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Complex Representation in Nonlinear Time Harmonic Eddy Current Problems 
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AbsfructSeveral possibilities are presented to deal with non- 
linearity in ferromagnetic media in the case of time harmonic 
excitation in steady state, without loosing simplicity in 
describing the potentials by means of complex peak values. The 
main idea is to introduce a fictitious time independent and 
inhomogeneous material to take into account the nonlinear 
relationship between the field quantities. Four methods are 
shown and investigated on a 3d time harmonic eddy current 
problem, using the T , @ 4  finite element formulation. The 
vector potential is represented by means of edge elements and 
the scalar potential by nodal elements. The results obtained are 
compared with transient computation. 

Index terms-Eddy currents, 3D, nonlinear media, frequency 
domain analysis, fictitious material, effective magnetization 
curve, edge element representation. 

I. INTRODUCTION 

In linear media, the potentials can be described by their 
complex peak values assuming that the excitation is time 
harmonic and steady state is reached. To make use of this 
complex representation in nonlinear media, too, it is either 
necessary to regard the fundamental harmonics only (see 
[13]) or to introduce an effective material. This fictitious 
material is isotropic and inhomogeneous. It is constant 
throughout a period and takes into account the nonlinear 
relationship of the field quantities. It can be described by 
means of an effective curve. This effective curve shows the 
nonlinear relationship of the field quantities. In nonlinear 
magnetic field problems this will be an effective 
magnetization curve, which originates from the nonlinear B- 
H curve. 

Some methods to create effective magnetization curves 
are already known from the literature [1]-[6], but for A- 
formulations (based on a magnetic vector potential) and for 
Id and 2d field problems only. A review of the different 
methods to create effective magnetization curves on the basis 
of the magnetization curve of a ferromagnetic material has 
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been presented by the authors in [7]: it is shown that 
analogous relations for T-formulations (based on a current 
vector potential) and for A-formulations (see [SI) can be 
obtained for the fictitious material describing the nonlinear 
behavior of the ferromagnetic material. They are extended to 
3d field problems and for T-formulations, too and new 
methods are added. The advantage of all these methods is the 
very low computation time in comparison to the 
straightforward transient computation. Both A-formulations 
and T-formulations describe with sufficient accuracy the 
eddy currents in ferromagnetic conducting media and, 
therefore, the time average of the power losses. 

The aim of the authors is to investigate these methods on 
a highly saturated 3d time harmonic eddy current problem, 
using the complex formalism and the T,O-O potential 
formulation [8], [ll]. The current vector potential T is 
approximated by means of second order edge shape functions 
and the magnetic scalar potential CD by means of second order 
nodal shape functions. The mapping of the geometry into 
curvilinear co-ordinates is established with nodal shape 
functions. The nonlinear, algebraic equations system with 
complex coefficients, obtained from the differential equations 
by means of the finite element Galerkin method, is solved by 
nonlinear iterative techniques [9], [lo] and by the conjugate 
gradient method [ 151. 

11. FICTITIOUS MATEIUAL 

Introducing a fictitious time independent, inhomogeneous 
material the field quantities can be represented by complex 
peak values. This means that the corresponding time 
variation of the components is sinusoidal and hence the peak 
of the vector representing the physical quantity lies, in 
general, on the surface of an ellipsoid. The magnitude of the 
magnetic field intensity, H, is given in general as a function 
of space and time as 

H(r, t )  = [H: (r) .cos2 (ut + px (r)) 

+ H: (r) . cos * (ut + qy (r)) 

+ H :  (r) .cos2 (ut + pz (r))l’’2. 

(1) 

In order to create the effective magnetization curve it is 
sufficient to regard the time dependence H ( t )  only. H ( t )  is 
periodical with TI2  and varies between an upper and a lower 
bound, which depend on the phase angles q x ,  q, and qz for 
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fixed H,, H ,  and H ,  . This means that there are six free 
parameters for the approximation of H ( t )  and a family of 
characteristics of the effective magnetization curves is 
obtained. However it is sufficient to approximate (1) by 

H(r ,  t )  = k(r)lcos(ut)l (2) 
arising if px = py = p z .  The magnitude of B is then non- 
sinusoidal 

With (2) and (3) several possibilities exist to create the 
effective magnetization curves on the basis of the B-H curve. 
In this paper the methods are shown only for T-formulations. 
For A-formulations analogous relations exist. 

B(r,  t )  = B(H(r ,  t ) )  . (3 )  

A. Methods to Construct the Effective Magnetization Curves 

I )  RMS Method: Assuming (2)  to be valid, the effective 
permeability can be calculated as 

(4) 

where B(t)is obtained from the magnetization curve with (3). 
2) DCMethod: Similarly to (4), 

l T  
- jB(t)dt  

( 5 )  - Bo - T o  
2 Peff --- 

HO -H 
7r 

where the time averages (DC values) of the field quantities 
have been used. 

3) Simple Energy Method The following constitutive 
relation is introduced for T-formulations 

B,  = P e I / k .  (6) 
By means of the magnetic coenergy density, the effective 
permeability is obtained with (2) and (6) as 

(7) 

4) Average Energy Method: The time average coenergy 
density is defined as 

and with (2) and (6) the effective permeability is 

(9) 

The effective magnetization curves are constructed by 
means of the pairs ( H ~ ~ , B ~ ~ ) ,  (H, ,B , )  or ( f i , ~ ~ ) .  
Fig. 1 shows the different effective magnetization curves 
obtained by the above methods. Different characteristics of 

the source field quantiiy are shown on the axes of the 
diagram. 

