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Numerical Modeling in 
Axisy m e t r i c  

C. Chaboudez, S. Clain, R. Glardon, D. 

Abstract-This paper deals with numerical simulation of in- 
duction heating for axisymmetric geometries. A mathematical 
model is presented, together with a numerical scheme based on 
the Finite Element Method. A numerical simulation code was 
implemented using the model presented in this paper. A com- 
parison between rcsults given by the code and experimental 
measurements is provided. 

I. INTRODUCTION 
NDUCTION heating is widely used in today’s indus- I try, in operations such as metal hardening, preheating 

for forging operations, or brazing [ 3 ] .  It is a complex pro- 
cess, involving both electromagnetic and thermal phe- 
nomena. Since the design and the investigation of an in- 
duction heating system usually relies upon a series of 
tedious, expensive and long experiments, numerical sim- 
ulation can be a valuable help in this field [4]-[20]. The 
authors previously dealt with induction heating of long 
workpieces, obtaining encouraging results [ 11, 121. 

In this paper, we deal with numerical simulation of in- 
duction heating with a rotational symmetry. The aim of 
our research was to elaborate mathematical and numerical 
models, and to implement efficient numerical codes for 
the simulation of induction heating. Several experimental 
measurements have been carried out by the company 
AMYSA Yverdon S.A.  in order to validate the results 
provided by our numerical simulation codes. In this pa- 
per, we shall first present the model and the numerical 
methods used for the code. Next, we shall describe the 
experiments performed and compare them to the numeri- 
cal simulation results. Finally, conclusions will be drawn. 

Numerical simulation of induction heating clearly in- 
volves two coupled phenomena: electromagnetism and 
heating. An efficient eddy current computation has to be 
performed in order to obtain the source term to be plugged 
into the heat equation. 

As far as eddy current computation is concerned, we 
opted for a formulation in magnetic potential to solve the 
electromagnetic problem. We chose to prescribe voltage 
in the conductors, rather than the total current, which was 
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dictated by the commonly used generator setup. For com- 
putational efficiency reasons, we limited our scope to si- 
nusoidal voltages, which allowed us to solve several times 
a steady-state equation rather than an evolutive one. In 
fact, the experience previously gathered [ 11 shows that 
the shape of the voltage has a limited importance from the 
energetic point of view, while solving a steady-state equa- 
tion rather than an evolutive one allows significant sav- 
ings of computation time. The physical properties of the 
heated materials may vary with the temperature. The pos- 
sibility of using several coils and several voltage genera- 
tors working at different frequencies has been taken into 
account. 

11. THE MODEL 
We consider an induction heating system consisting of 

one or several inductors and workpieces, all of them with 
an axial symmetry (Fig. 1). It will be assumed that there 
are neither displacement currents nor surface currents, and 
that the inductors are supplied with a sinusoidal current 
having a prescribed voltage. We consider that the prop- 
erties of the materials used, i.e., the magnetic permeabil- 
ity p, the electric conductivity B,  the thermal conductivity 
A, the density p ,  and the specific heat C,, may depend on 
the temperature. 

For the sake of simplicity, we describe a model con- 
sisting of one workpiece and one coil. Nevertheless, all 
our considerations remain valid for induction setups in- 
cluding several workpieces and coils. We shall denote by 
Q, the workpiece to be heated, and by Q , ,  Q 2 ,  . , Q,  
the windings of the coil. Q = Qo U Q ,  U Q2 U Q, 
is the whole set of conductors (i.e., the coil and the work- 
piece). We suppose that a total sinusoidal voltage VkeLWf 

(possibly zero) is imposed in the conductor Qk. The choice 
of imposing the total voltage rather than the total current 
is motivated by the setup of generators used in induction 
heating, which generally allows better control of the volt- 
age than the current. 

A.  Mathematical Model 
In order to obtain the mathematical model, we shall start 

from Maxwell’s equations and Ohm’s law, with displace- 
ment currents neglected. We denote by E the electric field, 
by H the magnetic field, by B the magnetic induction, by 
j the current density, and by Y the magnetic reluctivity, 
i.e., the inverse of the magnetic permeability p. Max- 
well’s equations provide the following system: 
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From (2.2) we have 
curl E + iwB = 0 

and using (2.8) we get that 

curl (E  + iwA) = 0. 

In any conductor (workpiece or inductor), Ohm's law 
(2.5) holds, and therefore 

curl ((o-lj + io4)Zo) = 0. 

