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SUMMARY

Induction heating can be described by a heat transfer equation,
where the heat is generated through ohmic losses from eddy
currents induced by varying electromagnetic fields. In general
‘this phenomenon will have to be described by two coupled equa-
tions, because most of the material properties are temperature-
dependent ([3,4,14]).

" "Velocity effects have been included in the heat transfer equa-
tion, using special upwind techniques to deal with the singularly
perturbed character of the equation. External radiation and con-
vection effects can be imposed as boundary conditions. Current
conservation in eddy current regions can also be enforced. Effects
around Curie temperature transitions can be studied.

In axisymmetry a special transformed formulation was used for
the eddy current equation to avoid inaccuracies around the Z-
axis.

A description will be given of an integrated simulation environ-
ment for the solution of coupled eddy current and heat dissipation
problems. The software has been constructed using the high level
language PDL and the package generator Mammy ([8,9}).

' THEORY

Our main assumptions will be that the sources of the magnetic
field have a sinusoidal time dependence, that the magnetic per-
meability does not depend on the magnetic field and that the
geometry is two dimensional (translational or rotational symme-
try). Material properties are allowed to depend on temperature
and spatial coordinates, thus making the system of equations
non-linear. Furthermore, we will assume that the quasi-static
approximation is valid, that is, effects due to displacement cur-
rents (electromagnetic radiation) are neglected. ‘

The Maxwell equations are reformulated in terms of a complex
vector potential A that will be gauged to have only .one non-
zero component in the invariant direction: A = (0,0, A(z,y,T)),
together with the gradient of an electric scalar potential V =
(0,0,V(T)) (V=0 if no current conservation conditions are im-
posed). In terms of these unknowns, the equation to be solved
for the eddy currents is:

iwaA+Vx(leA)=J0+aV+avaxA (1)
»

(v is the velocity of the workpiece in the plane).
These complex potentials are related to the real physical quanti-
ties in the following manner:

Bz, 4,1) = Re(V x Az, )6), @

and similarly for the other quantities. Jy is the amplitude of the
external current which may depend on spatial coordinates.

Mannscript received July 7,‘1991

The equation for the temperature T' describing heat conduction
in a material is as follows:

gc(%—?—+v~VT) = V- (AVT) +4,
where
q=J-E=%ow2A~A+0wIm(A~V)+~;—aV-V (3)

is the heat generated by eddy currents and p,c and X are the
mass density, the specific heat density and the thermal conduc-
tivity respectively. The velocity term describes the effect of the
velocity on temperature diffusion for translation invariant geome-
tries. Actual movement of parts of the problem is not considered.
The velocity should be such that it does not disturb the two di-
mensional character of the eddy current equation (for instance:
motion in the Z direction in axisymmetry). The ohmic power
loss is averaged over an eddy current time cycle, thus presuming
that the time scale for the eddy current phenomena is apprecia-
bly smaller than the characteristic heat diffusion time scale.
Two possible types of boundary conditions were considered: Di-
richlet conditions for the temperature: T' = Ty(z,y,t) and Neu-
mann boundary conditions, combining a given boundary heat
flux with radiation and convection:

Bricar = AVI.n= QO('T) Y, t) —&5(T4 _Tr‘tom) - a(T_T'mf’m) (4)

Here the first term on the right hand side represents the heat
flux forced into the material. The second term describes thermal
radiation loss, & is the Stefan-Boltzmann constant, Tioom is the
room temperature and £(Tt) is the effective emissivity of the

. surface. The last term represents losses due to convection. The
film factor a(T,z,y,t) describes the exchange of heat between
material and the surrounding medium.

