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Eddy Current and Temperature Field Computation
In Transverse Flux Induction Heating Equipment for
Galvanizing Line

Zanming Wang, Xiaoguang Yang, Youhua Wang, and Weili Yan

Abstract—This paper describes the 3-D eddy current FEM
computation of transverse flux inductors used for heating strip in
galvanized steel productions. The adopted mathematical model
consists of a differential equation system for the steady-state eddy
current problem and a Fourier's thermal conduction equation for
moved media. The finite element method is applied in conjunction
with the Galerkin method. The simplifications and boundary
conditions required for an efficient solution are discussed.

Index Terms—3-D FEM, eddy current field, temperature field, I Galvanizing
transverse flux induction heating.

TFIH Equiptnent

|. INTRODUCTION ) . o o -
Fig. 1. Concise construction figure of steel galvanizing making line.

NDUCTION heating processes for heating galvanized
steel trips provide significant technological, economic ar -
ecological advantages in comparison with conventional oil-
gas-fired furnace: fast heating rate, instant controllability, hic
efficient and minimal environment pollution. To achieve i
completely uniform temperature across the entire strip width
consequently a critical factor in the development of a practic
TFIH. The design of the TFIH equipment necessitates accuri
process performance prediction for the thermal characteristic
A 3-D FEM eddy current and temperature field simulatiol 4
is used for developing such equipment. It is essential to obt:
a clear understanding of the induced current (eddy current)
the workpiece and further more the power losses in temperat
field. With the developing of computer and numerical computi
tion techniques it is now possible. Fig. 1 shows the constructi
of steel galvanizing line and Fig. 2 is our experiment model «
the TFIH equipment.

Fig. 2. Experiment model of the TFIH equipment, where 1 is the strip before
heating, 2 the strip after heating, 3 yoke, 4 coil, 5 power wire, 6 middle frequency
Il. M ATHEMATICAL MODEL power, and 7 cooling water pipe.
The problem considered here is that of eddy currents at low
angular frequencies.. The displacement current is ignoredis described by means of the complex magnetic vector potential
Magnetic permeability. and electric conductivity: are as- A and a complex scalar potential
sumed to be constant over longer periods of time (several cycles
Aoy it ; 1 . S .
of theT field-exciting vqltages). 'Th.e |n.flue.nce of the movement rot —rot A + jwr (A — grad </>) =rkE,. 1)
of strip to the magnetic field distribution is very small and can M -
be neglected. Lo o ]
The mathematical model for this sinusoidal steady-states 1S the electric field strength impressed by the power

eddy current problem results from the Maxwell equations arf@urce- Moreover, the requirement of a source-free eddy current
density must be fulfilled
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the inductor, it can, however, be assumed that this potentialdslerkin method is applied to (1) and (2), duly considering the

negligibly small and the boundary condition boundary and symmetry conditions [1]-[4].
- For initial computations for orientation purposes, the reaction
A=0 (3  of the temperature field and the influence of the supply feeds

is applicable. In contrast to the vector potential, the gradient {)cfonnectlng leads) on the electrqmagnetlc field are preferably
: : . neglected. Under these assumptions, three planes of symmetry
the potentialy must only computed in the conductive areas. On ) : .
) .. _can be defined. This reduces the solution area to 1/8 of the total
the surfaces of these conductive area the boundary cond|t|or\1/Olume
(A — grad d)) R=0 @) In the z—z and they—z planes of symmetry, the electric cur

rent densities are oriented perpendicular to them, respectively.
must be fulfilled. The 3-D solution area thus determined is fuFi€nce on the:—> plane the components of the magnetic vector
ther determined if necessary in case there are symmetries?giential4 and the scalar potentigl are
asymmetries of the electromagnetic field.

The current density is 4)( =4z=0 (10)
v _, (11)
j: JWK (g— grad@) + HES (5) oy
¢ =0 (12)
which determines the heat source distribution o
_ and on they—z plane
po = ‘f‘/ﬁ- (6) L.
The temperature field(x, y, z) is computed on the basis of oA,
the Fourier’s thermal conduction equation 9z =0 (14
¢ =0. (15)
Aep?) = div(Agrad ¢) + p, — Fgrad(cp?) @) )
ot On thexz—y plane of symmetry, the current density has no
where perpendicular component and
A is the the.r.mal conductivity coefficient, A =0 (16)
¢ the specific heat, I I
p the mass density, and 04, = 04, -0 (17)
7 the strip velocity respectively. Ox dy
This temperature field must only be computed for the work- d¢/dn =0. (18)

piece. Thermal losses by convection and radiation on the strip

surface are considered with the Cauchy boundary condition IV EDDY CURRENT AND HEAT SOURCES

Agradd - i = a(d, — ) (8 The eddy current density can be worked out with the magnetic

: - . Potentialg and the electrical scalar potential as equation (19)
wherec is the heat transfer-coefficient for convection and radi-

ation and?d, the ambient temperature respectively. J=k (jw A V<p) (19)
Furthermore, at an adequate distance from the inductor, -

boundary conditions must be determined over the cross sectiartten in component form:

of the workpiece.

On the side on which the strip enters the solution area, tem- o=k (jwém - me) (20)

peratures (e.g., ambient temperature) are given. On the exit side, - .=
however Jy =k (J wdy — ny) (21)
grad?¥ -7 =0 9) S =k (jwéz - sz> . (22)

is indicated wherei corresponds to the velocity direction. The The ohmic power loss, which is expressed by the eddy current

two fields, the electromagnetic field and the temperature fie?c?ns'ty in the workpiece, can be computed with the
which becomes steady-state at constant velocity, are coupled py =1 7. /. (23)
via the temperature dependence of the electric conductivity e

x(z, ¥, z) and the magnetic permeabilityx, v, ). This cou-

pling is, however, relatively weak, because it is relatively easy V. RESULTS

to do with iterative functions fox(z, y, z) andr(z, y, 2). Fig. 3 shows the mesh of the 1/8 of the overall computa-

tion domain. The width varies from 0.3®.40 m, from 8 to
60 m/min.

The computation of the electromagnetic field by approxima- The calculated eddy current distribution on the strip surface
tion is performed on the basis of the finite element method. Theillustrated in Fig. 4. Because the depth of current penetration

I1l. BOUNDARY CONDITION
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Fig. 3. Mesh element in 1/8 area.
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Fig. 4. Eddy current distribution on the 1/4 strip surface, where the arrow
length represents eddy current intensity.

Fig. 6. Steady-state temperature distributionl{in

is much greater than the strip width, a similar eddy current dis-

tribution will also occur in the deeper layers. theoptimum choosing of the design parameters in order to
The computation of the temperature field of the moving strigbtain a high efficient and homogenous heating across the strip,

is done on the basis of a particular grid. The heat source disthie exactly control of the working process varies from different

bution, in the form of node values, is transferred to this grid byorkpieces by means of the numerical predication model under

means of the shape functions. The influence of the velocity dée industry conditions.

stroys the coefficient matrix symmetry of the equation system.

A biconjugate gradient procedure was therefore adopted as so-
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