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S U M M A R Y  

Induction heating can be described by a heat transfer equation, 
where the heat is generated through ohmic losses from eddy 
currents induced by varying electromagnetic fields. In general 
tliis phenomenon will have to be described by two coupled equa- 
tions, because most of the material properties are temperature- 
dependent ([3,4,14]). 
Velocity effects have been included in the heat transfer equa- 
tion, using special upwind techniques to deal with the singularly 
perturbed character of the equation. External radiation and con- 
vection effects can be imposed as boundary conditions. Current 
conservation in eddy current regions can also be enforced. Effects 
around Curie temperature transitions can be studied. 
In axisymmetry a special transformed formulation was used for 
the eddy current equation to  avoid inaccuracies around the Z- 
axis. 
A description will be given of an integrated simulation environ- 
ment for the solution of coupled eddy current and heat dissipation 
problems. The software has been constructed using the high level 
language PDL and the package generator Mammy ([8,9]). 

T H E O R Y  

Our main assumptions will be that the sources of the magnetic 
field have a sinusoidal time dependence, that the magnetic per- 
meability does not depend on the magnetic field and that the 
geometry is two dimensional (translational or rotational symme- 
try). Material properties are allowed to  depend on temperature 
and spatial coordinates, thus making the system of equations 
non-linear. Furthermore, we will assume that the quasi-static 
approximation is valid, that is, effects due to displacement cur- 
rents (electromagnetic radiation) are neglected. 
The Maxwell equations are reformulated in terms of a complex 
vector potential A that will be gauged to have only,one non- 
zero component in the invariant direction: A = (0, 0, A(2, y, T ) ) ,  
together with the gradient of an electric scalar potential V = 
(0, 0, V(T) )  (V=O if no current conservation conditions are im- 
posed). In terms of these unknowns, the equation to be solved 
for the eddy currents is: 

1 
P 

i w o A + V  x (-V x A) = Jo + U V + U V  x V x A (1) 

(v is the velocity of the workpiece in the plane). 
These complex potentials are related to the real physical quanti- 
ties in the following manner: 

B(z, y, t )  = Re(V x A(z, y)eZwt), (2) 

and similarly for the other quantities. Jo is the amplitude of the 
external current which may depend on spatial coordinates. 
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The equation for the temperature T describing heat conduction 
in a material is as follows: 

aT 
ec(- at + v. v T )  = v . (XVT) + q, 

where 
1 1 
2 2 

q = J . E = -aw2A. A + uwIm(A. V )  + -uV . V (3) 

is the heat generated by eddy currents and p,c and X are the 
mass density, the specific heat density and the thermal conduc- 
tivity respectively. The velocity term describes the effect of the 
velocity on temperature diffusion for translation invariant geome- 
tries. Actual movement of parts of the problem is not considered. 
The velocity should be such that it does not disturb the two di- 
mensional character of the eddy current equation (for instance: 
motion in the Z direction in axisymmetry). The ohmic power 
loss is averaged over an eddy current time cycle, thus presuming 
that the time scale for the eddy current phenomena is apprecia- 
bly smaller than the characteristic heat diffusion time scale. 
Two possible types of boundary conditions were considered: Di- 
richlet conditions for the temperature: T = To(z, y, t )  and Neu- 
mann boundary conditions, combining a given boundary heat 
flux with radiation and convection: 

Here the first term on the right hand side represents the heat 
flux forced into the material. The second term describes thermal 
radiation loss, 5 is the Stefan-Boltzmann constant, T,,, is the 
room temperature and E(T, t )  is the effective emissivity of the 
surface. The last term represents losses due to convection. The 
film factor a(T, 2, y, t )  describes the exchange of heat between 
material and the surrounding medium. 

