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Numerical Simulation of Continuous Induction Steel Bar End Heating with Material
Properties depending on Temperature and Magnetic Field

U. Liidtke, D. Schulze
Subdepartment of Electroheat
Technical University of Ilmenau, D-98684 Ilmenau, Germany

Abstract - The continuous induction steel bar end heating is
investigated by means of numerical calculations. A numerical
model is used for the calculation of the three-dimensional eddy
current and the heating process. The differential equations de-
scribing the electromagnetic field are integrated as an A-¢ for-
mulation. For the calculation of the temperature fields the
Fourier’s heat-conduction equation is used. On principle for the
numerical solution the finite element method is used. The effect
of material properties depending on temperature and magnetic
field are taken into consideration in an iterative manner. The
results of simulation correspond well to experimental data and
give good transparent of the process. The computing time,
however, is too long for an effective realization of optimization
processes.

I. INnTrRODUCTION

The continuous induction steel bar end heating is used to
heat up the bar ends for forging or hardening. The bars are
moving from the left to the right (see fig. 1). The heating
process should be as fast as possible. The bars leaving the in-
ductor should have a special temperature distribution de-
pending on the following process. For optimum inductor de-
sign the electric losses (heat sources) in the steel bars are im-
portant. The heat sources and the velocity of the bars deter-
mine the temperature of the last bar.

Therefore only a three-dimensional numerical model for
the whole inductor is very useful to obtain the eddy current
distribution in the steel bars and the resulting temperature
distribution.

1I. MATHEMATICAL MODEL

Assuming that all field quantities are sinusoidal with time
we can work in the complex domain. Using the magnetic

vector potential A and the scalar potential ¢ for the

magnetic field we have to solve following well known
differential equations [3]. [4], [5]:

[ - T - .

rot—rotA — grad—divA + jw1<(é+gradq)) =xE (1)
H H -

divgradg + divA = 0 2)
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Fig. 1. Finite element mesh of the inductor with steel bars

(without air).

Where p is the permeability, « is the electrical conductivity of
the material and w is the angular frequency of the generator.

The calculation of the temperature field is effected on the
basis of Fourier's heat-conduction equation [1]:

dNep?d -
—(—gffl = div(Agrad®)+ p, - ¥ grad(c p®) 3)
Where A is the thermal conductivity, c is the specific heat and
p is the density. The temperature O depends on both the
location (X, y, z) and the time t. .

The velocity vector field ¥ makes it possible to consider
continuous feed processes. Because the velocity of the mov-
ing bars is constant the problem becomes steady-state.
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Fig. 2. Finite element mesh of the inductor with steel bars.

It shall be possible to use material properties depending
on temperature and magnetic field in the following way:

u o= f(H,9)

kK = f(®)

c = f(®) 0)
p = f(®)

A o= f(O)

TII. NUMERICAL SOLUTION

The numerical calculation of the electromagnetic field and
the temperature field are possible by the finite-element
method using the Galerkin procedure for solution of
differential equations (1), (2) and (3). The necessary
boundary, symmetrical and interface conditions are taken into
account.

An exhaustive description of the procedure for the A-@
formulation is contained in [3] and [5].

The finite-element method requires the volume element
discretization of the bounded three-dimensional solution do-
main. At the nodes thus produced, the discrete values of the

veotor potential A and in the electrically-conductive zones,
additionally the scalar potential ¢ are sought as unknown

field quantities. The problem of the three-dimensional mag-

Fig. 3. Isolines of magnetic vector-potential in the plane of symmetry.

netic field is thus reduced to the solution of a system of linear
algebraic equations. The matrix is symmetrical, and sparsely
occupied. A discretization adapted to the specific problem
leads to grid networks containing up to 100,000 nodes or
elements. A large matrix is produced, requiring storage forms
that need small storage space. For the solution of the system
of equations, the incomplete Cholesky decomposition
conjugate gradient method is used as an iterative process to
reach the solution.

The calculation of the temperature field is also carried out
with the help of the finite element method (Galerkin
procedure) on the basis of differential equation (3). Only the
grid network inside the bars is required. On the outer surface
area, heat losses due to convection and radiation are taken
into consideration. The calculation of the temperature field of
the moving bars is effected on a fixed grid network.

