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Abstract - A description is given of an integrated simula- 
tion environment for the solution of coupled electromag- 
netic and heat dissipation problems in two dimensions, in 
particular for the field of induction heating, dielectric heat- 
ing, and hysteresis heating. The equations are coupled be- 
cause the most important physical parameters (permeabil- 
ity, conductivity, permittivity) may depend on temperature 
in a nonlinear way. The software has been constructed with 
the high level language PDL, using the general 'Mammy' 
design concept. 
All heating problems under consideration may involve ther- 
mal convection and radiation at the boundaries of the ob- 
jects. Also, additional temperature dependent heat sources 
(e.g. resistor heating) can be defined. One can include in- 
stantaneous effects of movement in the plane on the tem- 
perature transfer. Effects around Curie temperature tran- 
sitions can be analyzed. 

I. INTRODUCTION 

Induction heating describes the thermal conductivity prob- 
lem in which the heat is generated by ohmic losses from eddy 
currents induced in conducting media, such as metals and 
plasma's, by a varying magnetic field [ l ,  31. At high frequency 
conditions the peak flux density in the magnetic materials is 
sufficiently small to  ensure that both the flux density and field 
intensity are varying sinusoidally in time. Additional induc- 
tion effects can be obtained by considering the movement of a 
body in a magnetic field. 
Dielectric heating is caused by losses due to friction in the 
molecular polarization process in dielectric materials [9, 111. 
We consider this type of heating in which the electric field 
has a sinusoidal time dependence. The problem is described 
by a coupled thermal-electric set of equations. Applications 
concern the heating of badly conducting objects between elec- 
trodes or in cavities that are subject to  electromagnetic fields. 
In general, in a homogeneous material dielectric heating causes 
a more uniform temperature distribution in less time than can 
be obtained by applying heating from the outside, in which 
case heat conduction has to play a more important d e .  
Hysteresis loss forms an additional source for heating when 
dealing with a magnetic problem. This kind of heating is in 
addition to those caused by eddy currents. It originates from 
magnetic domain friction in ferromagnetic materials [ll]. In 
the simulation package a simple scalar, isotropic, model for 
hysteresis is built in, defined by a complex permeability ji. 

11. THE EDDY CURRENT PROBLEM 

Write the magnetic flux density as B = V x A, where A is 
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a magnetic vector potential and the electric field is 

for some scalar potential 17. 
We assume that a separation of variables is allowed, such that 

(2)  

In 2D the vector potential A can be chosen to have only one 
non-zero component which is along the normal to the 2D (XY) 
plane, A = ( O , O ,  A ( z ,  y, T ) ) ,  and V = ( O , O ,  V ( T ) ) .  
The 2D eddy current problem is described .by the following 
equation (see [7], also for the current conservation case): 

A(z, y,T, t )  = A(z, y ,  T)eiUt, and Va = Vetwt.  

1 
P 

i w a A + V  x (-V x A) - C V  x (V x A) = Jo -uV, (3) 

Here we assume that the sources of the magnetic field have 
a sinusoidal time dependence. We have neglected the effects 
due to displacement currents. Jo = J o ( z ,  y ,  t )  is the amplitude 
of the external current density, where the time dependency is 
restricted to time intervals with very modest variations only. 
v is the velocity of the Workpiece in the plane. JO and v are 
the main sources for the induced eddy currents J = -iwaA. 
Usually, (3) is restricted to the case V = 0. A nonzero value 
for V inside the total Workpiece (heated region) allows the 
definition of current conservation for a group of regions. 
The complex quantities in (3) are related to  the physical quan- 
tities in the following manner: 

B(z, y, t )  = Re ( V x A(s, y)ezWf),  (4) 

and similar for the other quantities. 
For a detailed description of the finite element discretization 
and variational formulation of the eddy current problem we 
refer to ["I. 

