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Abstract - A numerical model is presented for the process of
the inductive longitudinal-seal welding of tubes. This model
refers to a three-dimensional, quasi-stationary electromagnetic
field and a three-dimensional temperature field. The character-
istics of the material dependent on the field in both cases are
taken into consideration in iterative ways in the form of local
functions. The differential equations describing the electromag-
netic field are integrated as an A-¢ formulation into the method
of finite elements. The discretization, adapted to suit the prob-
lem, leads to grid networks with up to 100.000 nodes. The re-
sults of the calculations shown permit the determination of op-
timum process parameters.

I. INTRODUCTION

The inductive longitudinal-seal welding of tubes is a tech-
nology for the manufacture of tubes that has been developed
over the decades to achieve the present state of the art in pro-
duction techniques.

Tubes of all types of mate-
rials (e.g. Cu, brass, Al, Fe)
and geometry (e.g. dia. 9 x 0,5
mm or dia. 508 x 16 mm) are
produced according to this
process. During the initial pe-
riod of the technical develop-
ment work was carried out
employing mains frequency
and medium frequency. High
frequency, produced by valve
generators, has been a decisive
factor in the fabrication process
for years.

This has not only had an
effect upon the development of
the hardware (some impeder
materials are only suitable for
the frequency range between
200 and 500 kHz), but also

Fig. 1. Representation of the
principle.
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upon the development of the software. In this way, for ex-
ample, with the BEM, a surface current covering the object
and equivalent to the current is expected. This requires the
skin effect to be complete.

In recent years, transistorised generators have become
available operating at frequencies between 50 and 300 kHz.
These generators are being employed with great success in
the inductive welding of longitudinal tubes. The improve-
ment in the quality of the welding seam is, in some cases, ex-
ception when compared with the welding seam produced us-
ing higher frequencies. In this case, the skin effect does not
form completely.

In order to gain a deeper understanding of the welding
process, a knowledge of the exact course of the temperature
at the edges of the strip through the welding point and until
the cooling-off, including all transformation processes, is es-
sential. This does not only applies to the actual welding zone,
but also to the adjacent zones, in which alterations in the
structure are caused by the influence of the temperature.

A method of calculation is to be presented in the follow-
ing, which from its nature is able to fulfil all these require-
ments.

II. MATHEMATICAL MODEL

Maxwell's equations form the basis for the calculation of
the electromagnetic field

rotH =J + joD (1
rotE = - joB @
together with the so-called material equations
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Operating under the assumption that all magnetic quantities
are sinusoidal with time, we work in complex domain. D, the
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change with time of the density of the displacement flow, is
neglected. The density of the magnetic flux is freesource

divB=0 %)

and the magnetic vector potential A as a mathematical sub-
sidiary quantity

B=rotA. (6)

The magnetic vector potential is composed of a rotational
field and a gradient field

A=A+ fo ™
with
Ae = grad u. (8)

From the law of induction (2) and the definitions (6), (7), and
(8), it follows that

rotE = — jo rot(éw +grad QA) ) )

The integral counter-operation for the formation of rotation is
applied to equation (9) to obtain

E=- jo( v+ grad )+ E. (10)
with
En=—grad9n. (11)

The gradient field E. is produced as a quasi-integration con-
stant, as
rot grad ¢ = 0. (12)

a basic fact applies.
The impressed field strength E. is assumed to be source-free,

so that the electrical potential Es is determined as follows

divgrad@:O. (13)

Behind the electric potential ¢, there is the impressed induc-
tor voltage. This assumption was confirmed by the calcula-
tion of the integral parameters of two- and three-dimensional
arrangements. Derived from material equation (3) and for-
mula (10), the important relationship for the calculation of
the distribution of current density in the electrically-conduc-
tive regions results:

i:—j(ox(éw+grad¢A)+KEu. (14)

With the help of material equation (4), definition (6), and the
relationship for the current density (14), the following differ-
ential equation results from the Maxwell's law (1):

rotirot_/'_i_w + ij(5w+grad q)A) = xE.. (15)
i hs
Since in addition to Aw, gA is also to be determined, the
divi =0 (16)

- is also explicitly required in equation (14), while taking rela-

tionship (13) into account:

divgrad gu + div Av =0. (17

Together, equations (15) and (17) form the basis for the
calculation of the electromagnetic field distribution and are
also known as the A-¢ formulation.

Special importance is assigned to the interface between
conductive and non-conductive regions. The normal compo-
nent of the resulting vector potential A on the side of the
electrically-conductive region must be zero, since according
to equation (14), it determines the direction of the current
density, and the current must not "flow out" from the con-
ductive regions. In the electrically non-conductive regions,
the scalar potential ¢. is practically without any importance,
that is, it may be assumed to be constant, since in the decisive
equations, (14) and (15), it always occurs in connection with
the electrical conductivity x.

The heat-source density

_12f

X

P, (18)

is calculated from the density of current distribution. The cal-
culation of the temperature fields is effected on the basis of
Fourier's heat-conduction equation [1]

dcpd)

—at—zdiv(lgradﬂ)+pv —vgrad(cp®) (19)

with the velocity-vector field ¥ taking into consideration the
continuous feed process.

