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Abstract - This paper describes a 3D computation of
transverse flux inductors used for heating strip and thin slabs.
The adopted mathematical model consists of a differential
equation system for the steady-state eddy current problem in a
configuration comprising a magnetic vector potential and a
scalar potential and a Fourier's thermal conduction equation
for moved media. The finite element method is applied in
conjunction with the Galerkin method. The simplifications and
boundary conditions required for an efficient solution are
discussed. The discretization of the numerical model is set up
with the aid of macroelements and includes upwards of
100 000 nodes for simple builds. The suitability of the numerical
method developed for optimum design of transverse flux
inductors is demonstrated by some results.

I. TECHNOLOGICAL PROBLEM

Induction heating or preheating of strip and thin slabs in a
longitudinal flux in which the charge material is encircled by
the inductor is subject to the condition that d/8 > 3 applies if
a good efficiency is to be accomplished. d is the thickness of

the material and 8 =1/,/(nfux) the equivalent depth of

penetration with the frequency f, the permeability p and the
electric conductivity k. This means, however, that an
uneconomically high frequency > 10 kHz would have to be
used for thin material. Thus, magnetic strip material up to
about 0,8 mm thick, aluminium up to 4 mm thick and
nonmagnetic steel up to 12 mm thick can be heated by
induction in a longitudinal flux. These limits are lifted by the
induction heating in the transverse flux.

In contrast to the longitudinal flux, the work piece is not
encircled in the inductor. One each separate transverse flux
inductor is usually arranged above and below the work piece.
The magnetic flux chiefly passes vertically through the work
piece. The eddy currents induced in the work piece close
within the work piece surface, when a display of the primary
currents flowing in the inductor is observed on the surface of
the work piece.
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Initial numerical investigations into transverse flux
inductors revealed that the inductor to strip width ratio has a
considerable influence on the temperature distribution at the
strip edge [1]. Long inductors protruding beyond the strip
edge lead to edge overheating and a slight temperature valley
forms in front of the edge. Short inductors result in a
temperature decrease.

Joint application of both effects results in a multitude of
feasible combinations going from extreme edge overheating
to undercooling. With an optimised design, they can also
result in almost homogenous temperature distribution across
the strip width.

Using numerical modelling, parameter variation permits
development of an optimum transverse flux inductor design.
The primary objective of optimization is to accomplish a
definite temperature distribution over the strip cross section
downstream of the inductor outlet. The technological
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Fig. 1.Finite element mesh of one octant of the equipment.
Half the strip width = 300 mm. Strip thickness = 15 mm
Half the inductor length = 500 mm. Equivalent current
penetration into strip = 30 mm. Half the inductor
width = 125 mm. Coupling distance between inductor and
strip = 20 mm.
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problem  definition specifies different temperature
distributions at the inductor inlet as well as different work
piece dimensions and materials. The objective of
optimization can be influenced by the number of poles
(inductors), their geometric shape (inductor, yoke) and the
power source frequency.

II. MATHEMATICAL MODEL

The problem considered here is that of eddy currents at
low angular frequencies ®. The displacement currents are
neglected. Magnetic permeability 1 and electric conductivity
K are assumed to be constant over longer periods of time
(several cycles of the field-exciting voltages).

The mathematical model for this sinusoidal steady-state
eddy current problem results from the Maxwell equations and
is described by means of the complex magnetic vector
potential A and a complex scalar potential ¢ [2].

1 - - -
rot—roté+jm1<(A—gradqn):KEs €))
N hs

ES is the electric field strength impressed by the power

source. Moreover, the requirement of a solenoidal current
density must be fulfilled.

div (_f\_ —grad 9) =0 2)

The scalar potential is, on the one hand, impressed in the
solution area of the inductor by the applied external source
voltage and the potential ¢ . On the other hand, and despite

the numerically conditioned steadiness of the magnetic

vector potential A, the requirement of a solenoidal current
density

J=jox (A-grad 9)+xE, 3)

is also met at interfaces.

The current density determines the heat source
distribution.
2
py =1 /x 4

By the initial numerical investigations is shown that the
introduction of the scalar potential ¢ is indispensable, if the

inductor protrudes beyond the strip edge.
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The temperature field 9(x, y, z) is computed on the basis
of the Fourier's thermal conduction equation.

dlcpd
_—((;p ) =div (A grad 9)+p, — ¥ grad (cp ) ®)
t

wherein A is the thermal conductivity coefficient, ¢ is the

specific heat, p is the mass density and V is the strip
velocity.

The two fields, the electromagnetic field and the
temperature field which becomes steady-state at constant
velocity, are coupled via the temperature dependence of the
electric conductivity x (x, y, z) and the magnetic
permeability | (x, y, z). This coupling is, however, relatively
weak, because it is relatively easy to do with iterative
functions for | (x,y, z) and K (x,y, z).

III. NUMERICAL MODEL

The computation of the electromagnetic field by
approximation is performed on the basis of the finite element
method. The Galerkin method is applied to the differential
equations (1) and (2), duly considering the boundary and
symmetry conditions. The procedure is described in detail in

[31.

For initial computations for orientation purposes, the
reaction of the temperature field and the influence of the
supply feeds (connecting leads) on the electromagnetic field
are preferably neglected. Under these assumptions, three
planes of symmetry can be defined. This reduces the solution
area to 1/8 of the total volume.