111. THE DIELECTRIC PROBLEM 

We start with the introduction of a complex permittivity E.  
together with some accompanying definitions 

= e p ,  ( 5 )  E =  & - zELoss 

Here E is the dielectric permittivity, and cLoSs the correspond- 
ing loss factor. Tan(6) is the loss tangent. 
The quantities E and are material-dependent functions 
that may also depend on T .  
Ignoring the effects due to  magnetic variations (e.g. induc- 
tion heating), the reduced electric problem is defined by one 
Maxwell equation and one constitutive relation 

(6) V - D  : p e 3  D :: FE. 
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Here p. is the charge density (also a material dependent func- 
tion of z, y, t ) .  Furthermore, E is the electric field strength, D 
is the displacement flux density. 
Introducing the electric scalar potential @ such that 

E = -V@, (7) 

- V ' ( E V @ )  = p.. (8) 

the electric problem reduces to  

The thermal problem needs an expression for the current, which 
is time dependent. We will write 

and similar for the other quantities. Here w is the angular ve- 
locity for the steady state AC problem. 
If C is time-independent, the analogue of the constitutive re- 
lation (6) between the spatial components of D and E holds 
automatically 

D(.,v) = EE(z,y).  (10) 

However, in our applications, we will be interested in the case 
where C depends on the temperature T .  Then (10) will only be 
approximately valid in time intervals where I ( d E / d T ) ( d T / d t )  I 
is small. 
A second remark refers to a consequence of the spatial variation 
of C when it is temperature dependent. In general (8) results 
in a complex differential equation. When depends on the 
temperature T (and thus varies in space), the equation for the 
imaginary part of @ can not be ignored. However, in the special 
case when is constant, the absence of a charge density and 
the assumption of homogeneous Dirichlet conditions for the 
imaginary component of ip imply that it suffices to consider 
only a Laplace equation for the remaining real component of 
ip. 
Writing @ = E. @jwj,  the weak variational formulation of (8) 
is of the form 6. = 0, where F' is given by 

Fj = s, cV@. VwjdR - pew,dO - C V i p .  nwjdr .  (11) 

As for the magnetic case, there are two types of boundary 
conditions: 

A s ,  

Here p is the magnetic permeability, and pLoSs the correspond- 
ing loss factor. Furthermore, tan cx denotes a loss tangent. The 
quantities p and pLoSs are material dependent functions that 
may depend on T .  
The magnetic problem can be reduced to the complex scalar 
magnetic potential problem (3), with p instead of p [8]. The 
weak variational formulation and boundary conditions are iden- 
tical to  those in the induction case. 

V. THE HEAT TRANSFER EQUATION 

The equation for the temperature T describing heat conduction 
in a material is as follows: 

d T  
QC[- + v at V T ]  = V . [XVT] + (J . E) + 4, (15) 

where v is the velocity of the body and e,  c and X are the mass 
density, the specific heat density and the thermal conductivity 
respectively. Furthermore, q = q(T, z, y, t )  is the heat .input 
per unit volume and per unit time, which can be used to de- 
scribe additional heating (e.g. conductive losses in resistors). 
The velocity term describes the effect of movement on heat 
diffusion for translation invariant geometries. This means that 
one can only analyze flow of material and not problems such 
as a Workpiece entering or leaving a primary coil. However, 
movement of the coil can be simulated in another way because 
the primary current may be position and time dependent. 
The term (J 'E)  denotes the time averaged heat power absorp- 
tion density and will be described in the next section. For the 
variational formulation of the heat problem we refer to [7]. 
Similarly as for the electromagnetic problem, there are two ob- 
vious types of boundary conditions. The first one is a Dirich- 
let condition T = To(z,y,t). The other condition is a Neu- 
mann boundary condition, combining a given boundary heat 
flux with radiation and convection (see [7] for details). 
The thermal steady state problem is described by (15), with 
E = 0 at the left-hand side. 