VARIATIONAL FORMULATION

A finite element discretization of the differential equations is ob-
tained by writing A = (0,0,4), W; = (0,0, w;), and approxi-
mating the potential A by A(z,y) = T A;w;(z,y), where w; are
local finite element basis functions.
Integrating over a volume formed by a surface Q in the XY-plane
and a unit height in the Z-direction, we arrive at a weak varia-
tional formulation for (1) of the form F; = 0 where Fj is given
by : :

Fj=iw / o AwdQ + / lva vudn -

0 o 1

/r (H x n)- W;dl — /Q Jow;df — /ﬂ oVuydf — /9 oVA-vwdQ
' : - (5)

Here T' is the boundary of the surface  and n is tﬁe outward
unit normal on this surface.
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To allow the possibility of enforced current conservation we as-
sume a partition of { in current conservation domains {; and
write V = ¥, V4O, (O being the characteristic function of ).
On each §; we have an additional equation for the unknown
domain constant Vi

FY =i [ o Ad+ Vi [odu =7 =0 (®)

For the heat transfer equation we approximate T by T(z,y,t) =
Y T;(t)w;(z,y). The discretized heat transfer equation is now
given by G1(T)T" = g»(t,T') where the matrix G; and the right-
hand side vector g, are given by

(Gl)ﬂ'j = /‘gcw,ijdﬂ | (7)
(8); = /(_QC(Q.VT)Jrq)wde-
/ AVT - VaoydQ) + / Bpeasw;dl (®)

NUMERICAL ALGORITHMS

The equations can be solved for transient and steady state situa-
tions. In both cases the solution algorithm is based on a sequen-
tial iteration process, because of the different time scales of the
two equations: First the eddy current equation is solved, then the
temperature equation is integrated until local changes in temper-
ature call for an update of the eddy current equation. For the
time integration use is made of a Gear type variable order, vari-
able step-size Backwards Differencing algorithm for stiff ordinary
differential equations. The steady state algorithm is based on a
sequential Newton-Raphson approach.

The finite element discretization uses a triangular mesh with lin-
ear elements. In the heat eguation Lobatto quadrature is used
for integration of the gc and J - E terms. This implies that the
matrix G; in (7) is diagonal. The linearized systems for the
eddy current equation are complex and symmetric (if no current
conservation is applied and v=0). They are treated as real non-
symmetric systems. In the case of the heat equation, the linear
systems are only symmetric if no velocity effects are considered
and if the thermal conductivity A is independent of temperature.
The resulting linear systems are solved using a non-symmetric
sparse preconditioned Bi-Conjugate Gradient iterative method
or a symmetric ICCG ([1]).

For large velocities a special upwind scheme is used to deal with
the singularly perturbed character of the differential equations
(see [2]). The use of this upwind scheme results in better accu-
racy for the same mesh sizes. The method consists of replacing
the weighting functions w; by w; + p;, where p; is a function
defined by

1
i = 5looth(z) = - Vup)fy, == vl

where 3
B = 31iv)

and [;(v) is the length of the line segment obtained by intersecting
the line through the barycenter of the j-th triangle in the direction
of v with this triangle. This means that for each element € the
matrix Gy and the right-hand side g, in(7) and (8) are augmented
by

/ gcw;p;dQy
Qe

and
/F VT nypydl - /Q ooV VTpydf

respectively.

RZ COORDINATES

An RZ coordinate system can be used for problems that are
invariant under rotations around the Z-axis. A consequence of
the continuity of the potential A is that the boundary condition
A =0 for r = 0 should be satisfied.

The standard weak Galerkin formulation in RZ coordinates im-
plicitly assumes that the potential A can be properly approx-
imated by piecewise linear elements (to lowest order). How-
ever the analytical solution A of the homogeneous magnetostatics
equation can be written as a linear combination of the functions
r and 1/r, so clearly erroneous results can be expected near the
Z-axis when using the standard linear elements (see e.g. [7]). A
horrifying example was shown in [10]. This effect is encountered
in particular when there is an interface with a high permeability
jump very near the Z-axis. A one dimensional analysis of this
phenomenon for A and for rA formulation can be found in [11).
In that report upper bounds are derived for the spatial step size
(h) which ensures that the relative error in H(axis) or the rel-
ative magnitude of the spurious current [ = —2r f? 5 4 1 dr are
less then 1%. We recall parts of the results in the following table.
It is assumed that 1 < 4.

