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Abstract -~ The volume 1ntegral equation method is
adopted to analyze three dimensional nonlinear eddy
current problems in induction heating. The derived inte-
gral equation is solved effeéctively by adopting the
relation between the surface magnetic field and the
magnetic fluxes passing through the metal. To check the
adequacy of the analyzing method, an eddy current prob-
lem is analyzed. Computed values are compared with meas-
ured values. Both are in reasonably good agreement.

1. Introduction

When a ferromagnetic metal is heated by induction,
permeability of the metal is changed considerably by
the magnetic field. In order to analyze the induction
heating problems precisely, a three dimensional non-
linear eddy currént analysis is studied, in which the
saturation effect of the permeability is considered.

The integral equation method has been adopted for
analyzing  eddy current problems with infinite domains
[1], but applications to the nonlinear analyses have
been dealt with in only a few papers [2,3].

In this paper, the following items are presented: the
formulation of eddy current by an integral equation, an
effective method to solve the integral equation and an
application to induction heatlng problems.

2.  FExpressions for electromagnetic fields

Electric field IE and magnetic field H in a conductive
medium with permeability &, permittivity £ and con-
ductivity ¢ satisfy Maxwell's equations.

a0 _ OB
UxH =30 (D, VxB=- o3 @
7B = 3), 7@+ [ o dt) = 0 (4)

with the magnetic induction B = #H and the electric
displacement D = € [E.

Periodical electromagnetic fields can be expressed by
Fourier series with a fundamental and harmonics. If the
fields are sinusoidal ones of angular frequency @, time
derivative and time integration in the above equations
can be replaced by jw and 1/jw , respectively.

The equations for the fundamental can be modified as

VXH - jwedk = (jwe-jweo +0)E {5)
VxE + Jouel = - jw (B-u ) (6)
V-uol = - V- (B-uoff) (7
Vgelf = - V(e-ece+0/jw)E (8)

with the permittivity &o and permeability Mo of a
-vacuum, The equations for the harmonics can be written
in the same manner,

The equations from (5) to (8) indicate that the medi-
um can be replaced by currents, magnetic currents,
magnetic charges and electric charges whose densities

i, Gm, ©n and p are given by the right side of the
above equations, that is
i=(jwe-jw eet+ta)E (9, in= —jo (B-u o) (10}
Pa==V- B-udl) (11). p=-V-(e-eotc/jw)E (12

Given the currents and charges, the following equa-
tions are established at any fixed point F} [4].

1 . N 1
|H—4—7? IU(—J(A)&‘B umtl)ﬂLXVl/H—uapm Vv
Ao b 13
t i S e VY 88 (13)
o1 , . 1 v
B= o ) Gioned bHiaxVd+ — o V¥)d

= [ sy ds (14)

7
Y = exp(-jo Jeores r)/r {15)

where V is the volume of the medium, S is the surface
of V, and r is the distance from a variable point
P(X,Y,Z) within V to the fixed point Pj(X ,Y ,Z )

VX -X)2+ (Y, -Y) 2+ (Z,-2)2 (16)

with the global coordinates X, Y and Z. The last terms

in (13) and (14) are added because the magnetic and

electric charges on the surface are given as [5]
ons=@B-pol)s it (17), ps=(e-co+c/j)Bs i (18)

where the subscript S denotes the surface of the medium
and m is the unit normal to the surface.

r =

3. Formulation of the magnetic field on a metal surface

The conductive medium is divided into two parts: one
is a heating coil and the other is a metal plate to- be
heated by induction.

The electromagnetic fields in the metal are attenu-
ated more rapidly as the frequency becomes higher. In
ordinary induction heating, for high heating efficien-
¢y, the frequency is chosen so that the skin depth is
much less than the metal thickness [6]. Consequently,
the currents and magnetic charges inside the metal can
be assumed to exist only at the surface of the metal.

‘

heating coil

Fig.l Setting of the coordinates

Setting local coordinates x, y and z whose z axis is
perpendicular to the surface of the plate as shown in
fig.l, obtaining the magnetic field M at an 1ntérna1
point Pj from (13) and setting the field H = 0, we can
get the following 1ntegra1 equation.
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(Msz"Ms1)Ja2J = - He;
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where the subscripts 1, 2, e and j denote the surfaces
of the plate where z=0, z=d, the side wall at the edge
of the plate and the value at Pj, respectively, Lle is
the contour of Sz and Hcj is the magnetic field pro-
duced by the heating coil. The last two terms in the
left side of (19) are added because the integrals con-
tain singular points at Pj. The magnetic field produced
by dim is not included because the region to be analyzed
is much smaller than the wave length.