VARIATIONAL F O R M U L A T I O N  

A finite element discretization of the differential equations is o b  
tained by writing A = (O,O,A), Wj = (O,O,wj), and approxi- 
mating the potential A by A(z, y) = CAjwj(z ,  y), where wj are 
local finite element basis functions. 
Integrating over a volume formed by a surface R in the XY-plane 
and a unit height in the 2-direction, we arrive at a weak varia- 
tional formulation for (1) of the form Fj = 0 where Fj is given 
bY 

Fj = zw oAwjdR + 1 V A .  VwjdR - 1 

(5) 
Here I' is the boundary of the surface R and n is the outward 
unit normal on this surface. 
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To allow the possibility of enforced current conservation we as- 
sume a partition of in current conservation domains and 
write V = & VkOk (Oh being the characteristic function of Rk). 
On each ok we have an additional equation for the unknown 
domain constant Vh: 

F[ = -zw J uAdRk + vk 1 udRk - Itpp’ = 0 ( 6 )  

For the heat transfer equation we approximate T by T ( z ,  y, t )  = 
CTj(t)wj(z, y). The discretized heat transfer equation is now 
given by G1(T)T’ = gz(t ,T) where the matrix G1 and the right- 
hand side vector gz are given by 

(7) 

NUMERICAL ALGORITHMS 

The equations can be solved for transient and steady state situa- 
tions. In both cases the solution algorithm is based on a sequen- 
tial iteration process, because of the different time scales of the 
two equations: First the eddy current equation is solved, then the 
temperature equation is integrated until local changes in temper- 
ature call for an update of the eddy current equation. For the 
time integration use is made of a Gear type variable order, vari- 
able step-size Backwards Differencing algorithm for stiff ordinary 
diffpwntial equations. The steady state algorithm is based on a 
sequential Newton-Raphson approach. 
The finite element discretization uses a triangular mesh with lin- 
ear elements. In the heat equation Lobatto quadrature is used 
for integration of the QC and J . E terms. This implies that the 
matrix G1 in (7) is diagonal. The linearized systems for the 
eddy current equation are complex and symmetric (if no current 
conservation is applied and v=O). They are treated as real non- 
symmetric systems. In the case of the heat equation, the linear 
systems are only symmetric if no velocity effects are considered 
and if the thermal conductivity X is independent of temperature. 
The resulting linear systems are solved using a non-symmetric 
sparse preconditioned Bi-Conjugate Gradient iterative method 
or a symmetric ICCG ([l]). 
For large velocities a special upwind scheme is used to  deal with 
the singularly perturbed character of the differential equations 
(see [2]). The use of this upwind scheme results in better accu- 
racy for the same mesh sizes. The method consists of replacing 
the weighting functions wj by wj + pj, where p j  is a function 
defined by 

where 
3 
2 

and Zj(v) is the length of the line segment obtained by intersecting 
the line through the barycenter of the j-th triangle in the direction 
of v with this triangle. This means that for each element Rk the 
matrix G1 and the right-hand side g2 in(7) and (8) are augmented 

pj = 4j (V)  

bY 6, @cwzpjdRk 

and l, XOT. njpjdrk - @CV ’ VTpjdok 
i k  

R Z  COORDINATES 

An RZ coordinate system can be used for problems that are 
invariant under rotations around the Z-axis. A consequence of 
the continuity of the potential A is that the boundary condition 
A = 0 for r = 0 should be satisfied. 
The standard weak Galerkin formulation in R Z  coordinates im- 
plicitly assumes that the potential A can be properly approx- 
imated by piecewise linear elements (to lowest order). How- 
ever the analytical solution A of the homogeneous magnetostatics 
equation can be written as a linear combination of the functions 
r and l / r ,  so clearly erroneous results can be expected near the 
Z-axis when using the standard linear elements (see e.g. [7]). A 
horrifying example was shown in [lo]. This effect is encountered 
in particular when there is an interface with a high permeability 
jump very near the Z-axis. A one dimensional analysis of this 
phenomenon for A and for rA formulation can be found in [ll]. 
In that report upper bounds are derived for the spatial step size 
(h )  which ensures that the relative error in H(axis) or the rel- 
ative magnitude of the spurious current I = - 2 ~ s ~ :  5 r d r  are 
less then 1%. We recall parts of the results in the following table. 
It is assumed that r1 << r2. 

