potential as: 

Cross section 
It I t  

Cooling water 

Fig.1 Schematic view of cold crucibles 

(a) continuous casting type, (b) batch type 

Inverse problem methodology is important in engineering 
designL41. In this paper, the inverse problem stated 
above is solved by using electromagnetic and hydrodynam- 
ic equations and the least square method. 

11. THE INVERSE PROBLEM 

In this chapter, the inverse problem is solved under 
the following assumptions: 
(1) The molten metal is axisymmetric. 
(2)  The magnetic field does not enter the molten metal, 

or the normal component of magnetic field intensity 
is zero at the free surface of the molten metal. 

(3) The surface tension of the molten metal is negligi- 
ble. 

(4) The fluid flow of the molten metal is negligible. 

Fig.2. Let the free surface be written as: 
The shape of the given free surface is as shown in 

r = r(z), z1 6 z 6 z2  (1) 

ps(r(z),z) = pg(z2 - 2) (2) 

The liquid pressure at the point P(r(z),z) is given as: 

where p and g are the density of the molten metal and 

Manuscript received September 4 ,  1992 

The magnetic field equation in free space is written in 
terms of the magnetic vector potential as: 

where 20 is the coil current density. The boundary con- 
dition for _A = [Ar, B e ,  Az] = [ O ,  Ae, 01 is given as: 

Ae = 0 at the free surface, (6) 

since the magnetic flux does not exist inside the molten 
metal. In this paper, A is calculated by the following 
boundary integral equation. (For the details of the 
boundary integral equation method, refer to [5] . )  

where a and r denote free space and the free surface of 
the molten metal, respectively. 

In equilibrium, the following relation is establish- 
ed: 

ps(r(z) ,z) = pm(r(z) , z ) ,  or 

~g(z2 - z) = [2(r(z),z)12/2~o (8) 

Since the system is linear and the boundary condition 
is homogeneous (see ( 6 ) ) ,  the idea of the transfer func- 
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tion is conveniently introduced to the inverse problem. 
Let Q(i,j) be the transfer function between B(r(zi), zi) 
and the j-th coil unit current. Then, the coil currents: 
11,12,---,IN produce the magnetic field: 

N 

j = l  
B(r(zi),zi) = ?(i,j)Ij, i = 1 , ,  2 --- , M (9) 

where N is the total number of the coils, and M is the 
total number of the points where the magnetic field in- 
tensities are evaluated. Combining (9) with (8) and us- 
ing the least square method gives the coil currents: 11. 
12,---,IN. 

The computed results for the case of N = 8 and M = 80 
are shown in Table 1 and Fig.3, and the computed results 
for the case of N = 15 and M = 80 are shown in Table 2 
and Fig.4. The physical properties used are as follows: 

p = 2.3 x lo3 kg/m: 1-10 = 4a x 10 H/m, 

rg = 2.5 x m, 22 - z1 = 5 x m 

-7 

Table 1 Computed coil currents for 
the configuration with 8 coils 

Coil No. 

1 

2 

3 

4 

5 

6 

7 

8 

Coil current [A] 

620.2 

-79.3 

90.8 

215.0 

420.9 

366.7 

293.0 

1659.5 

Fig.3 Computed coil currents for 
the configuration with 8 coils 

A s  is seen from the computed results, it may be im- 
possible to realize the given free surface shown in Fig. 
2 by using the configuration with 8 induction coils. On 
the other hand, it may be possible to realize it by us- 
ing the configuration with 15 induction coils. 

111. MODEL REFINEMENT 

In the preceding chapter, the surface tension of the 
molten metal is neglected for simplicity. However, the 
surface tension plays an important role for shaping the 
free surface of a molten metal. In this chapter, the 
surface tension is taken into account. Eqs.(2) and (8) 
are changed to the following: 

Table 2 Computed coil currents for 
the configuration with 15 coils 

Coil No. 

1 
2 

3 

4 
5 
6 

7 

8 

9 

10 

11 

12 

13 

14 
15 

Coil current [AI 

1591.6 

-1344.5 

471.2 

-3.5 

-23.4 

117.6 

112.1 

133.4 

229.3 

191.0 

194.4 

233.0 

322.6 

-265.0 

4002.5 

Fig.4 Computed coil currents for 
the configuration with 15 coils 

ps(r(z),z) = pg(z2 - z) + P* (2) ' 
ps(r(z).z) - pm(r(z),z) = T[l/R1(r(z),z) 

