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ACTIVE POWER 1LOSS IN THICK PLATE GENERATED BY ONE

SIDE INDUCTOR HEATER

AndrzeJ Patecki and Grzegorz Szymariski

Abstract - A method of calculation of ele-
ctromagnetic field and eddy-current losses
produced in semi-infinite magnetic solid by
a.c. flowing through parallel conductors in
presence of a magnetic shunt in cylinder form
is presented in the paper. The integral equ-
ation approach is applied; which permits to
obtain an approximate solution of the problem
considered, The distribution.of the active po-
wer density on the surface of the conducting
solid is considered, .

INTRODUCTION

The calculation of eddy-current losses is
of great importance in many technical pro--
blems. The conductors parallel to the surface
of the ferromagnetic medium and magnetic shunt
occur in ‘many electrical devices such as tran-
sformers, linear induction motors, induction
heating systems etc. These problems arée dis-
cussed in a number of publications [4,5,7].

In the paper, a system involving a semi-
infinite magnetic solid and magnetic non-con-
ducting shunt in a long cubicoid form is dis-
cussed, Between these solids there are para-
1lel conductors with a.c. The analysis of the
electromagnetic field with a boundary condi-
tion on the side surface of the magnetic cy=-
linder is in general extremely complicated,
However, another aporoach to the problem
exists, namely the integral equation formula-
tion, which permits to satisfy the boundary.
condition in a simple way. Although the inte-
gral eguations are more difficult to solve,
it is possible to obtain a numerical solution
of the problem. These problems are discused
in [1,3,6,8,91].

The considerations are based on the assump-
tion that the permeability of the magnetic
s0lid and magnetic shunt are constant. Such
an assumption. 1s accepted in many problems
dealing with the eddy-current losses [4].
Thus the system examined is linear on the
assumption accepted. It is assumed that the
all field quantities or currents vary with
the time as exp [ jw t| and are represented in
the complex form.

The rectangular coordinate system is app-
lied. The considered system is assumed to be
1nf1n1te1y long along the y-axis, Thus the
problem is two~dimentional, In the sequel the
displacement currents are neglected,
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- permeability of vacuum,

- relative permeability of ferromagne-
tic medium,

- relative permeablllty of magnetic

shunt,

Poynting vector,

- angular frequency,

- line current density.
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FUNDAMENTAL SOLUTION

The infinite conductors are placed in the
semi-infinite non-conducting medium above the
boundary surface {of the semi-infinite ferro-
magnetic medium similary as shown in Fig.1
but without a non-conducting ferromagnetic
cubicoid ).
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Fig.1. The analysed system involving magnetic
so0lid, conductors with a.c. and magnetic shunt
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The vector potential generated by the cu-
rrents I, flowing through a multi conductor
system is given by [4]

o s} 1,
A°(r,0)= 1Y AR k(P,0,) (1)

{ X'dk) +( z+hk)2

K(P,0,)= 32 1n 5
»

+ 2 g_lrje"A (2+1y) f(A)cos?L(X-dk) dA
and 0

) - [ 25)

OO( x-dk);Z +(z-h

INTEGRAL EQUATIONS

A non-conducting ferronagnetic cylinder of
arbitrary cross-section (Fig.1) is situated
in a TP field described by the vector poten-
tial A° (egn.1) which is assumed to be cons-
tant along the axis of the cylinder,

On the surface described by the curve L the
following boundary conditions must be satis-

fied .
~ nxAY= nya® (2)

L nxrot AY pxrot A (3)
Me

1t means that the normal component of magne-
tic density and the tangential component of
magnetic intensity are continuous. These con-
ditions are expressed by the wvector potential.

The system shown 1in Fig.1 can be analysed
as system without magnetic shunt but with an
additional conduction current flowing on the
boundary surface [8]. This current has line
density 7 and has a y-component only.

The vector potential generated by this cu-
rrent is given by

Alp)- 1, 2/“1;}1(@) k[p,a] dL, [4)
From [4) we get -
rot A(P)= 1><_gradP§*TT }r(@] K(P,q)daL, {5)

Vector { -gradp 5;, LT(Q) K(P,Q)dLQ}

from (5) can be treated as the field intensi-
ty of a single layer [8]. The tangential com-
ponent of this 1nten51ty is continuous, but
the normal component is discontinuous.

