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Eddy-current melting of ferromagnetic bodies
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Applying the fixed point polarization method to the nonlinear eddy-current field, with the magnetization dependent on the
magnetic flux density and on the temperature, allows the field computation for each harmonic separately. Since the fictitious
permeability can be chosen to be everywhere within the free space, the matrices of the linear systems to be solved at each
iteration remain unchanged even when the nonlinear B-H characteristic changes with the temperature and the integral
equation of the eddy currents may be used. The inversion of the matrices corresponding to the harmonics is performed only
once, before the beginning of the iterative process. The time discretization of the heat conduction — diffusion equation is
done by Crank-Nicholson technigue and, at each time step, the temperature is obtained by the finite element method. The
thermal conductivity and the specific heat capacity depend by the temperature. For the solid-liquid transition, a fictive
specific heat capacity is adopted. An illustrative example is presented.
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1. Introduction

The eddy-currents heating of ferromagnetic materials
are frequently used for hardening the surface of various
objects or for their casting in a controlled thermal
environment. In both processes, high values of magnetic
flux density are needed which requires to take into account
the nonlinearity of the material B-H characteristic and its
dependence on temperature.

The nonlinear time-periodic eddy-current problems
are usually solved by pseudo-linear procedures where the
nonlinear relationship B - H is linearized and the material
permeability is corrected in terms of the magnetic flux
density B, based on various criteria [1]. The main
advantage consists in the usage of the complex
representation for computing the electromagnetic field at
each iteration. The convergence of the computational
process is not always guaranteed and, for strong
nonlinearities, this method could yield unrealistic results.
A direct “brute force” analysis follows accurately the
nonlinearity of the B-H relationship, but the time
necessary to reach the periodic steady state could be
prohibitive. Sometimes, especially when the “time
constant” is large, the stability of the “brute force”
procedure could be a problem. The Harmonic Balance
Method employs a Fourier series expansion of the
unknown quantities and yields large systems of nonlinear
algebraic equations whose solution requires a huge
computational effort [2]. An efficient method for the
solution of nonlinear eddy-current problems was presented
in [3], where the magnetic nonlinearity is treated
iteratively by the Polarization Fixed Point Method (PFPM)
[4]. Permeability value is chosen so that the PFPM
convergence is guaranteed. It is constant during the

iterative process, the nonlinearity being taken into account
by a fictitious magnetization which is corrected in terms of
the magnetic flux density at each iteration step. Thus, in
the numerical computation, the system matrix remains
unchanged during the entire iterative process. In a periodic
regime, the magnetization is expanded in Fourier series
and each harmonic of magnetic flux density is determined
separately from the distribution of magnetization and
electric current by solving only one linear system whose
number of unknowns is given by the space discretization
employed. The instantaneous value of the magnetization is
corrected in terms of the corresponding value of the
resultant magnetic flux density.

Modelling  the electromagnetic  heating  of
ferromagnetic bodies is performed in [5] by employing a
harmonic balance procedure and a hybrid finite element-
boundary element formulation which requires the solution
of a large system of nonlinear equations. An improved
method is presented in [6], where a coupled system of
nonlinear equations is constructed at each thermal time
step which contains simultaneously the distribution of
temperature and electromagnetic field quantities.

In the present paper, the eddy-currents melting of
ferromagnetic bodies is treated by using an extended
formulation of the method in [3], with the magnetization
depending on B and the temperature. The time-periodic
magnetization is expanded in Fourier series. For each
harmonic, eddy-current problems are solved, using
complex representation. The matrices associated to each
harmonic remain unchanged when the B-H characteristic
is modified in terms of temperature. Only the
magnetization is adjusted as the temperature varies. Thus,
the strong variations of the actual permeability in the
neighbourhood of the Curie point do not interfere directly



Eddy-current melting of ferromagnetic bodies 1209

in the proposed procedure. The convergence of PFPM is
guaranteed if the fictitious permeability is chosen to be
everywhere within the free space. Consequently the
integral equation of the eddy currents may be used [7].
The inversion of the matrices corresponding to the
harmonics is performed only once, before the beginning of
the iterative process. The time discretization of the heat
conduction - diffusion equation is done by Crank-
Nicholson technique and, at each time step, the
temperature is obtained using the finite element method.
The thermal conductivity and the specific heat capacity
depend on the temperature. For the solid-liquid transition,
a fictive specific heat capacity is adopted.

