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Abstract - The BIEM coupled with surface impedances gives 
good results at a low cost for 3D high frequency eddy-currents 
calculation with linear materials. 

In this paper, we review the possible extensions to non linear 
materials. We propose (and test in 3D) an original method, based 
on 1D computations of the complex surface impedance. Results 
are applied to induction hardening processes. This paper 
presents essentially validations of the method of non linear 
surface impedances ; a future publication will be devoted to the 
thermal validation. 

1. INTI<OI)UCTIOF.I 

In principle, the magnetodynamics (problem of computing 
exactly how eddy-currents Ilow inside a conducting body) has 
10 be solved with the Finite Element Method. The association 
with Boundary Integral Equations may be useful to take into 
account an external and non conductive region. 

However, if the ii-equcncy is sufficiently high, the skin 
effect could be suflicicnt t o  turn the 3D problem into a 
simpler shell problem. This property is industrially used, 
particularly for inctallurfic proceedings (surface hardening of 
steel). Numerically, the field inside the material is taken a s  
zero ; the skin depth is neither meshed, nor explicitly 
described : then the reg~ilar volume FECM is no more used for 
the conducting area, and the magnetodynamic effect has to he 
expressed in an adequate boundary equation. 

For linear materials, we will use the analytic ID solution 
(descending exponential) to find the equivalent boundary 
equation. For saturable materials, there is no exact analytic 
solution. Agarwal 131 proposed an approximated solution, 
only valid for strong saturated media. In this paper, we 
propose to solve the n o n  linear equation in ID with a 
numerical method. We will deduce froin this solution an 
equivalent value of the complex surface impedance on each 
node o f  the surface mesh o f  the magnetodynamic problem. 

As for us, we use the BIEM for the 3D magnetic 
computation outside the conducting area, but the proposed 
rnethod (non linear equivalent surface impedance) could be 
used with finite elements. The thermal resolution calls a 
separate thermal software : the coupling is done by projection 

Mnnuscripl received March I X. I906 

( I)  CEGELY' Ccntrc de Gdnic Elcclrique dc. Lyon. Unit6 propre de 
recherche de i'cnseigneincnt supirieur. nssoci6c 311 CNKS (11" 5005).  

This work was supported i n  p i - t  by  Electricit6 de France (Applications de 
I'ElecrricirC) and by Renaulr S . A .  (Applications liidiisli-iellc.s). Thc nulhors 

wish to express their thank.; IO IITII and CEDRAT for  their help i n  tising 
their sollwurea (respccliveiy FLlJX Expert and FLUXX)).  

and interpolation of data from magnetic to thermal and 
reciprocally : no particular compatibility between the two 
softwares is required. 

11. SURFACE IMPEDANCE METHOD A N D  BIEM/FEM 

The same numerical method will not he used everywhere : 
the problem of field calculation is separated in two domains : 
domains with and without eddy currents (air). 

In non-conducting areas, the magnetodynamic problem is 
expressed in t e r m  of scalar potential with the Boundary 
Integral Equations Method [ I ]  : 

H,): source field [ A  / in] 
V : scalar potential [A] ( 1 )  

H = H,, - VV : magnetic field [A / nil 
The BIE for region R (boundary S ,  permeability pop,) is : 

a2 , (P) .v(P)  = - 9[V(Q)G', (Q)-V'(Q)Cp(Q)].ds 

P : observation point, on or outside the boundary 
Q : integration point on "ds" 

(2)  

with : 

.q(~) = - $GI,> (Q). ds : angular i'actor for P and s 

: Green's function for A I 
G,(Q) = - 

4n r 

S 

7 . n  
. normal dcrivative of G G',,(QI = VG,, .filv - - 

v'(Q) = OV . ii 1 : normal derivative o i  v on Q 

. 

Q 
+ 

1- = PQ ; I' = PQ [Ill] 
ii = normal vector, exterior to S 

This b o u n t l q ~  h f e g r d  eynntio/7 can be written in  t e rm of  
scalar potential and normal f lux  density, using : 

~ ~ , ( ~ ) = p ~ ) p ~ ~ ~ ~  -~v] . i i /  r >  : norinaliluxciensity  on^ 
(3) 
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B. Concliictzng niciterieil \ iii,f~icc FEM. III.AGARWAL’S METHOD A N D  SlMlLAR METHODS 

Phenomena inside the conducting inaterial are projected in 
a simple boundary equation [2] by the surface impedance 
method: 

A. A~urtval’s theory. 

In non-linear cases, this e surface impedance )> method 
cannot be exact : even if the source field Ho is sinusoidal, 
electric field E and flux density B are no more sinusoidal. 
Nevertheless we will show that good results can be obtained 
with modified values of the surface impedance. 