Hence

rot®) Afp) = £572 0y y¥<Pp - l6)

-Zfﬁ%‘?- %1yT(Q>xgradp K(P,0)dLy

rotWA(p) = - X 4 n, -
2 v P (7)
- L2 §1YT{Q)Xgradp K(P,0)dLy
L
where n is a vector normal to tThe curve 1

in the point P.
The resulting vector potential In the sys-
tenm from Fig.l is the sum of two components

Ax,z)= A% x,z)+ %{13{1(@) k(r,a)aL, (8]

The first term of the right-hand side of (8)
is the extermnal vector potential and the se-
cond term is described [egn 4) by additional
conduction currents which make it vossible to
satisfy the boundary condition (3).

Substitution of (6),(7) and (8) into (3)
yvields a line integral equation for the cu-
rrent density on the boundary surface

G M -
1,(p)= w?ﬁ%’l’ npx 4,%(%) xgrad K(P,0) dary =
__2 f& o (9
Hoéﬁ 7T bpx rot A )

The total current on the boundary surface
is egual to zero

fT(P) dL = 0 {10)

The current density v is the solution of
the integral equations (9) and (10).

DISTRIBUTION OF ACTIVE POWER DENSITY

The complex power flux density which enters
the conducting solid is the negative z-comno-
nent of the Poynting vector Ex H, where H' is
conjugate, on the surface of the conducting

solid. Hence,
M. = Ey(X,O) HY (x,0) (1)
where | jotto L n N
o by ~AN
y(x 0)= - “l 1Ik‘[ %e(A)cosA(x-a a,)ar

j@ f A7'i‘o{ﬂ)cos/\l (=) aR oL
o B et

%; k) + hy

- 231J7\e—hhk f(}n)dosh(xudk) ar| +

o 27 -
T, z 2
+ f.(x ;)[[x-xﬂz+ i? ;
- 24, /\e*kz'f(/l)cosf-\(x—x')dﬂ d].,}

The active power density on the surface of
the conducting solid is the real part of T[]
and can be computed by (11) using a dlgltaf
computer,

APPROXTIVATE SOLUTION

Consider a rectangular non-conducting ferro-
magnetic bar of infinite length with parallel
conductors following a.c., placed over seni-
~infinite ferromagnetic medium. The perimeter
of this bar is divided into N = 2Ny + 2N,
subsections ngX, L;L7, resnectively, as
shown in Fiz,%. The position of A l, is de-
termined by the coordinates (x5 75)70f its
centre.

The current density’r(x,z) can be exnanded in

the ogerator domain
N

T =§;Tnj0n (12)



where the < are constants and thejon are
basis functiBns [2]. !

The basis functions for the problem discu-~
sed are defined by

1 on &Ln

Pa= 1,

The coefficient T, appearing in (i2) is tne
approximate value of the current density in

on all otherALi

aly.

}t is easy to show that the integral equa-
tion (9) can be reduced to a system of N-1
linear equations

N1
n= lm,nftnA= f(Pm) @3)

where f(Pm) takes the form

f{Pm) = '1%2%?%
[nﬁx rot AO(Pm)— ny X rot AO(PN)]

lm,n = 1y(dm,n"dn,N)" TR
nm><1y><gradm K(Pm,Qn)dLn -

aly ) )
_/aniyxgradN K(P,Q,) dL,
‘Aln
for m=1,2,...,8-7, n=1,2,,..,N. The additio-
nal results from (10} we obtain

N
;’tnALn =0 (14)

The numerical solutions of {13) and {14)
can be foud using digital computers. This
results in the approximate values ’tq,’tz,..
o T of the current density on the
bounidary surface, The resulting electromagne-
tic field we obtain from (8).

As an example we consider a rectangular
non-conducting ferromagnetic bar of a=0,06 m,
b = 0,03m, ¢ = 0,015m, h,|=h2 = 0,01 m,
-dq= d,= 0,02m, Il = 14, u “= 30, U.= 700,
4 = 1M§/m. The results of Ealculatigns for
different frequency for a diphase system are
shown in Fig.2.

As another example we consider the magnetic
shunt of a = 0,12m, b = 0,03m, ¢ = 0,015m,
hq = ho=.,.= hg = 0,0Im, dq= -0,05m, dy =
—;]J,OBm, d= -0,01m, d,= 0,0Tm, dg= 0,0%m,
dee 0,05m0 |14 =114 =+..=1T¢g = 12, w'= i0om.
O%her date are the same as in the first
example. The results of calculations for this
multiphase system are shown in Fig.3.

The result can be used in many tecinical pro-
blems concerning field computation in a sys-
tem with a big flux dissipation,
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Fig.2. Active power loss distribution for the
diphase system,
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Fig.3. Active power loss distribution for
the multi-phase system,
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