2. Polarization fixed point method
The nonlinear relationship H = F(B,0) is written as

H=vB-M 1)

where v =1/ is a constant, & is the temperature and

the non-linearity is hidden in the fictitious magnetization
M that has a nonlinear dependence of B and 4,

M =vB-F(B,0) =G(B,0). )

In particular, x can be chosen to be the permeability of

free space. At any value of &, G is a contraction with
respect to B, i.e.
||G(B‘)—G(B")||# < ,1||B'—B"||V (3)

for any B’ and B”. The norm is given by

_
o, = [ | [u-ovydod @
0Q

where T is the period and Q¢ the region occupied by

nonlinear media which may contain conducting bodies.
Starting with an arbitrary B, M and then B are updated
iteratively. The time-periodic M has a Fourier series
expansion in the form

M(t)= Y (M',sin(nat) + M", cos(net)). (5)
n=L3,...
For the numerical computation, we retain a finite
number N of harmonics,
M=M;=Y(M) (6)

where the truncating function Y is nonexpansive, i.e.

T
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For each harmonic n of the magnetization M we use
the complex representation

My =M'\+]M", ®)
and compute the complex magnetic flux density
Bn =B'n+]jB",. )
From B, , we obtain

B(t)= Y (B'ysin(nat)+ B", cos(nat))=L(My) . (10)
n=13,..,2N -1

It can be shown that L is also non-expansive. At
each step k>1 of the proposed iterative process, we

perform the chain of operations

Bk M|a( L Bk+l , (11)

with B* arbitrarily chosen. The composed function

LoYoG is a contraction and therefore MK (or Bk) isa
convergent Picard-Banach sequence.

Instead of systems of equations corresponding to
each time step in time-domain methods, in the above
method one has to solve only N linear complex systems at
each iteration. In order to further reduce the amount of
computation, we start with a small number N of
harmonics (even with N=1). Since the inequality (6) is
stronger when the number of harmonics is smaller, the rate
of convergence is now higher. When an imposed accuracy
is reached, we increase the number of harmonics until the
resultant field is accurately determined.

3. Eddy-current integral equation

An advantageous feature of the proposed method
consists in the fact that the constant x can be chosen to

be the permeability of free space, u = 1q. This allows the

construction of an integral equation for the current density
to be solved at each iteration. For two-dimensional
structures, this integral equation can be written, for each
odd harmonic of angular frequency wop_1=(2n-1)w,

in the form

&' ’ l r—
PI(r)+ o ja)2n_1J.QJ(r )In RdS

Mo 1
2 " )In=ds’ 12
o szn—lfgo Jo(r")In RdS 12)

. 1
—/;—2 ijn_lek . (V'XM(I"))|I"IEdS'+C|

where p and J are the resistivity and the current density in
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the conducting regions €, respectively, Jgy is the given
current density in the nonferromagnetic coil regions Qg , r
and r* are the position vectors of the observation and the
source points, Rer—r|, k is the
longitudinal unit vector, and C; is a constant for each

disjoint conducting region | which is determined by
specifying its total current. From each harmonic n of the
magnetization, we obtain the n"™ harmonic of the induced
current density by solving (11) and, then, the n™ harmonic
of the magnetic flux density is calculated from

respectively,

' Jo. (r")R
Bn(r):& k x In()R )RdS'+k>< —On( ) !
2 o R2 o R2
0
b VXM (') | g | (13)
R2

Qj

Using equation (10), we obtain the time depending

value of the magnetic flux density and we may upgrade
the magnetization with (2).

4. Numerical approach

To illustrate the formulation we choose only one
conducting region Q with a zero total current, when C=0.

Q is divided in | subdomains wjand Qg in Q
subdomains qq . Equation (12) is discretized as
0 « 02
PmSmIm +—Zﬂmi‘]i :——ZﬂquJOq
ot 4 ot
i=1 g=1
P |
= ymi M, m=12..1 (14)

o i=1

where pp, Sy, and Jy, are, respectively, the resistivity,

the area, and the average value of the current density of
the subdomain wp,, Joq is the imposed current density

in the subdomain @qq, Mj is the magnetization in wj,
and

L _Ho 1 s
B = jwm Lﬁ In—ds;"dSp
_Ho 2 Sl
=20 §awm §8wi R? InRdly, - di; (15)

4 1 ...
= In=dS,'dS
Bomq o J;,m L,Oq g 9°q Oom

- g% §8a}m §6w0q

H0 1y
= In = d;
ymi == me i’mi n—dlj’dSp,

R%InRdly, -l (16)

_Ho .
‘g%wm §6a)i @INR-D(R-np)dlIpd* (17)

Owj is the boundary of the subdomain w; and n; is the
outward normal unit vector on dwj. The system (14) can
be written for each harmonic n in a matrix form as

o L)L) oo
—o/n g N3 A’0n A’Mn

where £ is the matrix of Snj, § is a diagonal matrix
with the entries Sqym = PmSm /@, m=12,...,1, J',y and
J",, are the column vectors of the real and imaginary
parts of the complex current density J,,, A'gn, A"gn and