It follows that ( K ' r j  + iwr4) is a constant in each con- 
nected component of a conductor, and we can show that 
this constant is equal to vk/2n, where uk is the total volt- 
age imposed in the conductor. Finally, we will have in 
any conductor Qk 

coil 

workpiece 

Fig. 1 .  An induction heating setup with axial symmetry 

dB 
curl E = - - 

at 

curl H = j (2.3) 

vB = (2.4) 

j = oE (2.5) 

j = O  (2.6) 

valid in the whole space. From Ohm's law, we get 

inside the conductors, 

in the space outside the conductors. 
Let ( Z r 9  20, 2,) be the natural tangent system associ- 

ated with the cylindrical coordinates ( r ,  0 ,  z )  such that the 
Qz-axis is the symmetry axis of the induction heating sys- 
tem. The current density is supposed to be in the form j 
= j ( r ,  z)ef'"Zo, where o is the angular frequency of the 
current and t is the t . It is also assumed that the com- 
ponents of the fields E ,  B in the system ( Z r ,  Z o ,  Zz) 
depend only on r ,  z ,  t (not on 0) .  Equation (2.3) yields 

(2.7) 
Let A be a magnetic vector potential, i.e., a magnetic field 
satisfying 

, z) is of the form 

, z )  = (H,.(r, z ) Z r  + Hz(r, z)zZ)eLwr. 

= curl A .  (2.8) 
We take A to be divergence-free (Coulomb gauge). Using 
(2.4), (2.7), and (2 .8) ,  it can be shown that A may be 
expressed in terms of a continuous scalar potential $ de- 
pending only on r and z: 

A = efWt4(r, z)Zo. 

Using the notation (r,  z) = &(r, z)Z, + BZ(r, z)Zz)eLof,  
we get from (2.8) 

(2.9) 

j = a -iw$ + ~ . ( 2nr vk 1 (2. 10) 

Using (2.3), (2.4), (2.9), and (2.10), we get inside the 
conductors (coils and workpieces) the equation 

-("~""')+~(v~)).i~~Q=~-. Vk 

ar r ar 2nr 
(2.11) 

In a similar way, the relations (2.3), (2.4), (2.6), and (2.9) 
combined together provide the following equation in the 
space outside the conductors: 

Since there are no surface currents, the following inter- 
face condition holds at the boundary of any conductor: 

where [$] denotes the jump of a function \L at the bound- 
ary of the conductor and IZ = nrZr + nzd, is the normal 
vector on the interface. 

For the electromagnetic computations, we shall con- 
sider a rectangular box in the ( r ,  z)-plan, surrounding the 
induction heating system, and big enough for the mag- 
netic field to be weak at the boundaries of the box (Fig. 
2) .  

The Biot-Savart hypothesis implies that the field B be- 
haves like l / ( r 3  + z 3 )  far from the conductors. For big 
values of r ,  the behavior of $J can be considered to be 
similar to l / r2 .  Therefore, on the boundaries of the box 
which are parallel to the symmetry axis, we impose a so- 
called Robin condition [21, p. 1621 

(2.14) 

For those boundaries of the box which are perpendicular 
to the symmetry axis, a Robin-like condition is difficult 
to enforce. Instead, we set the condition 

-- - 0  
az (2.15) 
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condition.".., 
(2.16) 

,.condition (2.15) r-1 
, workpiece 

o\ 

0' 
condition 

(2.14) I 
I 

'condition (2.15) 

Fig. 2. Cross section of an induction heating setup together with the 
boundary conditions. 

which stems from the assumption that the radial compo- 
nent of the magnetic field is close to zero on these bound- 
aries. 

Finally, the natural symmetry condition along the rev- 
olution axis is 

4 = 0. (2.16) 

To sum up, the electromagnetic model to be solved 
consists of (2.11) and (2.12). together with the interface 
condition (2.13), the boundary conditions (2.15) and 
(2.14), as well as the symmetry condition (2.16). 

In order to study the thermal effects of the electromag- 
netic phenomena, the above model will be coupled with 
the heat equation. We shall assume that the workpieces 
do not interact thermally. This assumption will allow us 
to solve the heat equation individually for each work- 
piece. The Joule effect power term is ( ~ - l l j ~ 1 * ,  where j ,  
is the mean current density, equal toj/& in our case. The 
value of j is directly obtained by (2.10). Therefore, the 
equation to be solved in order to get the temperature field 
in the workpiece is 

This equation is completed by the following radiation 
condition on the boundary of the workpiece, which is jus- 
tified if the workpiece is convex and there is a large dif- 
ference in temperature between the workpiece and the 
surrounding space: 

(2.18) 

where 01 is the product of the Stefan-Boltzmann constant 
by the material emissivity coefficient, aT/an is the normal 
derivative of T on the boundary of the workpiece, and 
Tamb is the ambient temperature. 