I Si tua t ion  descr ipt ion I Upper bounds for h 

In [lo] a novel remedy was proposed that solves the general a p  
proximation problem near the Z-axis, thus allowing metal-air 
interfaces close to the axis. Using the new unknown F ( s ,  t )  = 
&A(&,z) (with s = r2)  one obtains a reformulation of the 
original equation which can be approximated reasonably well by 
piecewise linear elements. This approach combines the approxi- 
mation properties of the standard A method (giving good results 
near the axis for problems with air on the axis) and those of 
another conventional approach, using rA as unknown, which is 
known to give better results for large r and also near the axis with 
metal on the axis. In the same situations this new method gives 
more accurate results near the axis than both the rA method and 
the standard A method. 
In our situation, where we have to  deal with eddy currents as well, 
we can show that this method is also advantageous. Study of the 
1D equation in R Z  shows that after a coordinate transformation 
the solution G with G(y) = A ( y / G )  of the homogeneous 
equation satisfies a Bessel equation: 

y2G” + yG’ + (y2 - l )G  = 0, 

where the argument y = T = r&/6 is complex. Here 
6 = 42- is the skin depth ([13] p. 301, 488). The asymp 
totic behavior for small complex arguments y can be shown to be 
the same as in the magnetostatic case. The same transformation 
will therefore be useful for the eddy current situation as well. 
The method has been implemented in terms of the original A 
(where s = r’), although the linear systems are solved using F 
as unknown, for reasons of symmetry (if v=O) and because it 
gives better conditioned matrices. The following representations 
were used: 

respectively. 



Special at tention is required near the Z-axis, because the singu- 
larity for s = 0 will cause problems for integration schemes that 
use corner points. This will be the case for instance for Lobatto 
quadrature used for lumping the source terms of the discretized 
equations. One method to solve this is to require that on trian- 
gles with one node on the Z-axis the z derivatives of the basis 
and weighting functions vanish. This is justified by the fact that 
B, = O(r2)(r  1 0 )  because of symmetry. 
The method we just described will only be applied for the eddy 
current equation. The heat equation has been treated with the 
standard R Z  Galerkin method, since in its variational formula- 
tion the div-grad part reduces to an XY analogue and does not 
call for a special treatment. The pc and J . E  integrals are always 
evaluated with Lobatto quadrature in s, z coordinates for reasons 
of accuracy and to guarantee a non-singular Jacobian matrix. 

CURIE T E M P E R A T U R E  

Near the Curie temperature Tc,,,, it is well known that the mag- 
netic permeability changes strongly with T ([13] p. 341). For 
T below the Curie point, p is relatively high, above Tcurie the 
material looses its ferromagnetic properties and acts as a para- 
magnetic material. This means that the permeability drops to 
about the pcrmeability of vacuum. The skin depth varies with 
1/@. A greater skin depth means less eddy currents to oppose 
the effects of the varying external magnetic field. Although eddy 
currents flow in a larger region, this actually means that the heat 
generated by these eddy currents decreases. 
The abrupt changes in material properties means that special 
care has to be taken to guide the algorithm across such a tran- 
sition. To this end an automated control mechanism has been 
provided in the program which monitors the temperature profile 
such that the eddy current equation will be updated as soon as 
some critical temperature value is exceeded. In this way a zone 
can be simulated which moves with the temperature transition 
front. Points that have relapsed to mild temperature behavior 
will be treated in the usual way. 
It should be noted that, although Curie temperature transitions 
can be modelled in the way we described, ferromagnetic materials 
are nonlinear in general, so the applicability will be limited. 