Agarwal has proposed in year 59 in ;I very famous paper 
[3] the value: 

1 -  
(4) B,, =-V, .(Z,fi,  1 

JU 
where : 
Z : surface impedance, defined by: 

E\ ==Z,(H< x i )  
(5) 

- A  

- 
E, : electric field, tangent to S 

f = U / 2n: : frequency ol’ the source H,, 

F,: surface restriction 01’ 0. 

- 

1 
- -  - -  a(%. 6) 

[i.e. : V;X = V X - ___ a I1 

The hounrkiry d(j+wiitiul cyiicition ( 4 )  can also be written 
in terms of nor.~11crlfl~is detrsity and s c d a r .  potential, as  we did 
i t  for the 3D BIE: 

0, .Cz,V,V) = IuB,, - O h  .(Z5Hll,, 1 ( 6 )  
This equation can be trcated with the finite element method : 
the matrix t e r m  foi- a node << i N of an eleinent <<El D (M 
nodes) is : 

(7) 

where a,, a,, ai, are the shape functions. 
The same mesh (second order quadrangles) is used for the 

3D Boundary Integral Equation and for the surface Finite 
Element equation, and thcy are solved together-. 

This result was obtained analytically for an ideal 
rectangular B-H curve (Fig. I and 2) and H sinusoidal. The 
electric field on the surface is no more sinusoidal (Fig. 3 ) ;  the 
Agarwal’s surface impedance is linked to its first harmonic 
term. This simplification is justified considering the energy : 
this term gives the same. mean power as the complete 
Fourier’s devel opinent, 

Nevertheless this theory is only valid for strongly saturated 
iron. Aparwal hiinself proposed ii heuristic coefficient (0.75!) 
to find the saturation flux density BA, from the static 
magnetization curve. 

The question is to ohtain a good value for the surface 
impedance: it depends on the inaterial itself, but also on the 
temperature and, for fcrromagnetic materials, on the modulus 
of the field H on each point of the surface. 

In the linear case, thc  regula^ result is: 
Fig I : Agci;.wnl’s B-H cui-vc 

CJ : conductivity B. Brilcinced niethod. 

This expression is linked to the usual idea of skin depth &,,. 

Maxwell’s tensor 3: 
The sudbce ,,ovvel- c/c,fl.sitj. t[,rough s is given by the flux of In real 3D structures, some areas are strongly saturated, 

while other are not: GuCrin [4] proposes recently to combine 
linear and Agarwal’s models, with coell’icients taking into - -  

= p + . i . q =  (EA@ ).li (9) account the degree of saturation: 

z = ~(H).z\.l,,, + [ I  - arfi)].z,.,r (12) 
Using expression ( 5 )  of z\, wc obtain : 

(10) Z,  = ( p + . i . q ) / H :  
Consequently, the ( I + j )  fac(or in  (8) means that active and 
reactive power going inside the conducting region are equal. 

--r.Go 

He uses this expression in a 3D-FE softwai-e and obtains - 

interest ing results; however, the cl,oice of funct ion a 
unsolved. 
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Fig. 2: Agarwal’s theory : 

Fields B(t). H(t)  :ind E(t) :is functions of depth z. 

_ -  

Fig, 3: Agarw:il’s theory : 
surface fields E(t) :inti H(t)  and resulting power p(t) 

IV. PRE-CALCULATIONS USING ID FEM 

In 86, A. Bossavit [SI solved the magnetothermal problem 
in ID, with a more realistic B-H curve, finite elements for 
space domain and step by step For time domain, hut it was for 
a pedagogical p~trpose. We propose to use such numerical ID 
solution to build the complex surface impedance as a function 
of the peak value of‘ Hs , for each material and for each 
temperature (that means l o r  each B-H curve, and for each 
value of the conductivity). Then, real and imaginary parts 
arise from power equivalcncy. In particular, this method gives 
correct results for the passage from low to strong fields. 

A.  I D-equntinn, FE-disc,,-c.ti-atiorl and periodic solution. 

Reduced i n  ID, thc equation of eddy currents simply 

d2H(/ .  I )  aB[(H(z,t))] 
becomes: 

= (T-- (13) 
3 7  rlt 

This equation is in principle easy to solve by a finite 
elements or finite differences method, in ID for space and 
step by step for time (i t  is necessary to discretize at least 2 
Agarwal’s skin depths). 

