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A FORMULATION FOR 3D MOVING CONDUCTOR EDDY
CURRENT PROBLEMS

D. Rodger, T. Karaguler, P.J. Leonard
University of Bath, Bath, Avon BA2 7AY

A 3D finite element formulation for moving conductor
problems is outlined. Upwinding is shown to be important at
high values of Peclet number.

Introduction

Many devices, for instance, electromagnetic launchers and
linear induction machines, involve conducting parts which move.
The geometry of these machines is often such that full 3D
computer models are required. In this contribution we describe a
new formulation for 3D eddy current moving conductor problems
and show how the technique of upwinding, borrowed from the
field of fluid flow, is very important in achieving accurate
numerical solutions. The technique is implemented using standard
3D finite elements.

We only consider the type of moving conductor problem in
which the moving member is invarient in the cross section which
is normal to the direction of motion. This allows motion to be
taken into account using the usual Minkowski transformation,
which leads to a steady state solution for constant speed moving
conductor problems. All other geometries would lead to a full
time transient analysis. [Eddy currents can be generated in the
same region by a combination of time varying source fields as
well as by motion (‘transformer' and ‘flux cutting' emfs). In this
paper we only deal with the latter.

Theoretical Development

The A-y method has been used for some time for solving
3D eddy current problems which are either harmonic or transient
in time [1-4]. The problem volume is partitioned into
conducting and non-conducting regions. Magnetic scalars are used
to model fields in non-~conducting regions, reduced magnetic
scalars [5] in regions containing known source currents and total
scalars elsewhere.

Eddy current regions are modelled using the magnetic vector
potential A, with [2,4,6] or without [1,3] an auxiliary electric
scalar potential V. The regions are conveniently joined together
at the common interface by invoking the continuity of Hxn and

B.n.
Moving_conductor formulation

In the laboratory reference frame, the moving region electric
field has two components:
E-uxB-gradv (1

In the above, U is the velocity of the region with respect to
the laboratory and V is the electric scalar potential.

Fields in a moving rod

The two components of E can be readily recognised from
fig. 1, which shows a conducting bar moving in the x direction
through a constant z directed magnetic field. There is a force
on each charge of q coulombs given by: F = qu x B. This
leads to a displacement of mobile charges as shown.  These
charges give rise to an electrostatic field shown as ES which is
represented in eqn (1) as — grad V.

Using B = curl A, we can obtain:
curl 1 curl A =0 (u x curl A - grad V) 2)
3

From div J = 0:
dive (uxcurl A - grad V) =0 3)

Eqns 2 and 3 do not define a unique system. The
Helmholtz theorem states that a vector field is unique if its curl
and divergence are known throughout a volume, together with the
normal component on the boundary. Here we choose div A=0
throughout and A.n = O on the boundary. The condition
div A = 0 can be imposed on eqn (2) by means of Lagrange
multipliers [1] or by a penalty technique — the latter is used
here.

Numerical Implementation

As usual, the Galerkin weighted residual technique is used to
find an approximate solution to egns (2) and (3).

Equation 2

This leads to a standard set of equations:

Il curl N.curl A + N.(0(d x curl A) - grad V)dQ
’

- f N.(Lcurl A x n)dl =0 (4)
w
N are the shape functions.

In order to impose div A = 0, we add the term
[or div § div & a0

to eqn (4), where o is a large number (usually of the same order
as 1). Best results are obtained if this set of constraints is

singular [7], therefore numerical integration one order less than
that which would lead to an exact evaluation of these integrals
should be used (order 1 for first order elements).

Incidentally, a different argument can be used [8] to show
that the addition of the term

[N.graaq_ atv Ayan
Ko

leads to the same results, if o = 1__
Ho

The terms involving the velocity u require special treatment,
upwinding, as outlined below.
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Equation (3)
Since
JN div J = fNj.E dar - Igrad N.JdQ,

from eqn (3) we have:
fNa(t_l x curl A - grad V).ndl'

-Igrad N.o(u x curl A - grad V)dQ = 0

The surface integral is important as it yields J.n = 0 as the
natural boundary condition on the inside of the conductor.

We need to include V in this formulation as this models the
electrostatic field which is the mechanism for controlling the flow
of current within the conductor and obtaining J.n = Q on the
conductor—air interface surfaces. Without the electrostatic
component of E (given by — grad V in eqn (1)), we would have
to try and impose En = 0 on u x B at these surfaces.
Obviously this is impossible in the general case without
introducing erroneous constraints on B.

Upwindin

When the Galerkin technique is applied to eqn (4), large
-ve terms are generated on the diagonal of the final global
matrix. This typically causes oscillations in the solution and very
poor results when the Peclet number, p = g_l'g_xg, is greater than

1.0 (h is the average element length in the direction of the
velocity).

This problem has long been familiar in fluid dynamics. The
solution is known as upwinding. A finite element scheme which
allows different degrees of upwinding in each moving conductor
element has been developed for fluid flow [9].

Usually the integrals of eqn (4) are evaluated using Gaussian
quadrature, sampling at the normal quadrature points. Using an
upwind scheme, different sampling points are used for evaluating
the velocity terms only of eqn (4) as follows, for element e:

jﬁ.(o(ﬁ x curl A))dQ 2
e
T N(e).(o(u(o) x curl A(e)))I(0O)W
e

u(o) is the velocity evaluated at the origin of the isoparametric
co-ordinates of the element, J(0) is the Jacobian of the
isoparametric transform, W equals 8 for a 3D element and 4 for
a 2D element. The location of point e (this is a local
co-ordinate, -1 £ ¢ £ 1) determines the degree of upwinding.

The optimal position for ¢ has been shown to be [9]:
e =cothp -1

4

This scheme is very easily implemented, some earlier
schemes were rather complex.

Results
2D test problem jllustrating upwinding

It is interesting to demonstrate the value of upwinding. A
very simple test problem which can be solved using a Fourier
series analysis is shown in fig. 2. This involves a moving iron
rotor, a p of 2000 leads to high values of p. Results for 2D
finite elements with and without upwinding are shown on fig. (3).
The drag force for the no upwind case is poor (5 m/s represents
a Peclet number of about 125 for the mesh used).
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fig. 2 2D test problem with steel rotor
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3D problem - filamentary coil moving over an aluminium track

This problem is of interest in MAGLEV advanced transport
system design. The coil would normally be superconducting and
would, of course, carry DC current. The dimensions are shown
on fig. 4. Lift and drag forces are shown on fig. 5. Also

shown are forces obtained from a Fourier transform technique
applied to a conducting plate of the same thickness and infinite
The agreement is probably reasonable.

extent.

fig. 4 Rectangular coil moving over an aluminium rail
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fig. 5 Forces on the rectangular coil
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Conclusions

Problems involving 3D eddy currents generated by velocity
effects have been investigated. The scalar V is needed inside
conductors when using this formulation. It is well known that
time varying eddy current problems can be solved using only the
vector A (without V) inside conducting regions, linked to
elsewhere. In this case we rely on the J.n = O condition being
weakly enforced [3] on the inside surface of conducting regions.
This condition will remain approximately true for problems in
which the eddy current effect is predominantly due to time
variation of fields, with a small component due to velocity. An
earlier paper [10] illustrates results for this case. This is valid
only where speeds are relatively low, and although more economic
than the present implementation, should be used with extreme
caution.

Even when using upwinding, it is possible for the conjugate
gradient technique to fail to converge. This has been found for
Peclet numbers of about 6000 in 3D problems. At this point,
the only remedy is to refine the mesh, which is likely to be too
coarse from other points of view (accuracy, skin depth).
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