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Abstract - In this paper, the problem of non-uniformity of the
induced surface power density in the workpieces of cross-field
heating systems is analyzed. Assuming the workpiece to be very
“thin, the induced current density and the induced power density
are obtained using a method based on circuit theory. Calcula-
tion of the total power agrees with the measured value. The
results suggest that to obtain uniform current density, one may
have to try different shapes for the exciting coils. Varying the
distance between the coils or their lengths does not produce the
desired effect.

1. INTRODUCTION

In cross-field heating systems, which are used in the heat
treatment of long thin plates, the exciting field is essentially

* perpendicular to the object or the workpiece to be heated[1].
In the past, cross-field systems have been analyzed using sim-
ple models[2-5]. In these systems, the distribution of the
induced current or the power is of interest because it deter-
mines the distribution of the heat produced. This being a
three dimensional problem, the exact solution needs large
computer memory and is time consuming(6]. In this paper,
we use a method based on circuit theory, which is a form of
integral equations, to obtain the current density distribution.
The workpiece is represented by an infinitesimaily thin sheet.
Results are presented for the induced current density for rec-
tangular and oval shaped coils to bring out the effects of
parameters such as the coil separation, coil length, polarity of
the coil current and frequency. Single-sided air-cored sys-
tems with non-magnetic loads are considered.

II. METHOD

The schematic diagram of the arrangement studied is shown
in Fig.1. It has two exciting coils and a thin workpiece at a
distance [, from the coils. d is the distance between the coils
and [ is the coil length. If d is small in comparison with coil
dimensions, the field produced by the coils is mostly
transverse to the workpiece. In thin workpieces, the thick-
ness of the workpiece is much smaller than the other system
dimensions and the skin depth of the workpiece. Therefore,
the variation of the field variables along the thickness of the
workpiece can be neglected and the problem can be analyzed
as a surface power density problem by assuming the work-
piece to be an infinitesimally thin sheet[7]. In the method
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Figure 1: Schematic diagram of a single sided, air cored cross-field
heating system showing the heater coils and the work piece. The
coils carry current I in the same direction.

used the surface of the workpiece is divided into a square
mesh(Fig.2).
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Figure 2: Division of the workpiece into a square mesh showing a
mesh current.

The currents induced in the mesh are obtained by the solution
of the following circuit equations which are derived from the
integral forms of Faraday’s and Ampere’s laws[8]:

[D 11 =—k>h*[H o] — k*h* [Hpa) M
and  [Hinl = [C1lUp]. )

Here, [Iy], [H,] and [H;,,} are column vectors representing
the mesh currents, the Z component of the incident magnetic
field and the Z component of the induced magnetic field. [D]
is the resistance matrix[9]. k% = \jol,eo, ©=2xf the fre-
quency, © the conductivity and L, the permeability of the
free space. In computing matrix [D ], the resistance of indivi-
dual cell side, Ry, is obtained by:
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Figure 2: Geometry of the Two-Wire Twisted-Pair
: Transmission Line

where the symbol NP denotes the number of pitches. Mean-

while, 1 denotes the space vector from the source point, Py,

on conductor #1 to the observation point, P, and 72 denotes
the space vector from the source point, P;,on conductor #2
to point, P. Here, 71 and 7, are the space vectors from the
source points, P; and P,, on conductor #1 and conductor #2
to the observation point, P respectively, which are given as
follows:

- . . R ko, ..
= (z —rocosbi)dz + (y — rosinbs)ay + (2 — Er-ol)a, (4)

- . h
T2 = (z + ro co801)dz + (y — rosinb)éy + (z — -2—1-‘_-01)@ (5)

Using vector operation rules, one may obtain the following:

[ ay Gz
dli xF1=| —To sin#:df; rocosfidb, %d&; (6)
Tz —rocosf; - y—rosinby 2_5;91
and,
‘ [ dy dx
—dly x 7, = | ~Tosin8iddy rocos81dd; —%d&l ™
z+rocosb; y+ rosinf; z—%el

Substituting (6) and (7) into (3), one can obtain the formu-
lation of the flux density as follows:

_ NP/2 1 2m(i+1)
B(z,y,z) = /
|——NP/2 2mi
o cos by (z —9) (y —rosind )i 1
1 0 1 2 1 Yy 0 1 by
E (x — rgcosby)— + rosinby (z — —¥61) +
~rosinéy (y — rosinéy) — ro cos 1 (x — 7o cosby) |
h
X rocosty(z — ;6‘1)+(y+rgsin€1)-2}—l—
T
;g- —(z +rocosfy)— +rosinby (z — LO}) d6:(8)

X
—7rosinfy (y + rosiny) — ro cosby (z + 7‘78 cosfy)

- (zsy;z)j

{
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Those integral formulations were.computed with the help of
the Gaussian numerical integral method [2], which is readily
suited for digital computation. Details are given in reference
[4].

\

III. RESULTS

The resulting magnetic flux density, B, specifically the B
and By components, can be computed at any cross-section as
shown in Figure(1) for a cross-section perpendicular to the
z—axis. Here, this calculation was performed. at locations
along the three concentric circles shown by the dotted lines in
Figure(3). Also, depicted in Figure (3) are the z and y compo-
nents of the resulting B field. Meanwhile, the z—components
of the resulting B field are shown in Figure (4).
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:Figure 3: Flux Density Components B, and By for the
Twisted-Pair, h—12 7cm, for a Current I = 500A
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Figure 4: Flux Density Component.Bz for the Twisted-
Pair, h=12.7cm, for a Current I = 5004 .
The resulting B field, Figures (3) and (4), at various points
along the three dotted circles is shown by the B vector ar-

row displays, whose directions indicate the orientation of the

B field in the z — y plane as well as the z—direction, and
whose length is proportional to the magnitude of the resul-
tant B field along the £ —y plane and the component along the
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z—axis. These B field results shown in Figures (3) and (4) are
for the twisted-pair case with a pitch, b = 12.7cm(= 5in.),
and at a plane with z = 0.

The effects of the clioice of the pitch, k, defined in Fig-
ure(2), on the flux density components, Bz, B,, and B, are
documented in Figures(5) through (7) at the mid-plane point
(z==0) for a transmission line of length 508m(= 20000in.). For
all these cases, in Figure(2), ro is equal to 2.54cm(= lin.).
The above is given for a 500A DC current flowing in opposite
direction in each conductor.
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Figure 5: Magnitudes of Flux Density Component |Bz|ma:
for Different Pitch lengths,for I = 500A
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Figure 6: Magnitudes of Flux Density Component |By|maz
for Different Pitch lengths,for I = 5004

Figures (5) through (7) show the effects of varying the he-
lical twist pitch on the B field resulting from a (508 m) fixed
length transmission line. Notice that as the pitch appibaches
infiniity the resulting magnetic field approaches the field pat-
tern of a two-parallel-pair transmission line. There are no z-
component B fields resulting from the parallel-pair case, while
there are z-component B fields resulting from the twisted-
pair case as shown in Figure(7). The results also reveal as
expected, that shorter lengths of the helical pitch cause the
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Figure 7: Magnitudes of Flux Density Component | B;|maz
for Different Pitch lengths,for I = 5004

B fields outside the transmission line to decay more quickly
in the radially outward direction. Thus shorter pitches lead
to reduced magnitudes of background magnetic field, which is
a desirable outcome from the SSF electromagnetic field com-
patibility point of view. Examination of Figures (5) through
(7), leads one to conclude that at locations far away from the
transmission line, the z-component of the fields, B, is of the
same order of magnitude as that of the z, and y components,
B; and By.

IV. CONCLUSIONS

The results obtained from this analytical method show the
3D nature of the B field surrounding a two-wire twisted-pair
transmission line in the static case. That is, the twisted-pair
problem should be dealt with using 3D magnetic field com-
putation methods if geometrically complicating surroundings
such as shields and highly permeable materials are present.
Therefore, some new methods are needed for studying shield-
ing effects and defects surrounding those types of twisted-pair
wires. The 3D nature of this field means that in future work
one of the available options may be to use 3D finite element
analysis in conjunction with ballooning techniques to evalu-
ate the shielding problems and effects of a conducting plasma
environment, when AC cases of interest in SSF power trans-
mission lines are studied.
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