In the x-z and the y-z planes of symmetry, the electric
current density is oriented perpendicular to these planes.
Hence for the tangential components of the magnetic vector
potential A and for the scalar potential ¢ :

[
] A

a=Ap=0 ©)

9=0 @)

In the x-y plane of symmetry, the current density has no
perpendicular component and

[p>1

L=0 ®)

o
[B=4

/dn=0 )

In the present problem definition, the scalar potential in
the electrically non-conductive field areas is practically
insignificant because in the equations (1) and (3) it appears
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always in conjunction with the electrical conductivity. The
perpendicular component of the current density must be zero
on the surface of electrically conducting areas, except for the
impressed source current density. Hence the following is
valid for:

jmK(A—gradg)-ﬁ=O a0

As regards the magnetic vector potential, the present
problem is an open boundary one because the vector
potential ‘disappears only in the infinite. With the aid of
comparative computations, an enveloping surface can,
however, be determined for which the condition

A=0 1

is valid with a known upper error limit.

For temperature field computation the solution area is
restricted to the strip. But because of the mass-bound heat
transfer, there is no y-z plane of symmetry. The heat sources
in the newly added area can be obtained by reflection at the
y-z plane or by separate computation for a corresponding
temperature distribution. Thermal losses by convection and
radiation on the strip surface are duly considered. On the side
on which the strip enters the solution area, temperatures (e.g.
ambient temperature) are given. On the exit side, however
09/9x=0 (the x coordinate corresponds to the velocity

direction) is indicated.

Dividing the solution areas into computation elements is
necessary both for the 3D electromagnetic field and for the
transient 3D temperature field. At the nodal points of these
elements, the values of the vector potential A and,

additionally in the conductive areas, the values of the scalar
potential ¢ are computed. The coefficient matrix of the

resulting algebraic equation system is positively definite,
symmetric and sparse occupied. For the present practice
relevant example, grids with up to 100,000 nodes or elements
are required. The resulting very large matrices require
specific storage types. For solving the equation system, the
conjugate gradient method is used in the iterative solution
process.

The computation of the temperature field of the moving
strip is done on the basis of a particular grid. The heat source
distribution, in the form of node values, is transferred to this
grid (which can be not identical with the grid of the
electromagnetic computation) by means of the shape
functions. The influence of the velocity destroys the
coefficient matrix symmetry of the equation system. A
biconjugate gradient procedure or a relaxation procedure was
therefore adopted as solution method. Test computations
revealed that a better stability is accomplished by transient

computation, wherefore the Cranck-Nickelson method was
applied. Convergence problems at an increasing velocity
were eliminated by adopting shorter time steps.

A semi-automatic process using what is termed
macroelements is adopted for discretising the solution area.
Macroelements are hexahedral, prismatic and tetrahedral
elements which are automatically meshed and then
assembled for overall discretization. Manual work is
restricted to the definition of the macroelements. Grids with
100,000 elements can readily be set up. The macroelement
concept does not fully exclude input errors. For this reason
the completed discretisation is tested for meshing errors with
a special program [4].

IV. RESULTS

Fig. 1 shows the mesh of inductor (coil), yoke and strip.
11776 hexahedral elements with 13464 nodes resulted for the
1/8 of the overall computation domain, including the
discretisation of the airfilled spaces; the latter is not shown
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Fig. 2. Eddy current distribution on the strip surface:
real part at the top, imaginary part at the bottom.
N.B.: The measure of intensity is the arrow
length, not the arrow density.
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Fig. 3. Distribution of heat source density.

in the figure. The results presented below relate to this
specific example which is one of many modifications [5].

The calculated eddy current distribution on the strip
surface is illustrated in Fig. 2. Because the depth of current
penetration is much greater than the strip width, a similar
eddy current distribution will also occur in the deeper layers.

The density of heat source distribution according to eq. (4)
is shown in Fig. 3.

If these heat sources are integrated along the x and the z
coordinate, this will show the power density unit of length
illustrated in Fig. 4 which would be proportional to the
temperature rise if no thermal conduction and no surface heat
losses were incurred.

v 3,5

long .
inductor
. short |

__/

0 50

100 150 200 300
distance from adge |

Fig. 4. Distribution of normalised integrated power density
p’ / p;, across the strip width

N.B.: The long inductor is according to Fig. 1 and the
short inductor is approximately as wide as the strip.

Fig. 5. Steady-state temperature distribution.

The comparison of power density distributions for a long
(computation example) and a short inductor indicates the
possible combinations, configurations and geometries by
which a desired final temperature distribution can be
obtained.

Fig. 5 shows the temperature distribution resulting from
the reflected heat sources distribution as per Fig. 3 in the
steady-state situation. The computed results are confirmed by
temperature measurements performed with an infrared
camera.

REFERENCES

[1] W. Andree, H.-W. Mauwe, "Inductive Heating of thin sheet metal,"
elektrowdrme international, vol. 50, No. 2, pp. B160-B164, August
1992.

0. Biro, K. Preis, "On the use of the magnetic vector potential in the
finite element analysis of three-dimensional eddy currents, " /EEE
Transaction on Magnetic, vol. 25, No. 4, pp. 3145-3159, July 1989.
Programmsystem PROMETHEUS des Fachgebietes Elektrowirme der

2

—_—

B3

—

Technischen Universitit lImenau
[4

=

U. Liidtke, "Zur numerischen Berechnung dreidimensionaler elektro-
magnetischer Felder," Dissertation, TH Ilmenau, 1990.

W. Andree, D. Schulze, Z. Wang, "3D Wirbelstromberechnung fiir die
induktive Querfelderwirmung, " Workshop Num. Feldberechnung in
der Elektrow#rme, Technical University of llmenau, Subdepartment of
Electroheat, September 1993.

[s

—