III. NUMERICAL MODEL

The approximate calculation of the electromagnetic field
is possible by the finite-element method using the Galerkin
procedure on the differential equations (15) and (17). The
necessary boundary, symmetrical and interface conditions are
taken into account. An exhaustive description of the proce-



Fig. 2. Discretization of the computation zone and magnetic

vector potential in the plane of symmetry.

dure for the A formulation (without scalar potential) is con-
tained in [2], and for the A-¢ formulation it is contained in
{3] and [4]. .

The finite-element method requires the discretization of
the bounded three-dimensional solution domain into volume
elements. At the nodes thus produced, the discrete values of
the vector potential Aw and in the electrically-conductive
zones, additionally the scalar potential ¢. are sought as an

unknown field quantity. The problem of the three-dimen-
sional magnetic field is thus reduced to the solution of a sys-
tem of linear algebraic equations. The matrix is positive
definite, symmetrical, and sparsely occupied. A discretization
adapted to the specific problem leads to grid networks con-
taining up to 100,000 nodes or elements. A large matrix is
produced, requiring storage forms that need little storage
space. For the solution of the system of equations, the
method of conjugated gradients is used as an iterative process
to reach the solution [2].

The calculation of the temperature field is also carried out
with the help of the finite element method (Galerkin proce-
dure) on the basis of differential equation (19) [1]. Only the
grid network of the tube is required. At the outer surface
area, heat losses due to convection and radiation are taken
into consideration. The calculation of the temperature field of
the moving tube is performed with a fixed grid network. The
feed is taken into account by the velocity vector v , which re-
sults in an asymmetrical coefficient matrix. A biconjugated
gradient process or a relaxation process is employed in the
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solution of the problem of the asymmetrical matrices. Since
this is a real scalar field in this case, and the computation
zone is restricted to the tube, resources for the solution of the
system of equations are comparatively low.

In spite of the feed movement, a stationary temperature
field is produced on the fixed grid network, and for this rea-
son, the temperature field with feed movement may be re-
garded as a stationary-field problem. Trial calculations have,
however, shown that with increasing feed velocity conver-
gency problems with the iterative solution process begin and
thus transient temperature field may be calculated. The feed
velocities required, up to 1 m/s, could not be realised using
this process. A way out of this problem is offered by the
transient temperature-field calculation, where the Cranck-
Nickelson process is employed [1]. Problems of convergency
at increasing feed velocities may be countered by selecting
shorter time intervals.

On the grid network of the tube (see Figure 1), the feed
movement causes a entrance of mass on the side at which the
tube enters, and a lost of mass on the tube's exit side. On the
side at which the tube enters , the tube infeed temperature is
determined from the first-kind boundary conditions. If these
boundary conditions do not exist, instabilities will occur at
high feed velocities. Individual nodes at the inlet side of the
tube will be incorrectly heated to a high temperature. At the
tube exit side, no negative effects of the mass exit were dis-
covered.

For the discretization of the area for which the solutions is
sought, a semi-automatic process using macro-elements is
used [2]. Macro-elements are hexahedral, prisms and tetrahe-
dral that are automatically meshed and then put together for
the total discretization. The manual work required is limited
to the definition of the macro-elements. Grid networks with
100,000 elements can, using this process, be constructed
without any problem. The macro-element concept does not
exclude input faults 100%, and for this reason, the completed
discretization is tested for the meshing faults using a special
program.

IV. RESULTS

Figure 2 shows the finite element mesh used for calculat-
ing the electromagnetic field (16870 nodes, 15825 element's).
Due to the symmetry of the arrangement, only one half of the
computation area is meshed. The calculation is carried out on
an efficient HP work station with 64 MB main memory.

Figure 2 shows a representation of the magnetic vector
potential in the plane of symmetry. The areas of high current
density are surrounded by the lines of isovector potential.
Here, the inductor and the welding point on the tube may be
clearly made out.

In Figure 3, the distribution of the current density on the
surface of the tube is shown. It may be recognised that a
great part of the eddy current flows over the welding point,
but also a smaller one flows downward as "current leakage".



3708

Fig. 3: Intensity of the current density.

The maximum value of the current density is concentrated at
the edges of the gap.

The most important criterion, however, is the stationary
temperature distribution. At a feed velocity of 0.5 m/s, the
test example achieved a temperature increase of 798.5 K at
the welding point compared with temperature at the entrance
of the tube. The maximum temperature is directly at the
welding point (see Figure 4).

The calculation for the non-stationary temperature field is
also carried out at the HP work station. The time required for
making this calculation, a few hours, is comparatively shorter
than the time required for the electromagnetic field.

V. SUMMARY

The model shown here is very suitable for modelling the
welding process for the longitudinal seam of a tube, since no
crude simplifications were made. The problem is covered in
its complete three-dimensional complexity. In addition, the
calculation is possible in a broad spectrum of frequencies,
right up to high frequencies. However, high frequencies re-
quire a finite element mesh with more nodes for the compu-

Fig. 4. Temperature distribution.

tation areas, so that computation technology capable of high
efficiency will have to be employed. The installation of mag-
netic return elements (impeders) is just as possible as the
taking into consideration of the energy of fusion in the calcu-
lation of the temperature field. The suitability of the model
was proved by test calculations. It may now be employed for
optimization calculations.
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