In practice, two difficulties are however encountered: 
1 .  The solution approached by Agarwal shows the 

complex hehavior of the real solution, in z as i n  t (for 
example, the front of abscissa zinv moves ...). A precise 
solution requires a very fine discretization of space and time 
(typically more than 50 steps by period, and at least as much 
for space) 

Only the stable solution concerns us. To reach it, it is 
necessary to wait up to the end of the transient phenomenon. 
The algorithm has been accelerated by forcing the solution to 
be periodic, and by using the calculation of successive 
periods a s  iterations for the non linearity. The temporal 
derivatives and values of the non-linear properties are 
estimated from the solution to the previous half period. 
Furthermore, the direct component of field is canceled after 
each period. 

2. 

Figure 4 gives examples of behaviors of electric and 
magnctic fields a s  functions of depth, at different instants and 
for sinusoidal variations of the surface magnetic field. The 
comparison with schematic results of figure 2 enables to 
understand the respective parts taken by linear and non linear 
phenomena. The time variations of electric field (Fig. 5) gives 
access to the complex power density [(9), Fig. 61 and to the 
surface impedance ( I O ) .  

- -  
I\ 
I 
I 

___------I--. 

I _. 

Fig. 4: I D-FEM solution: exainple of z varialiona 
(for different time steps). 

Fig. 5: I I)-FEM solution: surface electric field E(t) (exwniple) 
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Fig. 6: example of active and reactive power densities, 
as functions of tlie surface magnetic field 

C. Comparison with Agurwul’s tlzrory. 

Figure 7 shows an example of results for the real part of the 
surface impedance , or for the active power density (both are 
equivalent). The comparison is done with the ID-FEM, which 
is supposed to be exact. Agarwal’s result is roughly correct 
for about 100,000 A/m and is completely fanciful for lower or 
larger fields. It shows the positive contribution of the mixed 
impedance proposed by Gutrin: the mixed value is nearly 
correct up to 100,000 A/m, however the balance factor a [ 12) 
has been optimized for this result and the reactive part does 
not present the same quality. 

Considering its low cost, the method of numerical 
computation of the complex surface impedance is certainly 
the most relevant. 

D. Coupling with 3 0  BEM and convergence. 
B. D a t u - h e ,  tuhulution and extrupolution. 

In practice, we have to compute the values of the surface 
impedance on each node of the mesh, for all time-steps and 
for all non linear iterations: i t  may be expensive ! However, 
the variations of the active and reactive power densities (for a 
particular B-H curve and for a given frequency) as function of 
the magnetic field are very simple (Fig. 6). By the fact, for a 
given temperature, ten values or so (for example 2 values per 
decade) are sufficient to tabulate (then interpolate) p or q with 
a very good accuracy as function of H. 

The behavior of the surface impedance as function of 
temperature and frequency is as well smooth; finally a few 
hundreds of coefficients are sufficient to describe a given 
material. They can be computed once and for all. 

Then, the values which are useful during the 3D 
computation can be easily and quickly extracted and 
interpolated 

_. __ 
Example for a given material 

1 1,8 -___~__ __ __ 

I Agarwal l1D FEM 

1,6 ~ Rea,)  

1,4 \, 

10 100 1000 

Fig. 7: comparison of Agarwal’s theory, mixed model (Eq. 4) and ID-FEM. 

Then we will use these values of Zs (10) for the 3D 
BEM/FEM magnetodynamic resolution. The non-linear 
convergence is obtained by an iterative process (each nodal 
value of the surface impedance depends on the field intensity, 
which depends on the 3D-BEM/Surface-FEM solution, and 
so on). Generally, 3 or 4 steps are sufficient (Fig. 8). 

Fig. 8: Surface current density on a cogwheel (induction hardening) 
Example of non linear convergence (steps I. 3 and 5 )  

v. TEST PROBLEM AND VALIDATION 

As previously mentioned, this method is not exact, because 
the real variations are not exactly sinusoidal. How accurate 
will our results be, for global values (power) as for local 
values ? 

A further publication will present validations from the 
thermal behavior, in connection with measures. In this paper, 
we carry our attention on the comparison with other 
numerical methods. The difficulty is to find other methods 
allowing to solve the same type of problem with 3D 
structures. As compromise, we propose to use an 
axisytnrnetric structure and a 2D notorious software [9]. 
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A. Global vulues. 