A'Mn. A'mn are, respectively, the column vectors of the

real and imaginary parts of the complex vector potentials
integrated over the respective subdomains wy,, Ag, due

to the imposed current density and Ay, to the
magnetization, i.e.
Q
Aon = Z BomgJon,g (19)
g=1
I
AMn:Z?mi "My . (20)
i=1

Agn is the same for all iterations, while Ay, is to be

corrected at each iteration.
After solving the system (18), the complex flux density
is obtained from

|
Ho '
By=—"—")> Jnij In Rd/;
n o E I"I,I§aa)i 1
Q
Ho '
-20% In Rlf
o0 Z Oan§aqu q
g=1
|
Ho R .
——kx —(Mp;-d'). 21
o Eg@¥<nﬂ.) (21)

The average value of the complex flux density in the
subdomain @y, is computed as

Bn,m = —Si
m

[ l —
[ZJ’miJn,i +3 CmiMni |t Bonm  (22)
i1 i-1
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where Bopy is the flux density due to the imposed
current density, the same for all the iterations,

Q
1
Bon,m :_S_ Z?quOn,q (23)
m g
g=1
and

_Ho .
Cmi =) §awm §awi INR(dImdl')  (24)

the latter being expressed in terms of the dyads
(dIydZ;") . The numerical approximation of By, ,, due to
the averaging is non-expansive and, thus, preserves the
convergence of the iterative process, while the system (17)
corresponding to the integral equation (12) could perturb
the convergence in the case of large differences in
differential magnetic permeability. At any time t, the flux
density is obtained with (10), the magnetization is
corrected with (2) and, then, used for computing the new
complex expression in(7), with

.
My'= ngo M(t)sin(nat)dt

W 2T
My"=— jo M(t) cos(net)dt . (23)

5. Thermal diffusion equation

The solution of the nonlinear eddy-current problem
allows the determination of the specific power losses p.
Then, the temperature distribution is obtained by solving
the thermal diffusion equation

(ﬂV 49)+ Cy aaltg p (24)

where A is the thermal conductivity and c, is the specific

heat capacity of the ferromagnetic material. The mixed
boundary condition imposed is

zg—‘gm(e G) =0, (25)

where « is the thermal convection coefficient and ¢, the

external temperature. Employing a Crank-Nicholson time-
discretization technique, from the temperature distribution
at a time t one obtains, step by step, the temperature
distribution at t+At. The corresponding new
characteristic B-H, thermal conductivity and specific heat
capacity are obtained. For the solid-liquid transition, a
fictive specific heat capacity is adopted:

c'=—, 26
0 (26)

where s is the latent heat and 66 is a temperature
difference assumed for the transition. Finite element
method is applied to solve (2) at each time step.

6. Numerical examples

We consider a long coil of 15x40 mm in cross
section, carrying a sinusoidal current of 5,000 A-turns
(effective value) at a frequency of 5 kHz, which induces
currents in a long ferromagnetic bar of rectangular cross
section of 20x40 mm, as shown in Fig.1. The initial

temperatur 9°C where  the bar has
&y =4xJ0 J/(K m3) A=46W/(K-m),
p=10" a. m, a= 20W/( -m ) on its top and bottom

surfaces, and a=04W/(K- m2) on the wvertical
surfaces. The Curie temperature is 780°C and the H-B
characteristics are given in Fig.2. The melting temperature
is 1300°C and the latent heat is s =2.142-10°J/m°. A
field line sketch at t= 0.9s, corresponding to a 90° phase of
the fundamental harmonic, is shown in Fig.l. The
temperature across the bar’s horizontal plane of symmetry is
plotted for various times in Fig. 3. The increase with time
of the minimum, maximum and average temperatures of
the bar is given in Fig. 4. The time evolution of the solid-
liquid transition zone is given in Figs.5.

Fig. 1. Cross section of a the bar
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Fig. 2. H-B characteristic for various temperatures.
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feeees [T o W . 7. Conclusions
700 | An efficient method is proposed for the analysis of the
8 O 600 _ ’ eddy-currents melting of ferromagnetic objects. The
_@ : ~sL 500 -~ proposed method requires a computational effort which is
\g a00-— -~ substantially reduced as compared to existing methods.
g 200 T =0.9s5 We needed only a CPU time of 3 min to compute the time
; 209 || 7T E9TS evolution of the temperature given in Fig. 4, using a 2.128
. t=20.2s
s 100 — GHz processor personal computer. The method may be
: iQaheaess * : used for the analysis of the casting in a controlled thermal
-10 5 o 5 10 environment. In this case, the magnetic potential Ag, and
x(mm) the magnetic flux density Bgpm, due to the imposed
Fig. 3. Temperature for y= -1.7mm. ) , ] .
current density are time depending values, because the coil
1500 moving. The thermal boundary condition is also time
8 1300 | depended.
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