The surface currents sy, [s2and surface magnetic
charges Msi, Msz, Mse are obtained as follows.

(19
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I, and L[s2 are obtained from (1) as

z i A 3
oo = [ ddz =ifie x M, + 00 x Hey (20)

4
[ 4 dz = me x Bse + mu X an

zi

€52 =

by assuming that the displacement current is negligibly
small and that the magnetic field H in the metal are
attenuated rapidly, that is, 18H,/87>13W:/3y| and

{aH./8z>>180/8%! , where the subscripts %, y and z
denote the components of H. Msi , Ms2 and Mse are obtain-
ed from (11) and (17) by making use of (3) as

z
Msq = jepmdz+ R nst

= JZLV((B—/J.BIH) dz + (B‘ua“{)svl‘;ll

_ 748 B pelly) 8 (By-prolly)
- [a{ = + oy } dz
- Betprale;

(22}

a4
Mse = f pmdz +Pmse
’ 8 (B,- 1 oH,),

4.3 (Ba-ptellx)
= - d
f g Ty .
+ Bzi~prelz

= j:pmedz

{23)
MS&

= [T pal)F ¢ Bompeby) Pdzl e (24)

. A A .

where ¥ and y are the unit vectors.,
Setting z =d/2, introducing the magnetic flux passing
through the metal plate ¢ defined as

472 d
$1=f B @ (15), $2 = Bodz 26
B: = Bx¥ * Buy. @n

and assuming that Hj = O and that B >>#eH, the equa-
tion from {20) to (24) reduce to

Ts: = mt x Hso (28), fse = m2 x Hee 29
Ms1 = ~Ts (30), Mse = ~Vs- o2 (31)
Mo = ((#\‘*(#Q)e'l'(\le (32)

where Vs is a surface vector operator

-_e—- A .9___-_ A 33)
s 5% Xf“ey y (

respectively,

which works just like the ordinary vector operator V.

Dividing S2 into small elements and assuming that the
surface currents Ls; , Iqa are constant in each element,
we can discretize (19) as [7]

1 Lo XWae _ L, &
Ezlfgsei PO dS: -\Z ([belﬂ?:
r M2 ; T
—— Pooiun . i — cj’dﬂ/j
e szu,; r3kd' b+ 2A8; Auﬁ
=~ e B4
where
[ = fe x sz + i1 x s, (35)
o = lﬁz; x Hse - i1 x Hs: (36)
e = (Iilexq}e X Fi)/ e 37
Ts = (2 x g2 ~m1 X $1)/ 1o (38)

the subscript i denotes the i-th element, AS: and AL
are the surface area of the i-th_element and the con~
tour of ASij, respectively, and Ec is the average of
Lc over the neighboring two elements.

Eq.(34) is applicable even in the case of metal bil-
lets or thick metal plates; in this case, as the mag~
netic field Hs: and the magnetic flux ¢b, are regarded
as zero, we can let o = 0y and Lc = Ha.

The surface magnetic field Hs may be formulated also
by using (14), but it has not been investigated yet.

3039

4, P-Hs curve

When we solve (34), we need the relation between Hs

and ¢. We call the relation @-Hs curve.

An apparatus for measuring ¢ -Hs curve is shown in
fig.2. A ferromagnetic plate ring whose thickness d is
more than twice the skin depth is magnetized by an ex-
citing coil carrying a current with the same frequency
as that flowing in the heating coil.

LD an Integrator
gxa:.;ing . Flux
n Cot ——— ¢
5.0 cm
- s hing Phase
earc
! Phase
Coil Meter 4
d4=0.32 cm

Magnetic Field
Armeter —0 g

Fig.2 Apparatus for measuring ¢ -Hs curve

Taking Hs as the reference phasor, a pair of measured
¢p-Hs curves of a low carbon steel plate is expressed
with effective values of Hs [A/cm] and ¢ [Wb/cm] as

) 10 .
b= el T gy ¢ 0-4) B (b/enl (39)
PR 10 +0.7) Hs TWb/em]  (40)

3.83 + 0.175(Hs!