Fig. 9 :  Axisyiumetric test prohiein 

The test problem is very simple (Fig. 9). It is composed of 
a massive inductor (0=0.559. 1Ox[S/m], pv=l ., f=104[Hz]) and 
of a ferromagnetic cylinder with lollowing properties : 

CJ = O.275.10' 
B(H)  = Cli,H+C,atan(CI,,CzH) with: 

[S / i n  I 

BqLb, = 2.2 [TI p , , [ )  = 1000. 
For the 2D results, we have first used a step-by-step 

method (. exact )) mcthod), then the complex approximation 
regularly used for non linear problenis[9]. The electric source 
is the voltage. 

For the 3D tests, the proposed forinulation has been 
implemented in  the software P H I ~ D  [8]; linear and non-linear 
surface impedances are used respectively for the inductor and 
for the cylinder. The clcctric sourcc i s  thc total current in the 
inductor. 

TABLE I 
POWEK FOR THE TEST-PROBLEM 

a) Direct computation of power (vo/ume/sur(ace integral): 
20V, 10kHz Cylinder 
RMS Current [A] p [WI Q [VAr] 

2D - complex 3 355 (1) 29318 20 168 
2D - steplstep 3 175 (2) 29 345 
3D - BEM+Zs 3 175 (3) 32 536 20 564 
b) Computation from electric source: 

(20V, lOkHz ( Inductor; (Cylinder: 
RMS Current [A] phase I"] p IW/ p [Wl 

2D - complex 3 355 119,o (4) 1 397 31 133 
2D - steplstep 3 175 122,2 (5) 1209 32 628 

The FEM (complex or step by step) gives directly access 
to power by volume integrations; unfortunately, the numerical 
accuracy is poor in the cylinder because of the skin effect. 
Better results are obtained from electric power (true RMS 
value for the step hy step method). 

The FE/step-by-step and the proposed 3D methods give 
equivalent results. The complex 2D method over-estimates 
the current and minimizes the active power (see table I for 
U=20V). This result has been confirmed tor other voltages. 

B. Local vci1iw.s. 

It is difficult to carry out pertinent comparisons for local 
values. For example, figure I O  presents the modulus of the 
magnetic field at the instant when the current in the inductor 
is maximum. The values obtained with the step by step 
inethod are superimposed on those obtained with the method 
proposed. The correlation is good, but not excellent. This 
little shifting for a given instant has to exist, because we 
compute harmonic fields while the step by step solution is not 
si nusoidal. 

This explanation is supported by the comparison o f  the 
true RMS values of  H (Fig. 1 I ) :  in this case, the difference 
vanishes. Only the 2D complex methods gives less perfect 
results, and this is coherent with its greater error on power. 

From these two comparisons, i t  seems that the accuracy of 
the non linear surlace impedance method is as good - or 
better - as the normal complex FEM, and i t  is much cheaper. 
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Fig. 1 I :  Coinparison with axi-FEM: 
True RMS w i l u c s  (if iii(ifiirc,ti(.,fi'el~l (litie XX'. F ~ s .  9)  

Finally, we want to point out how fine the mesh of the skin 
depth has to be in  order to get correct results, when using the 
Finite Element Method (complex or step by step 
formulation): we used 15 second order elements for the 2D 
resolutions, 50 first ordcr elements in ID. Traditionally, 2 
second order elements are recommended, that seems to be 
really insufficient, particularly for non-linear materials! 

VI. COUPLING WITH THERMAL COMPUTATION 

This 3D BEM/FEM method 15 destined to be coupled with 
a FE theimal computation f o i  induction liaidening puipose 
[6] This coupling 1 5  wedk two diffeient package< ale used 
Phi3d [8] foi electi omagnetics 'ind Flux-Expel t [7] for 
therinics Foi givcii tcinpeiatiiie, Phi3d computes the 
surface powei denvty which I \  ti  msferied to Flux-Expert 
The evolution of tempcintuie I \  then computed step by step 

ciently to change the electiornagnetic 
characteiistics of the in'iteiidl The surface distribution of 
tempeiatuie IS then ic-tian\feiled to phi3d foi a new 
electlomagnetic comput'ition This iterative process may 
continue unt i l  reaching A condition on the teinpeidture ot on 
the length of the pi aces< 1 I 1 

Figuie 1 1  shows such piocejs applied foi the steal 
hardening of a cogwhccl 

VII. CONCLUSION 
Foi sinall skin depth, non-lineai ities are ditficult to 

modelise even with a volumc finite clement method because 
of the numbei of elements iequiied. The inethod pioposed 
here is of couise not exact but i t  leads to better iesults than 
any other one. Furthermoic its computation cost ieinains 
acceptcible Validation of the therinal iesults is cuiiently in 

progiess Nexl development will concern the coinputation of 
the suiface impedance l o i  iotdting excitation fields, and the 
coupling with circuit equ'itions foi the electric input 
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