VI. HEAT SOURCE TERMS 

For induction heating J . E describes the ohmic power loss 
due to  induced eddy currents. It can be expressed in terms of 
the time derivative of A. After taking the time average we find 

(16) 
1 
2 

(J . E) = - ~ ( - i w A  + V, - i w A  + V)C, @ = @'boun(Z,Y,t), (12) 

- E -  '@ = D .  n = Dboun(Z,lJ,t). (13) 

Here both @.boun and Dboun are complex. These boundary con- 
ditions form the sources that drive the problem. 

where, (., .)c denotes the complex inner-product, and (., .) the 
time averaged value. 
Time averaging is legitimate as long as the time scale of the 
eddy current phenomena is small compared to the diffusion 

d n  

IV. HEATING BY HYSTERESIS LOSS 

In this section we consider briefly the simple model for hys- 
teresis in steady state AC electromagnetics as described in [8].  
The introduction of a complex permeability in the Maxwell 
equations introduces a phase shift between the magnetic flux 
density (induction) B and the magnetic field strength H. This 
gives a simple model for hysteresis. Associated with this, hys- 
teresis loss can be determined. 
As in the case of a complex permittivity in ( 5 ) ,  the following 
definitions can be made for a complex permeability ji 

time of the heat transfer. 
For dielectric heating the positive source term (J 
the effect due to  the displacement currents (see [9], p. 70) 

E) covers 

We will consider (15) only in time intervals where we can ignore 
the contributions due to $f. Here the factor describes 
an effective dielectric conductivity CD. 
The required thermal source term is again defined by the time- 
mean of the ohmic power loss: 

(18) 
1 
2 

(J . E) = - w E ~ O " ( E ( Z , ~ ) ,  E(z,y))c .  
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The heat problem with the simplified source term as in (18) 
can be found in 12). 
The hysteresis loss introduces an additional source term at 
the right-hand side of the heat diffusion equation ((15), where 
(J . E) incorporates the heating effects due to eddy currents or 
displacement currents). The work done in reaching the steady 
state is given by 

W = / l H ’ = ”  B .  dH‘ dQ. (19) 
R H’=O 

The hysteresis power loss is given by P = F. In [8] an 
expression for the total time-average hysteresis power loss is 
derived. The corresponding spatially dependent term ( P H ~ ~ ~ )  
that will serve as a source term in the heat equation is 

instance g, that would be required when solving the complete 
coupled system. However, when we deal with hysteresis loss, 
we do need this term when integrating the heat equation. A 
similar remark with respect to the permittivity applies in the 
dielectric heating case. 
There is the possibility to have an automated profile control 
for updating the eddy current equation, which can be used 
to simulate Curie temperature transitions, where the perme- 
ability changes dramatically with temperature [7]. The abrupt 
change in material properties means that special care has to be 
taken to guide the algorithm across such a transition. There- 
fore an automated control mechanism has been provided in the 
program which monitors the temperature profile such that the 
eddy current equation will be updated as soon as some critical 
temperature value is exceeded. In this way a zone can be sim- 
ulated which moves with the temperature transition front. 

(pHys t )  = * s i n a  ( ~ ( s ,  y), ~ ( z ,  y))c. (20) 2 IX. AN INTEGRATED SIMULATION ENVIRONMENT 
This expression is correct on time intervals where the time vari- 
ation of p is negligible. 

VII. PENETRATION DEPTH 

When dealing with induction heating in conductors, the skin 

measures the magnetic penetration into the material [ll]. In 
general a small value of &kin indicates large eddy currents that 
oppose the varying external magnetic field. These eddy cur- 
rents cause the induction heating. 
In the dielectric heating case there is also a notion of pene- 
tration of the electric field. Assuming constant p and d the 
electric field E satisfies (cf. [ll], pp. 471) 

d2E 1 dJ 
V’E-pF- = = V p + p - .  

at 2 at 

Applying the sinusoidal behavior of E, the homogeneous part 
of (22) results in a complex Helmholtz equation in space vari- 
ables only. The complex propagation factors of the solution 
are defined by 

y = +iw@. 

