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Coupling Between Finite Elements and Boundary
Elements for the Numerical Simulation of Induction
Heating Processes Using a Harmonic Balance Method

Romain Pascal, Philippe Conraux, and Jean-Michel Bergheau

Abstract—For the modeling of induction heating processes, the magnetodynamic problem inthe whole space, each one com-
strongly coupled magnetodynamic and thermal problems can pined with the harmonic balance method. This coupling tech-
be solved together within the same finite element. This is called nique is especially useful for the modeling of unmeshed air be-
the direct method. In this case, the electromagnetic quantities tween moving parts involved in heating processes [6].

are expressed through Fourier series according to the harmonic Thi is divided | f . . d .
balance method. In this paper, each harmonic is calculated in the IS paper Is divided into four main parts: magnetodynamic

whole space by using the coupling between finite elements andanalysis, thermal analysis, direct method, and application
boundary elements. Especially suitable when moving parts are example.

involved and because the mesh of air is unnecessary, it is shown

that this coupling is still successful if the direct method is used.

At the end, the efficiency of this approach is illustrated with an Il. MAGNETODYNAMIC ANALYSIS

example. A. Magnetodynamic Problem Solved With the Harmonic
Index Terms—FEM-BEM coupling, harmonic balance, induc- Bglance Method
tion heating, numerical simulation, strong coupling.
Even if the source currents are perfectly sinusoidal,

the induced field inside the piece contains other higher
. INTRODUCTION harmonics due to the nonlinear electromagnetic prop-

HE numerical simulation of induction heating rests on therties. Instead of performing a transient analysis, the
modeling of both magnetodynamic and thermal nonlinegrmonic balance method can be used. This method
phenomena. These phenomena are strongly coupled becaessists in calculating the first terms of Fourier series
of the temperature dependency of the electric conductivity the different electromagnetic quantities as follows:
and nonlinear magnetization curves and the heat source duitox, t) = 10,5 (Xpe(x) cos(kwt)+Xps(x) sin(kwt) )
Joule effect. Time constants associated with magnetodynamicere w is the fundamental angular frequency that is the
and thermal phenomena differ considerably. Then, transiemtgular frequency of the source currents.
simulations for each problem are performed alternatively. TheFrom Maxwell’s equations, neglecting displacement currents
strong physical coupling is achieved with several loops bagid introducing the magnetic vector potental the magneto-
between both analyses at each thermal time step. Unfortunatgiyhamic problem can be written as follows:
such a staggered method is very time consuming.
The direct method has been introduced in [1]. In this paper, HA S
magnetodynamic problem is solved considering only one har- o, + rot(v.rotA) —Jo =0 withdvA =0 (1)
monic of the electromagnetic unknowns and a modified mag-
netization curve [2]. The alternative method proposed in [3] i8hereo is the electric conductivityy the magnetic reluctivity,
to take into account several harmonics according to the handJ, the source current density.
monic balance method [4]. In [5], comparisons between stag-For an axisymmetrical geometry around an axighe source
gered and direct methods lead to the conclusion that a good c@irrent densityl o (x, t) = Jo (7, 2, t) €4 and the magnetic vector
promise_ between time consumption and accuracy of results ¢lentialA (x, t) = A(r, z, t) ey present only one nonzero com-
be obtained. _ _ _ ponent depending on radial and axial coordinates. In this case,
In this paper, we deal with the numerical coupling betwegRe second equation in (1) is automatically satisfied and first the
finite- and boundary-element methods (FEM and BEM) to sol&uation in (1) only has to be solved in directian
By using the harmonic balance, (1) is now replaced by the
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B. Harmonic Balance and Boundary-Element Methods the partp of the harmonid of the magnetic vector potential in

The method coupling finite elements in the nonlinear condufkeen: [N the same way{ Qi pen} corresponds to the elec-
tive media and boundary elements in air has been successf{[§lnagnetic variable defined in (7). Refer to [6] to get matrices
applied in [6] for induction heating simulation. By the way, th and[G].
el_ectromagnetlc prob_lem is perfectly splved in the whole spage Coupling Between FEM and BEM
without any mesh of air. This approach is particularly well suite .
when moving parts are involved. Let us consider a mesh 6irgy; (n Nnodes) and a compat-

We assume that the whole space is subdivided into condiR{e mesh ofl'rey-gea (b nodes). The whole spaderpy is

regionQpg, free of any source currerftpey-pen represents them with nodes. In each eleméitt, the spatial approximation

the common FEM-BEM boundary, antkgy andnpey =  Of Akp(%) is the following:

—npgy are the unit outside normals Fegy-gey from Qreum ne

andQggy respectively. x € 0%, Ay(x) =S NFA; ., = [N°]- {A¢ (11)

In Qpev, A(x, t) is the solution to the following equation: o ; B (AL}
AA(X,t) =0 (4) wheren® represents the number of nodes connected to element
e, A; 1, the unknown value at nodeof elemente, and Ny the

with boundary conditions shape function associated with nodef elemente.

o Equations (2) and (3) give rise to the resolution of the fol-
A =0 toinfinity (I'sc) ()  lowing equations fof = 1,3,...,m:
Continuity toA and divA on'reyv-BEM (6)

{Ric ({Asc}, {Ars}, .. )}

o . = A {Ri, ({A7}. {AL}, - )=0 (12
The vector Laplace equation with boundary conditions has to e=1
be solved for each sine and cosine part of e+ 1)/2 har- {Rus ({Are} {41}, - )}
monics of the magnetic vector potential. Therefore, it leads to = X {RY, ({AS.)}, {AS),...)} =0. (13)
the resolution of the following equations fbe= 1,3, ..., m: e=1

Q =H x npgm = —H X ngem oOn'rev-geM-— (7)

Each of them + 1 residual vectordR,,(...)} hasn compo-
nents. The total number of degrees of freedom is then equal
tﬁ (m + 1) % n in this problem. Residual vectors are obtained

where A;. and A;; represent the cosine and sine parts of tht h bling the el i dual ¢ . t th
harmonic of ordet. rough assembling the element residual vectors given at the

Both equations in (8) give rise to the following boundarypOttom of the page, with for example

A(A(x)eg) =0 and A(An(x)eg) =0  (8)

element equations: ) T
(H]{ A e} — [G1{Quenen} = 0 ©) [Vicks] = T / [v (||rot A|])]. cos(lwt). sin(kwt)dt.  (16)
H]{A;s Bem} — [GI{QusBEM} =0 (10) ’

Since compatible meshes are usedigfy andl'rev-BEM,
where{A, pem} (p = c for the cosine part and = s for the the conditions defined in 6 are automatically fulfilled. More-
sine part) is the unknown vector containing the nodal value ofer,{A;, senm} is now a subset ofA;, } limited to the nodes

m

{RE.(...)} :_./ [N low.[N°]. {Af,} dv + / [N]" T, (x)dv— > ( [rot N°|” [11c k). [rot Ne].{AZ(,}dv)

Qe Qe k=1,
=S / rot N°|” . [vie s [rot N°T. {A.} do | + IN“].Q5 (x)ds (14)
F=13 e aQEﬂaQIZFEM—BEM
and
(Ri(..)} =+ / N low.[N°]. {AS,} dv + / N7 T (x)dv — ( / [rot N7 [vis ke)-[rot N¢]. {A%,} dv
g'ze Qe k=1,3 Qe
-y [rot N°)" . [vpe ps] . [rot N°]. {AG, }dv | + IN“)".Q5, (x)ds (15)

k=13 \(e 90NN

FEM=-BEM
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belonging ta'reM-BEM- Lt us now suppose that the tefmp AB=0.01 m
is defined from nodal values contained in a vectQ, rewm } BC=0.003 m
. . : . CD=0.001 m
(b components) by using shape functions of the elements lying DE=0.004 m
on the boundary of2rgy;. Then, equation (7) leads to the fol- g'gj‘?ggg'gm
lowing relation: BG=0.0041 m
K BH=0.00663 m
{Qip,rEv} = —{Qup,BEM}- a7 J BI=0.008m
| BJ=0.01041m
By considering the vector%mﬁagr [NB]T.Q;"I)(X) ds g BK=8tOI1I??9 m
we obtain the following vector: AT T
BCb E
[THQup.FEM}- (18)
. . . . .. Fig. 1. Mesh of the device — steel part and inductor.
Matrix [T] is obtained by assembling the element gquantities:
Jo0emo0 [N]T.[N°] ds. The vector (18) can then _
TrEM- using the Newton-Raphson method. Iterations are performed