Situation description Upper bounds for A

Bl K2 \
r=0 r=r1; r=ry H(axis)
Airon axis; p=pofy > 1 %}_,/ i
Metal on axis; w1 3> ps %J?Trz 3o

In [10] 2 novel remedy was proposed that solves the general ap-
proximation problem near the Z-axis, thus allowing metal-air
interfaces close to the axis. Using the new unknown F(s,t) =
V3A(y/5,z) (with s = 7%) one obtains a reformulation of the
original equation which can be approximated reasonably well by
piecewise linear elements. This approach combines the approxi-
mation properties of the standard A method (giving good results
near the axis for problems with air on the axis) and those of
another conventional approach, using rA as unknown, which is
known to give better results for large r and also near the axis with
metal on the axis. In the same situations this new method gives
more accurate results near the axis than both the 7A method and
the standard A method.

In our situation, where we have to deal with eddy currents as well,
we can show that this method is also advantageous. Study of the
1D equation in RZ shows that after a coordinate transformation
the solution G with G(y) = A(y/+/iwon) of the homogeneous

equation satisfies a Bessel equation:
VG +yG +

where the argument y = \/fwop r = rv/21/6 is complex. Here
= 4/2/(wpo) is the skin depth ([13] p. 301, 488). The asymp-
totic behavior for small complex arguments y can be shown to be
the same as in the magnetostatic case. The same transformation
will therefore be useful for the eddy current situation as well.
The method has been implemented in terms of the original A
(where s = r%), although the linear systems are solved using F
as unknown, for reasons of symmetry (if v=0) and because it

(y2 - l)G = 07

" gives better conditioned matrices. The following representatxons

were used:

1
w; = ﬁbj(s, Z)



1
AS,Z = SjAjbj—
(52) = T ez

1 0b; _0b;
VXW_,'(S,Z) = (-$5;]72'5;7')

Special attention is required near the Z-axis, because the singu-
larity for s = 0 will cause problems for integration schemes that
use corner points. This will be the case for instance for Lobatto
quadrature used for lumping the source terms of the discretized
equations. One method to solve this is to require that on trian-
gles with one node on the Z-axis the z derivatives of the basis
and weighting functions vanish. This is justified by the fact that
B, = O(r%)(r | 0) because of symmetry.

The method we just described will only be applied for the eddy
current equation. The heat equation has been treated with the

standard RZ Galerkin method, since in its variational formula-

tion the div-grad part reduces to an XY analogue and does not
call for a special treatment. The gc and J - E integrals are always
evaluated with Lobatto quadrature in s, z coordinates for reasons
of accuracy and to guarantee a non-singular Jacobian matrix.

CURIE TEMPERATURE

Near the Curie temperature Toype 1t s well known that the mag-
netic permeability changes strongly with T ([13] p. 341). For
T below the Curie point, g is relatively high, above Tgyye the
material looses its ferromagnetic properties and acts as a para-
magnetic material. This means that the permeability drops to
about the permeability of vacuum. The skin depth varies with

1/\/. A greater skin depth means less eddy currents to oppose

the effects of the varying external magnetic field. Although eddy
currents flow in a larger region, this actually means that the heat
generated by these eddy currents decreases.

The abrupt changes in material properties means that special
care has to be taken to guide the algorithm across such a tran-
sition. To this end an automated control mechanism has been
provided in the program which monitors the temperature profile
such that the eddy current equation will be updated as soon as
some critical temperature value is exceeded. In this way a zone
can be simulated which moves with the temperature transition
front. Points that have relapsed to mild temperature behavior
will be treated in the usual way.

It should be noted that, although Curie temperature transitions
can be modelled in the way we described, ferromagnetic materials
are nonlinear in general, so the applicability will be limited.