One can also consider an empirical convection law, re- 
placing (2.18) by the condition 

where /3 is a proportionality coefficient. 
The complete model consists in coupling the electro- 

magnetic problem (2.11)-(2.16) with the thermal problem 
(2.17), (2.18), or (2.19), where we assume that Tdepends 
only on the spatial coordinates r and z ,  and on the time t .  

This model includes two kinds of nonlinearities: the first 
due to the heat source term in the heat equation (2.14), 
and the second due to the dependence of physical prop- 
erties of the conductors on the temperature and possibly 
on the magnetic field. 

B. Numerical Solution 
We adopted the standard PI finite element method for 

the discretization of equations (2.11) and (2.12), while 
finite differences in time and standard PI finite elements 
in space were used to solve the heat equation. The mesh 
used for the thermal problem is the same as the part of the 
mesh used for the electromagnetic problem inside the 
conductors. It is worth noticing that the skin effect re- 
quires a particularly refined mesh close to the boundary 
of the conductors. On the other hand, too coarse a mesh 
inside the conductors would result in an inaccurate solu- 
tion of the heat equation. Therefore, a reasonable com- 
promise has to be found. 

The electromagnetic problem we have to solve is sta- 
tionary in time, while the heat equation gives rise to an 
evolutive problem. Due to the different time scale of the 
two phenomena, we will assume that the solution of the 
electromagnetic problem is valid on a time interval during 
which the physical properties of the workpieces do not 
change too much due to the increase in temperature re- 
sulting from the Joule effect. We will then use the result 
to compute the source term to be plugged into the heat 
equation. The evolutive heat equation will then be solved 
using finite differences on the same time interval. The new 
value of the temperature field thus obtained will be used 
to update the values of the physical coefficients of the 
workpieces (v, (T, p ,  C,, and A). This will allow us to 
proceed to another computation of the magnetic potential, 
followed by the computation of the temperature field, and 
so on. 

We have developed a numerical simulation code on the 
basis of the above model. It can deal with any induction 
heating system having an axisymmetric geometry. Only 
sinusoidal voltage is allowed, but the restriction on the 
shape of the voltage does not have a big effect from the 
energetic point of view. The possibility of having several 
electric current generators, characterized by different fre- 
quencies, voltage amplitudes, and possibly different 
phases, has been taken into account. The company 
AMYSA Yverdon S.A. carried out several measurements 
for different cases of induction heating in axisymmetric 
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10 mm 
Fig. 3 .  A three-dimensional representation of the workpiece to be heated. 

A two-dimensional cross section of the whole induction heating setup. 

geometries, in order to get a comparison between numer- 
ical simulation and measurements in an industrial envi- 
ronment. 

111. COMPARISON BETWEEN MEASUREMENTS AND 

NUMERICAL SIMULATION 
A .  The Measurements 

A measurement bank was set up, providing the tem- 
perature, the voltage, and optionally the current intensity 
and the magnetic field in various cases of induction heat- 
ing processes. A detailed description of this measurement 
bank can be found in [2] .  

e consider here the heating of a stainless steel work- 
piece represented in Fig. 3. The upper part of the work- 
piece is placed inside a coil consisting of six irregularly 
spaced windings made of copper. The aim is to obtain as 
smooth a temperature distribution as possible inside the 
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TABLE I 
GEOMETRIC CHARACTERISTICS OF THE EXPERIMENT 

total length of the workpiece I 135" I 

distance between the 

stance between t 
and the 3rd windinn 

distance from the top of the 
workpiece to the 

TABLE I1 
ELECTRICAL PARAMETERS OF THE EXPERIMENT 

I capacitance I 0.0172mF I 
1 frequency I -10 k M  

upper part of the workpiece a couple of seconds after the 
voltage cutoff, in spite of the corner effect. 

The geometric characteristics of the induction heating 
setup are shown in Table I. It should be mentioned that 
the coil starts 12.5 mm above the workpiece. 