CURRENT CONSERVATION D O M A I N S  

In order to simulate objects with a finite structure in the third 
dimension, the concept of current conservation domains is em- 
ployed. Use is made of the extra gauge unknown V which can 
be a piecewise constant function where the constant may be dif- 
ferent for distinct connected components of the workpiece. A 
proper nonzero value for V will allow the specification of applied 
currents as well. Each current conservation domain R may be 
thought of as a collection of infinitely long bar conductors which 
are connected at infinity. We will require that on R 

Iapp' = / cEdR = -iw uAdR + V udR I s 
so 

iw J uAdR + IaPP' 

J udR 
V =  (9) 

The possibility of imposing a non-zero applied current rapp' al- 
lows the modelling of proximity effects and temperature effects 
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in current carrying coils. 
Per current conservation domain one additional 'gauge' unknown 
V is introduced instead of eliminating V from (1) by using (9). 
Each unknown A at a node inside such a domain is then coupled 
to this unknown V by means of (1). This will result in a sparse 
functional matrix with some additional full columns and rows. 

EFFICIENCY CALCULATIONS 

The following two efficiency quantifiers can be calculated: 

The first quantity indicates the time integrated energy used in 
heating the workpiece. The second integral is the time integrated 
thermal energy that is actually contained within the workpiece. 
It will be clear, therefore, that the first quantity is always larger 
than the second (if v=O). The second integral divided by the 
first is an efficiency indicator. 

I N T E G R A T E D  SIMULATION E N V I R O N M E N T  

The Eddy/Heat software package has been developed using the 
high level language PDL (Package Designer Language). The 
database structure, the mathematical formulas and the numerical 
algorithms are all described in PDL. A library interface allows a 
symbolic reference to existing (Fortran) facilities. The PDL for- 
mulation is compiled by Mammy, a Philips' proprietary package 
generator, resulting in the source code of a Fortran package. This 
code is linked with auxiIiary libraries. 
This approach proved to be a powerful method for the creation 
of high-level flexible engineering software. In the Eddy/Heat 
package for instance, material properties can be defined as con- 
stants, as expressions, in the form of tables, or as subroutines. 
The program then automatically decides which terms contribute 
to the Newton matrices. 
The analysis module of the package is used in conjunction with 
the pre- and postprocessor PEPD ([12]). The description of ge- 
ometry and magnetical data from PEPD are complemented by 
an Attribute File, containing additional material properties and 
boundary conditions required for the computation of the heat 
transfer. Postprocessing can be done with PEPD and GRAPHS 
(Vector Fields Ltd., Oxford). 
The package is currently in use within Philips ([5,6]) and operates 
under VAX/VMS and UNIX (SUN, Apollo). 

RESULTS 

Figure 1 shows a simple example of the proximity and skin effects 
in a current carrying coil (right). Eddy currents in the conduct- 
ing region (left) result in heating of the material. Figure 2 shows' 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

O-N.0 0.2 0.4 0.6 0.8 1.0 
I 

1.2 

Figure 1: Eddy currents showing proximity and skin effects 
in the coil (right) and the heated metal (left). 
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Figure 2: Converging temperature profile over the main di- 
agonal in the conducting material, showing the ef- 
fect of external convection. 

Figure 3: Temperature distribution in the conducting mate- 
rial. 

Figure 4: Heating of a cylinder moving in the positive Z di- 
rection. 

the rise in temperature on a diagonal line from the lower left to  
the upper right corner in the conducting material. The temper- 
ature profile is shown at different times, showing the effect of 
external convection. In figure 3 the temperature distribution in 
the conducting material can be seen. Figure 4 shows the heat- 
ing of a conducting metal cylinder (left) moving in the positive 
2 direction. The heating occurs via eddy currents induced by a 
current carrying coil on the right. 

CONCLUSIONS 

A description has been given of a software package for the si- 
multaneous solution of the eddy current and the heat transfer 
equation for the simulation of inductive heating. Aspects like 
velocity effects, Curie temperature transitions, RZ coordinates 

and enforced current conservation have been taken into account. 
The use of PDL (Package Designer Language) in the definition 
phase has proved to  be a very flexible way to  structure the com- 
plex combinatorics of several specialized options and to  handle 
redefinition of the algorithms, because time consuming items like 
adapting datastructures arc handled via PDL. This also resulted 
in an enormous reduction in development time required for the 
package. 
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