+ 1/R2(r(z) ,z)l (8) ' 
where R1 and R2 are the principal radii of curvature of 
the free surface and are expressed as follows: 

l/R1 + 1 / R 2  = -d/dz[(dr/dz)/J(l + (dr/dz)')] 
+ (l/r)/J(l + (dr/dz)'), (10) 

and T is the surface tension. p* in (2)' is a constant 
and is determined by (8)' since R1 and R2 are known in 
the inverse problem. (As is shown in the last section 
of this chapter, the determination of p* is complicated 
in the direct problem.) 
Since the surface tinsion has a self-regulation func- 

tion, the refined model using the surface tension equa- 
tions improves the computed results obtained by the 
simple model described in the preceding phapter. Fig.5 
(a) and (b) denote respectively the computed results by 
the simple model and the refined model for the configu- 
ration with 8 induction coils. Fig.6 (a) and (b) denote 
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respectively the computed results by the simple model 
and the refined model for the configuration with 15 in- 
duction coils. 

The computation procedure using the refined model is 
as follows: 

The induction coil currents: 11,12,---,1~ obtained 
by the simple model are used without any change. 
Calculate the shape of the free surface using eqs. 
(2)', (8)' and (10). 
Calculate the magnetic pressure at the updated free 
surface using eqs. (3), ( 4 ) ,  (6) and (7). 
Iterate the processes (2)  and (3) until the shape of 
the free surface converges. 

t 1 

-0.06 0 
I I I I I I  

0 0.02 0.04 0.06 

Fig.5 

Z 
(m) 

(a) Computed result by the simple model 
for the configuration with 8 coils 

-0.06 0 
I I I I I  

0 0.02 0.04 0.06 

(m) 

Fig.5 (b) Computed result by the refined model 
for the configuration with 8 coils 

In comparison with the inverse problem, consider the 
direct problem defined in chapter I. The mathematical 
model for the direct problem is derived from eqs.(2)', 
(8)' and (10) as follows: 

dr/dz = w/d(I - w2), (11) 

dw/dz = [d(l - w2)]/r - [pg(zg - z) + p* 

- pm(r(z),z)l/~ ( 1 2 )  

I o  
-0.061 0 I I I I I I  

0 0.02 0.04 0.06 

Fig.6 (a) Computed result by the simple model 
for the configuration with 15 coils 

0 

-0.06 0 
/ I I I I I  

0 0.02 0.04 0.06 

r (m) 

Fig.6 (b) Computed result by the refined model 
for the configuration with 15 coils 

where w = (dr/dz)/d[l + (dr/dz)']. The boundary 
tions for eqs.(11) and (12) are given as: 

condi- 

r(z)Iz = 0 = r1 (not known in advance), (13) 

w(z) I z  = 0 = 0. (14) 

r1 in (13) is iteratively determined such that w(z) sat- 
isfies w(z.1) = -1. p* in (12) is iteratively determined 
such that the mass of the molten metal coincides with 
the given mass. The magnetic pressure pm in (12) depends 
upon the shape of the free surface. The shape of the 
free surface is iteratively updated until the converged 
shape is obtained. Therefore, the direct problem has 
three iteratively determined parameters, while the in- 
verse problem has only one iteratively determined param- 
eter. An example of the computed result for the direct 
problem is shown in Fig.7. The molten metal used is iron 
and the assumed initial shape of the free surface is a 
sphere. 

Note. There may exist a fluid flow inside the molten 
metal, and it may be expected that the velocity of the 
fluid flow is very small as long as a stable free sur- 



IEEE TRANSACTIONS ON MAGNETICS, VOL. 29, NO. 2, MARCH 1993 1565 

face is maintained. Assume that the fluid flow is a 
steady flow. The fluid flow is expressed.by the Navier- 
Stokes equation[6] as follows: 

where 1, 1, p, and rl are the velocity, the volume force 
, the dynamic pressure, and the viscosity, respective- 
ly. The calculation of the fluid flow has not been car- 
ried out yet. 

Fig.7 Computed result for the direct problem 

Note. The operating frequency of a cold crucible lies 
between 10 kHz and 100 kHz, and the corresponding skin 
depth lies between 1 mm and 0.3 mm. Therefore, the as- 
sumption (2) in chapter I1 may be valid. 

IV. CONCLUSIONS 

In this paper, an inverse problem of the free sur- 
face of a molten metal in a cold crucible is solved by 
using the boundary integral equation method and the 
least square method. 

To formulate the problem of the free surface as an 
inverse problem may be promising since the inverse 
problem has less iteratively-determined-parameters than 
the direct method. The invekse approach may be consid- 
ered to be complementary to the direct approach. By 
combining the direct problem with the inverse problem 
gives an efficient and accurate approach to the free 
surface problem of a molten metal of a cold crucible. 
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