The power supply is a 10 kHz rotating convertor, and 
the heating time is 25 s .  The characteristics of the electric 
setup are summarized in Table 11. The workpiece is made 
of a nonferromagnetic stainless steel XSCrNi 1819 
(1.4301). 

Two thermocouples were spark welded on the surface 
of the workpiece, at the locations represented in Fig. 4, 
in order to ensure a good thermal contact. Temperatures 
as well as voltage were recorded on a calibrated plotter. 

B. The Numerical Simulation 
The mesh used for the numerical simulation is repre- 

sented in Fig. 5 .  We can notice that this mesh is very 
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Fig. 4. Location of the measurement points on the workpiece. 

refined in the area around the workpiece and the coil, 
while it becomes gradually coarser close to the boundary 
of the space area considered. Enlargements of the mesh 
on the workpiece and the coil can be seen in Figs. 3 
and 4. 

The timestep used for the computation was 0.1 s. The 
formulas providing the physical properties of the stainless 
steel and of the copper used in the numerical simulation 
are given in [2]. 

Fig. 6 shows the isotherms at the end of the heating and 
7 s later. The isotherms are equally spaced: every 100°C 
at t = 25 s and every 50°C at t = 32 s. 

Finally, Fig. 7 shows the isolines which correspond to 
the maximum values in the sinusoidal cycle of the mag- 
netic field inside the workpiece. These isolines are equally 
spaced: every 2 kA/m for the radial component H,, and 
every 10 kA/m for the vertical component H,. It is worth 
noticing how the radial component increases close to the 
upper end of the workpiece and in the area corresponding 
to the lower extremity of the coil. 

C. Comparison and Conclusions 
Figs. 8 and 9 below show a comparison between the 

temperatures obtained by numerical simulation and the 

Fig. 5 .  The mesh used to solve the problem. 

temperatures measured during the experiment, at the 
points shown on Fig. 4. 

A generally good agreement is found between experi- 
mental results and numerical simulation. However, some 
sources of experimental and data errors have to be con- 
sidered, as was extensively discussed in [2]. In this ex- 
periment, the difference between the experimental curve 
and the simulation during the first 10 s can be explained 
by the fact that voltage cannot be set as a perfect step 
function. About 2.5 s were necessary to obtain the 77 V 
steady, and thus the simulation provides higher tempera- 
tures at the beginning of the heating. This phenomenon 
can be observed as a difference in the slope during the 
first 2.5 s on Figs. 8 and 9. Another cause of discrepancy 
is the fact that we model a helical coil by an axisymmetric 
geometry, which is an idealization of the reality. More- 
over, the coil was produced without using high precision 
methods, and the gap between two windings is not con- 
stant. The width of this gap cannot be measured very ac- 
curately, and numerical simulation shows that moving a 
winding by a small distance can have a considerable in- 
fluence on the resulting temperature field. A further factor 
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Fig. 6. Isotherms inside the workpiece at t = 25 s and at t = 32 s 

of relevance is whether the workpiece is truly concentric 
within the coil bore, and aligned on the same axis. Other 
possible causes for discrepancy lie in the fact that the 
model itself is an idealization of the reality, and that its 
solution is obtained using numerical methods whose re- 
sults can never be exact. However, we do not believe that 
the latter causes weigh much in the total discrepancy be- 
tween the experiment and the simulation presented above. 

In conclusion, we can affirm that the results presented 
above are valuable. The case described in 111 and 121 re- 
lied upon the assumption that all the induction heating 
setup is invariant in one dimension. Such a geometry ob- 
viously does not exist in reality, but a model based un the 
invariance assumption provides results that are close to 
the experiment in the case of long induction heating set- 
ups with constant cross section. On the contrary, the 
model presented in this papcr deals with axisymmetric 
geometries which do exist in the reality. It enables us to 
tackle intricate workpiece and inductor setups, and puts 
forward interesting phenomena, such as corner effects, 
which could not be observed using the two-dimensional 

radial component vortioal owonent 

Fig 7 Isolines of the magnetic field inslde the workpiece at t = 
25 s: modulus of the radial component H,  and of the vertical component 
H: (kA/m) 

TemDerature evolution at Doint 1 

" 
0 5 10 15 20 25 30 35 40 

time (s) 

Fig 8. Compariron of the temperatures obtained at point 1 

code. The benefits of numerical simulation statcd in [2] 
have thus been extended to further situations encountered 
in industrial practice. 
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Fig. 9. Comparison of the temperatures obtained at point 2 
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