" where the subscripts r and i denote the real and imagi-

nary parts of the complex values, respectively. <¢rand
; are obtained by measuring phase difference & between
the magnetic flux ¢ and the surface magnetic field Hs.
The ¢-Hs curves are shown in fig.3 where the solid
lines are obtained by means of a numerical analysis [3]
using the B-H curve given as
R - 100002 H (1)

10+ 0S8 “

[¥p/em?}

where B(t) and H(t) are instantaneous values at time t.
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Fig.3 ¢ -Hs curve

¢ is expressed with the components of Hs as
(Hx)r (Hx)i (H-x)i

""“"S')Hs) d"}Hs: b ‘”d)r)Hsl Yo ¥
(Hy) ro_ ’(Hy) i . (Hy) i . (HU) r A
AT A I AL T A e
{42)

5, Analysis of eddy current problems

Consider a cubic steel billet around which a square
heating coil is set as shown in fig.4, Conductivity of
the steel billet is ¢ =50,000 S/cm and the ¢P~Hs curves
are expressed as (39) and (40). The heating coil con-
sists of 16 turns and it carries a sinusoidal current
with effective amplitude of 25 A whose frequency is
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25.6 kHz. This frequency is high enough for the cur-
rents and magnetic charges to be assumed to exist only
at the surface.

We divide a part of the billet surface into 100 ele-
ments by straight lines parallel to the X, Y and Z axes
as shown in fig.4 and fig.5, and determine Hs by solv-
ing (34) utilizing the symmetry of the shape.

Fig.4 A steel billet and a Heating coil

In obtaining Hs, the lumped circulating current I [7]
along the periphery Al of each element A4S as shown in
fig.5 is introduced in order to insure zero divergence
of the surface currents Ia and Ib (La=Ib in the case
the billet) defined by (35) and (36). [a is expressed
by I as follows.

CU-10AL | (-1 AL

lx= R57as, ASerASs “3)
C(Je-To) Al (Ie-lo)Als

A Y ASeTASa (@4)

where lax and l.y are the components of II..
By Newton-Raphson method, four iterations are enough

for the calculated values to converge.
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Fig.5 Setting of lumped circulating currents

The power densities of the elements calculated from
Hs are shown in table 1.
The power density is given by the Poynting vector

P = [Bs*xHs + BsxHs*1/ 2 = Re Hs-Hs* (45)
where the superscript ¥ denotes the complex conjugate
and Rs is the real part of the surface impedance Zs [8]

Zs = Es/Hs = -jw ¢ /Hs (46)
In order to examine the accuracy and adequacy of this
method, temperature rises of the elements of A and B

shadowed in fig.4 are calculated from the power densi~
ties and compared with experimental data. The results

are shown in fig.6. The experimental data are obtained
by measuring the temperature of a 0.32 mm thick steel
plate. In calculating the temperature, it is assumed
that the heating time is 1 s and that the steel plate
has a specific heat of 0,44 J/g."K and a density of
7.86 g/cm?, The heat conductivity is not considered.

Table 1 Power density distribution P W/cm?

Position ( Y direction )

1 2 3 4 5 6 7 8
~1119.8219.85 {9.90 [9.97 | 10.1]10.2] 10.3110.5
] 219.5219.54 19.58 19.6516.7419.8519.99 ¢ 10.1
13 18.92 18.93 §{8.96 {9.01 [9,08 [9.1719.299.42
=4 18.04 18.05 {8.0618.08 18,11 18,17 8.248.34
Sl516.93[6.92 {6.91 16.89 |6.87 | 6.86] 6.88 ] 6.93
a6 [5.64 |5.62 15,58 | 5.52 15,44 15.34]5.2615.22
87 14.25 14.22 {6.16 | 4.06 [3.92 [ 3.74 ] 3.52 ] 3.30
812,63 12.50 [2.53[2.42 [ 2.26 | 2.06|1.72]1.28
~1111.2011.17 [1.13[1.05{0.9510.81}0.64]0.52
|2 [0.51 [0.50 |0.48 [0.45[0.41 [0.38] 0.38
—|310.27 [ 0.26 [ 0.26]0.26 ]0.26 | 0.29
54 0.14 10,14 10.15/0.16 | 0.19
b 510.07 |0.08 {0.09 [ 0.12
o 6 |0.03 |0.04 |0.06
L 7 10.01 [0.02

8 10.00
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Fig.6 Temperature rises of the steel billet

6. Conclusions

An effective nonlinear eddy current analysis is pro-
posed by adopting the volume integral equation method
which is found to be useful for analyzing induction
heating problems. In the analysis, the saturation ef-
fect of the permeability is taken into account.

The derived integral equation can be solved effec—
tively by adopting the ¢ -Hs curve instead of the B-H
curve. The ¢ -Hs curve can be obtained either by an
apparatus similar to that for measuring the B-H curve
or by numerical analysis using the B-H curve,

In order to examine the adequacy of this method, cal-
culated values of temperature rises are compared with
measured values. Both show reasonably good agreement.
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