CURRENT CONSERVATION DOMAINS

In order to simulate objects with a finite structure in the third
dimension, the concept of current conservation domains is em-
ployed. Use is made of the extra gauge unknown V which can
be a piecewise constant function where the constant may be dif-
ferent for distinct connected components of the workpiece. A
proper nonzero value for V will allow the specification of applied
currents as well. Each current conservation domain {2 may be
thought of as a collection of infinitely long bar conductors which
are connected at infinity. We will require that on Q

Pl — / oEdQ = —iw / sAdQ +V / odQ

* iw [ o AdS) + I2PM! ©)
JadQ

The possibility of imposing a non-zero applied current I?#P! al-

lows the modelling of proximity effects and temperature effects

V=
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in current carrying coils. .
Per current conservation domain one additional ‘gauge’ unknown
V is introduced instead of eliminating V from (1) by using (9).
Each unknown A at a node inside such a domain is then coupled
to this unknown V by means of (1). This will result in a sparse

functional matrix with some additional full columns and rows.

EFFICIENCY CALCULATIONS

The following two efficiency quantifiers can be calculated:

/t / <J E> dywondt (10)
0 JQwork

T(t) i
Lo [ eDT) dTden (11)
Qwork /T(t=0)

The first quantity indicates the time integrated energy used in
heating the workpiece. The second integral is the time integrated
thermal energy that is actually contained within the workpiece.
It will be clear, therefore, that the first quantity is always larger
than the second (if v=0). The second integral divided by the
first is an efficiency indicator.

INTEGRATED SIMULATION ENVIRONMENT

The Eddy/Heat software package has been developed using the
high level language PDL (Package Designer Language). The
database structure, the mathematical formulas and the numerical
algorithms are all described in PDL. A library interface allows a
symbolic reference to existing (Fortran) facilities. The PDL for-
mulation is compiled by Mammy, a Philips’ proprietary package
generator, resulting in the source code of a Fortran package. This
code is linked with auxiliary libraries.

This approach proved to be a powerful method for the creation
of high-level flexible engineering software. In the Eddy/Heat
package for instance, material properties can be defined as con-
stants, as expressions, in the form of tables, or as subroutines.
The program then automatically decides which terms contribute
to the Newton matrices. :

The analysis module of the package is used in conjunction with
the pre- and postprocessor PE2D ([12]). The description of ge-
ometry and magnetical data from PE2D -are complemented by
an Attribute File, containing additional material properties and
boundary conditions required for the computation of the heat
transfer. Postprocessing can be done with PE2D and GRAPHS
(Vector Fields Ltd., Oxford).

The package is currently in use within Philips ([5,6]) and operates
under VAX/VMS and UNIX (SUN, Apollo).

RESULTS

Figure 1 shows a simple example of the proximity and skin effects
in a current carrying coil (right). Eddy currents in the conduct-
ing region (left) result in heating of the material. Figure 2 shows’
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Figure 1: Eddy currents showing proximity and skin effects
in the coil (right) and the heated metal (left).
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Figure 2: Converging temperature profile over the main di-
agonal in the conducting material, showing the ef-
fect of external convection.
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Figure 3: Temperature distribution in the conducting mate-

rial.
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Figure 4: Heating of a cylinder moving in the positive Z di-
rection.

the rise in temperature on a diagonal line from the lower left to
the upper right corner in the conducting material. The temper-
ature profile is shown at different times, showing the effect of
external convection. In figure 3 the temperature distribution in
the conducting material can be seen. Figure 4 shows the heat-
ing of a conducting metal cylinder (left) moving in the positive
Z direction. The heating occurs via eddy currents induced by a
current carrying coil on the right.

CONCLUSIONS

A description has been given of a software package for the si-
multaneous solution of the eddy current and the heat transfer
equation for the simulation of inductive heating. Aspects like
velocity effects, Curie temperature transitions, RZ coordinates

and enforced current conservation have been taken into account.
The use of PDL (Package Designer Language) in the definition
phase has proved to be a very flexible way to structure the com-
plex combinatorics of several specialized options and to handle
redefinition of the algorithms, because time consuming items like
adapting datastructures are handled via PDL. This also resulted
in an enormous reduction in development time required for the
package.
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