B. Finite Element Computation 

The above methods suggest a general constitutive relation 

which approximates the nonlinear relationship of the field 
quantities. H ,  ( r )  and B ,  ( r )  are fictitious field quantities 
in the effective material which is described by the effective 
magnetization curve. H ,  (r) stands for the RMS value, the 

DC value or the maximal value of H ( r ,  1) in (1) respectively. 
They are calculated during the finite element computation 
from (1) as 

B,  ( r )  = Peff ( r )H , f ,  0-1 (10) 

H ,  ( r )  = - J H  (r, t)dt (RMS method), (11) 

(12) 

i l l  
I T  

TO 
H ,  ( r )  = - gH(r, t)dt 

H ,  (r) = max, H(r, t )  (Energy methods). ( 13) 

(DC method), 

111. POTENTIAL FORMULATION 

The field quantities are derived in the T,@-@ formulation 
in the eddy current region (a,) as 

J = V X ( T ,  +T) ,  (14) 
H=To+T-VcD (15) 

H = T o  - V @ .  (16) 

and in the nonconducting region ( i2 ) as 

To is the impressed vector potential assumed to be given, 
which models either the current density in the exciting coil or 
a given total current in a skin effect problem. Several 
possibilities to choose To are given in [12]. T is the reduced 
current vector potential and cD is the reduced magnetic scalar 
potential. T is approximated by means of edge elements as 

2.5 , 
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Fig. 1. Effective magnetization curves originated from the magnetization 
curve in TEAM problem 10. 



N,. 

T = z t , N k  (17) 

t ,  = jT.ds  (18) 

k= l  

@&-e, 

in the eddy current region and 0 is represented by means of 
nodal elements as 

k=N,.+I 

in the whole domain. N e  denotes the global number of edges 
and N ,  the global number of nodes. N ,  are the edge shape 
functions and N ,  the nodal shape functions. 

The differential equations for the potentials are 

0' 
- v (PV To )-,(PTO )2 

v.(~T-~vcD)=-v.(~T,) inn2,, (21) 
- v . ( ~ v Q )  = -V . (,UT, ) in Q". (22) 

The Coulomb gauge V . T  = 0 is incorporated in these 
equations. 

IV. NUMERICAL INVESTIGATIONS 

An iron choke with air gaps in the middle core, driven by 
an exciting coil with a sinusoidal total current of 
I = 5.13.105A at f = 50Hz was modeled. An iron plate 

with conductivity 0 = 4.5.106Sm? and thickness 
d = 0.015m is attached on both sides of the yoke. The 
material of the choke and the plate are nonlinear. The 
magnetization curves used are shown in Fig. 3. The curve 
with the larger slope is valid in the iron choke. In the 
conducting plate the lower curve, the modified curve of 
TEAM Problem 10 [16], is used. Fig. 2 shows one eighth of 
the geometry of the choke with the exciting coil and the finite 
element mesh of the problem. 

CONDI ICTMO 
IRON PLATE 

EXCITINO COL 

Fig. 2. Finite element model with exciting coil of one eighth of the choke 
coil. 
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Fig. 3. Magnetization curves of the choke and the conducting plate. 

Additionally to the four methods presented above another 
possibility to deal with the nonlinearity is to use the original 
magnetization curve in combination with max, H(r, t )  
which is obtained from (1) with (13). These five methods are 
compared to each other and to a transient computation. Time 
stepping was carried out over one period with time steps 
At = T/40. In Table I, the computational efforts of the 
different methods are compared. Table I1 shows the time 
average of the power losses in the conducting plate. 

TABLE I: COMPARISON OF CPU TIMES (S) AND NUMBER OF NONLINEAR 
ITERATIONS (205 8 10 UNKNOWNS) 

Transient RMS DC Energy Average H,,, 
685790 84397 79633 59229 53 697 162301 
1202 It. 27 It. 21 It. 15 It. 12 It. 112 It. 

TABLE 11: TIME AVERAGE OF POWER LOSSES IN THE PLATE (w) 
Transient RMS DC Energy Average H,,, 

107.20 98.63 93.35 84.53 75.91 116.52 

Fig. 4 shows the distribution of the current density on the 
outer side of the iron plate at the time instant cot = 0 
calculated by the RMS method. The same distribution 
obtained by a transient nonlinear analysis at t = 0.02s is 
shown in Fig. 5. 

li-, 
Fig. 4. Distribution of the current density on the conducting plate. 

RMS method at wt = 0 .  
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Fig. 5.  Distribution of the current density on the conducting plate. 
Transient computation: t = 0.02s . 

In Fig. 6, the time functions of the power losses are 
shown. The RMS method is compared with the solution 
obtained by the time stepping method. The DC parts of P are 

= 98.63W 
for the RMS method, see Table 11. 

= 107.20W for the transient computation and 

250 

Fig. 6 .  Power losses during one period in the conducting plate. 
Transient and approximate sinusoidal time function obtained by the RMS 

method. 

V. CONCLUSION 

All the methods presented show excellent agreement for 
the power losses and the electric currents with the time 
consuming transient results. The magnetic fields fit also well. 
Earlier investigations on a simple eddy current problem, see 
[7] ,  and the above results give rise to the following 
conclusion: the RMS and the DC methods work better with 

T-formulations and the energy methods work better with A- 
formulations. The big advantage of all these methods is the 
substantially lower computational effort. 
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