We note that IRe(7)l indicates an attenuation factor, of which 
the inverse will be defined as the penetration depth Ap. It is 
easily derived that 

if 

VIII. ALGORITHMS 

The algorithm is based on a sequential iteration process. Both 
the electromagnetic and the thermal steady state are Newton 
processes, and for the time integration in transient problems 
use is made of a Gear type variable order, variable step-size 
Backwards Differencing algorithm for stiff ordinary differential 
equations. The intermediate nonlinear problems are solved by 
a Newton-Raphson-like procedure. For more details see [7]. 
In the induction heating case we do not need quantities like for 

The Eddy/Heat software package [4] has been constructed with 
the high level language PDL (Package Designer Language), us- 
ing the general ‘Mammy’ design concept [6]. This concept in- 
volves, besides the use of PDL, an easy interface to existing 
pre- and postprocessing packages and to libraries of numerical 
subroutines. The database structure, the mathematical for- 
mulas and the numerical algorithms are all described in PDL. 
The PDL formulation is compiled by Mammy, a Philips’ pro- 
prietary package generator, resulting in the source code of a 
Fortran package. This code is linked with auxiliary libraries. 
In order to conform to existing simulation practice within Phi- 
lips in the field of electromagnetic heating, we use the package 
OPERA-2D (Vector Fields Ltd. [lo]) as geometric preproces- 
sor. With this preprocessor a file containing the geometrical 
input data is created. Physical parameters must be provided 
in a separate Attribute File. These two files together form the 
input for an Eddy/Heat analysis. 
The results of an analysis can be subject to  interactive post- 
processing with OPERA-2D. 

X. MOVING WORKPIECE OR COIL 

As explained earlier, deformation of the model due to  velocity 
is not possible. One can only analyze stationary flow of mate- 
rial and not problems such as a Workpiece entering or leaving 
a primary coil. 
However, movement of the primary coil can be simulated in 
another way because JO may be position and time dependent. 
So at  every time level point this coil can be replaced, allowing 
movement by steps with lengths determined by these time level 
points. 
The procedure is as follows: model the complete track of the 
primary coil as a current region. Define the position of the coil 
in this region by JO # 0, for instance with a Fortran subroutine 
or the product of two Heavyside functions. 
Current conservation is not possible, but when necessary the 
coil can be remodelled to  get a better representation of the real 
current density distribution. This application is used in [ 5 ] .  

XI. EXAMPLES 

Figure 1 shows a glass cylinder in a rectangular cavity, with 
an applied homogeneous alternating electric field. The equipo- 
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tential lines are displayed. In Figure 2 the temperature profile 
in the cylinder is shown. I t  is asymmetric because we applied 
a convection boundary condition at the left and a radiation 
boundary condition at the right of the cylinder. 
In Figure 3 the magnetic flux lines are shown for a problem 
with two current conservation domains. We have a coil at the 
right and pieces of tungsten and graphite (with current con- 
servation) near the z-axis. All thermal quantities are temper- 
ature dependent. Therefore, the magnetic potential changes 
with time through the U coupling. In Figure 4 we have plotted 
the temperature profiles in time of two points located in the 
two Workpieces. Note that the temperature in the graphite 
disk exceeds that of the tungsten ring, which is due to  a lim- 
ited radiation of the latter. 

XII. CONCLUSIONS 

A description has been given of a software package for the solu- 
tion of coupled electromagnetic and heat dissipation problems. 
One can simulate induction, dielectric, and hysteresis heating. 
Movement of Workpiece or coil can be taken into account, as 
well as Curie transitions, where use is made of an automated 
time-stepping mechanism. With the general ‘Mammy’ design 
concept for the generation of simulation packages, considerable 
reduction of development time was achieved. 
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Fig. 1: Potential contours for dielectric heating of a cylinder. 
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Fig. 2: Asymmetric temperature profile (unit K) due to convection 
at the left and radiation at the right side of the cylinder. 

Fig. 3: Magnetic flux lines for the heating of tungsten/graphite 
Workpieces. 

Fig. 4: Temperature profile in time for points in the two Work- 
pieces. 