Because of the continuous movement of the bars from the
entrance the geometry of the magnetic field problem is
changing permanently. So for every time step it would be
necessary to generate a new grid network and to compute the
electromagnetic field again. Because of a long duration of this
procedure an assumption was made that the bars are moving
forward in steps. In this way the following bar occupies the
place of the one going ahead.

For the discretization of the area for which the solutions is
sought, a semi-automatic process using macro-clements is
used [2]. Macro-elements are hexahedral, prisms and
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set the initial fields for permeability

and temperature

s =1, i=l.n
¥ = Ogyy, i=Ll.n
)
put permeability in memory
Howpi = My»  i=L.n

{

calculation of the electromagnetic field:
Hi_(ﬂr,K(ﬁ))ﬁ i=L.n

and the heat sources:
pVi(Hi)’ i=1.n

calculation of the temperature field
(over the time with moving bars
to the continous state)
Bi(py,A(8),p(¥)), i=L.n

T

| calculation of the new permeability:
HNEW (Ha 0)9
max. changes:

Hvaxe = max(Uorpy — Hnewe ) 1=1..n
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stop test
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Fig. 4. The iterativ approximation of the material properties depending on
temperature and magnetic field.

tetrahedral that are automatically meshed and then put
together for the total discretization. The required manual
work is limited to the definition of the macro-elements. Grid
networks with more then 100,000 elements can, using this
process, be constructed without any problem. The macro-
element concept does not exclude input faults completely, and
for this reason, the resulted discretization is tested for the
meshing faults using a special program.

Figure 2 shows the finite element mesh used for calculating
the electromagnetic field (112,362 elements and 112,716

Fig. 5. Distribution of the magnetic permeability on the steel bars surface.

nodes). Due to the symmetry of the arrangement, only one
half of the computation area is meshed. The calculation is
carried out on an efficient HP 9000/750 work station with 256
MB main memory.

The effect of material properties depending on tempera-
ture and magnetic field is taken into consideration in an
iterative manner (see fig. 4).

The permeability as a function of magnetic field strength

|H| and temperature ¥ is given by:

2
1789 ) 1- -2 |41
750

,Ur(lHI’ﬂ): (2,4114’73_1'1(,HD—IJ'(I~-7~152(-)2—2—]+1

! )
|H| <5002
me 9<750°C
||z 500~
©#2750°C].
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Fig. 6. Distribution of eddy current.

IV. ResuLts

The parameters for computed system are the following:

Bar diameter = . 30mm
Frequency = 2kHz
Inductor current = 2kA
Inductor voltage = 599v
Input power = 344kW
Inductor losses = 7.6kW
Inductor efficiency = 78%
Reactive power = 1148 VAr

Fig. 3 shows a representation of the magnetic vector po-
tential in the plane of symmetry. The areas of high current
density are surrounded by the isolines of vector-potential.

The eddy current distribution (real and imaginary part) is
illustrated in fig. 6. One can see eddy currents are relatively
high in the region of high permeability (fig. 5) and near the
coil conductors.

Fig. 7 shows the temperature distribution on the steel bar
ends surface. The bars are moving from the left to the right
and so the temperature is growing. The bars on the left hand
site with temperatures below 750 °C have a high permeability
and strong heat sources are produced by the magnetic field.
That’s why the temperature increases in the first bars very
fast.

With the help of the numerical model we get the current of
the inductor by given voltage or the voltage by given current.

Fig. 7. Distribution of temperature in the steel bars.

V. SummARY

The above numerical examination shows how it is possi-
ble to calculate a special inductor for bar end heating when
material properties depend on temperature and magnetic field.
Because of the special inductor design only three-dimensional
calculation can provide correct results.

The model gives the temperature distribution at the end of
the process that is very important for the following processing
e.g. hardening or forging. With the help of the numerical
simulation are parameter studies very useful. The needed
time, however, for meshing and iterative computing of one
example is very high (about one week). So for practical aims
it is necessary to reduce strongly both the manual work
expenditures and computing time.
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