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Abstract - In order to reduce computer resources for the
analysis of eddy current distribution of cold crucible
models, the authors employed a current sheet
approximation for eddy current distribution because
penetration depth of the eddy current is relatively small in
comparison with the dimension of the conducting bodies.
The eddy current distributions approximated by current
sheets are solved for by an integro-differential method
using an electric vector potential. Furthermore, magnetic
flux density, power loss, Lorentz force and lifting force
of the molten metals are obtained from the solved eddy
current distribution.

I. INTRODUCTION

Eddy current analysis can be performed by
practical methods: finite element methods, integral
equation methods and boundary element methods.
However, in the case of small penetration depth in
comparison with the dimension of the conducting bodies,
required computer resources become large because the
dimension of volume elements for finite element methods
and boundary elements for boundary integral methods
have to be smaller than the penetration depth. On the
other hand, boundary integral methods seem to be
practical for three-dimensional problems [1].

Here, eddy current in molten metal and cold
crucible is approximated by a current sheet and the eddy
current distribution is obtained by integro-differential
method using an electric vector potential [2]. In the
integro-differential method, the dimension of boundary
elements does not depend on the penetration depth
because the penetration of eddy currents is approximated
by a thin current sheet. Therefore, the required computer
resources can be reduced. In this paper, the distributions
of eddy current, magnetic flux density and Lorentz force
of a cold crucible model are investigated. Futhermore,
power loss and lifting force are obtained from the
calculated results.

II. INTEGRO-DIFFERENTIAL METHOD

The governing equation of the electric vector
potential T with sinusoidal time dependence is given by

Vx(%VxT)=qu n

where o is the conductivity and B is the magnetic flux
density [3], [4]. The eddy current density J is given by
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J=VXT o)

When the penetration depth is small and the active
parts of the conductor can be approximated by thin
plates, the integro-differential equation for the normal
component of the electric vector potential T is obtained as
follows [5]:

LV27=1®H0’1 {VX(nT)}xr-n ds
(¢} 41T s r3

+ joBgn 3)

where r is the unit normal vector, By is the magnetic flux
density by the external source, & is the thickness of the
active parts and S is the surface of conducting body. The
penetration depth can be chosen for the thickness 4 but
the distribution of eddy current does not depend on the
value of h.

The power loss W and the Lorentz force f are
calculated by

W=§ff|Vx(nT)[2ds )
S

f={Vx(nT)}xB %)

III. COMPUTATION MODEL AND RESULTS

The three-dimensional cold crucible model and
triangular mesh are shown in Fig. 1. The molten metal is
approximated by a sphere whose conductivity is 2x107
S/m. The conductivity of the crucible is 5x107 S/m. The
crucible is divided into eight segments. The current of the
coil is 7,000 At at 3 kHz. The number of unknowns is
3,968 for the whole region. The region to be analyzed
can be reduced to one sixteenth by rotational symmetry
and reflective symmetry (6]. The final number of
unknowns is 150 and the computation time and memory
storage are 56 minutes and about 900 kbytes using
SONY NEWS ( 20 MIPS ) : NWS-3860 with R3000, 20
MHz.

Figure 2 shows the real parts of the equipotential
lines, the eddy current density and magnetic flux density
on the surface of the cold crucible model where a half of
the crucible is removed to show inner surfaces.

Figure 3 shows the equipotential lines and the equi-
power-loss-density lines of the molten metal, which is
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Fig. 1. Cold crucible model, (a) arrangement, (b) triangular mesh of the model, (¢) molten metal approximated by a

sphere, (d) a segment of the crucible.

AT = 3x105 (A/m)

(a)

Fig. 2. Distributions of the potential, eddy current density and magnetic flux density of the cold crucible model, (a)
equi-potential lines of real part of the electric vector potential, (b) eddy current density vectors, (c) magnetic

flux density vectors.

approximated by the sphere. The eddy current density
and the power loss density increase on the lower part of
the opposite surfaces of the crucible slits.

The equipotential lines and the equi-power-loss-
density lines of the segment of the crucibles are shown in
Fig.4. There is a large difference for the eddy current
distributions and the power loss distributions between the

cases loaded with molten metal and without molten metal.
Figure 5 shows the experimental model and results of the .
12-segment-type crucible without molten metal for the
measurement of temperature distribution [7]." The high
power loss region in Fig. 4(f) calculated by the proposed
method coincides with the high temperature region in
Fig. 5(b). The calculated total power loss of the molten
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Fig. 3. Distributions of the potential and the power loss of the molten metal approximated by the sphere, (a) real part
of the equi-potential lines, (b) imaginary part, (c) power loss .

Sk

AT =3x105(A/m) AT = 1x105 (A/m) AW = 3x105 (W/m3)
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Fig. 5. Experimental model, (a) overview, (b) high
temperature region.

AT =3x105(A/m) AT = 1x105 (A/m) AW =3x107 (W/m3) metal is 693 W.
Figure 6 shows the distribution of the Lorentz

@ © ® force. The force on the surface of the molten metal is not
uniform. Figure 7 shows the shape of the melting metal
Fig. 4. Distributions of the potential and the power loss of the in the experiment [7]. It seems that the slight difference
crucible, (a) real part of the equi-potential lines, (b) of the force causes the transformation of the molten
imaginary part, (c) power loss without molten metal, metal. The calculated lifting force of the molten metal is
(d) real part of equi-potential lines loaded with molten 0.735 kg-weight. The mass of the levitated sphere is
me;al, © ti;lnaginary part, (f) power loss loaded with 0.657 kg. The calculated lifting force agrees with the

molten metal.

experiment.
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Fig. 6. Distributions of the Lorentz force, (a) real part, (b)
imaginary part.

Fig. 7. Melting metal.

IV. CONCLUSION

The eddy current distributions of the cold crucible
model were solved by the integro-differential method
using the electric vector potential. The magnetic flux
density, the power loss, the Lorentz force and the lifting
force were obtained from the eddy current and
investigated. The calculated results of the power loss and
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- the Lorentz force gave good agreement with the

experimental results. Furthermore, for the design of cold

- crucible, dynamic behaviors of temperature and changing

the shape of molten metal have to be solved as coupled
problems.
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