EM-BEM . - 1
be replaced by the following on€T].[G]".[H]{ Ay en} until either the maximum absolute value of the nodal residual

thanks to (17) and (9) or (10). This matrix term represenisaq (23] or the maximum variation of degrees of freedom be-
the gontr|but|on of air t(_) the resolut.|on. of magnetlodynarr? een two successive iterations become less than prescribed
nonlinear problem by using the FEM inside conductive mEdI"?L‘hresholds. In our case, these thresholds are defined propor-
tionally to the values obtained at the beginning of the iteration
process using the coefficieat= 102,

For the thermal analysis, the following equations have to be

I1l. THERMAL ANALYSIS

solved: V. APPLICATION
de . . i i i i i
pCZ _div(rgradd) — Q=0 in © (19) _We consider the heating of a stee! piece using a static
dt single-turn copper inductor. The simulation is performed under
A.gradf.n = q(f,t) ondQy (20)  an axisymmetric assumption and, for symmetry reasons, only

0 =0, ondQy with 9Q=0Q,U00 (21) half of a meridian section is considered (Fig. 1). The whole
mesh (component + inductor) includes 1340 elements and 1323
whered, p(f), C(6), andA(#) are the temperature, the densitypodes. Air is not meshed and treated with boundary elements.
the SpeCiﬁC heat, and the thermal CondUCtiVity, reSpeCtively, and’rhe e|ectromagnetic properties of the Component are tem-
{2is a bounded domain (bounda?{2) representing all the con- perature-dependent. The electric conductivit2~!.m~1) is
ductive media. defined as a piecewise linear function defined by a series of
@ represents the power losses through the Joule effect. The,) values where the temperaturefig°C). The following
mean power overTone periddof the source current is equal tocouples of values are used;, 5.556 x 10°), (200, 3.333 x 105),
Q(x) = 1/(oT) [, J*(x,t)dt. Considering the expression 0f(400,2.0 = 106), (600,1.282 = 106), (800,0.909 x 10°),

J through a Fourier serie§) can be written as follows: (1000, 0.840 * 10°), (1200, 0.820 % 108), (1400,0.769 * 10°),
. m (2000,0.616 x 105). The magnetization curves are defined by

Q) = 5= > (Fee®)’ + (Bus(x))?) . (22)  the formulaiB(H, 6) = (o + (Bo(6)/(H +1273))  H (B

20(6) k=13 in Teslaand? in A-m~Y) wherep = 47 10~ H -m~! and

the coefficientB, depends on the temperature. Temperafure
and coefficientB, are related by a piecewise linear function:
(0,1.6), (200,1.588), (400,1.552), (500,1.522), (600,1.474),
The finite-element approximation uses + 2 degrees (650,1.432), (700,1.360), (735,1.240), (740,1.120), (745,1.0),
of freedom at each noden( being the order of the highest(768,0.0). The following thermal properties have been
harmonic considered), namely the temperature and the sine aodsideredy = 7800 kg - m=3, ¢’ = 460 J- kg~ "-K~! and
cosine parts of thém + 1) /2 harmonics of the magnetic vector\ = 30 W-m~1.K~*. For the inductorg = 59%10¢ Q~1.m™1,
potential. wo= po, p = 8930kg- m3, C = 386J-kg~' - K~! and
The application of the FEM then leads to the resolution of & = 400W - m~' . K~'. A sinusoidal voltagd/;. = 28 V is
system ofim + 2 coupled nonlinear equations for each node arapplied to the inductor during 2.6 s and its frequency is equal

IV. DIRECT METHOD

at each thermal time step to 50 kHz.
The finite-element software SYSWELD is used for all calcu-
}gl E}Z{’ }ﬁl‘{’ ‘{{ﬁ“{’ o ;{ B 8 lations. Two simulations are performed with the direct method
2V ey Vs 1y - - ! —o (- (23) considering only one harmonic for the first one and two har-

{RS ({0}7 {Alc}7 {Als}7 .t ) =

monics for the other one. A third simulation has been performed
with a staggered method considering a strong coupling between
The first equation in (23) corresponds to the thermal probleimoth phenomena and three periods of the source current. This
Them + 1 other equations correspond to the finite-element fosimulation is considered as the reference because it fully ac-
mulation associated with (2) and (3). These equations are soleadints for all the nonlinear phenomena. For all simulations, the
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") Istorder | 2) 1stand Srd order | 3) staggered method Temperature ("C)
larmonic harmonics 1400
Solver direct direct iterative -+ T """ "Node B (0.01,0.0)
CcPU CPU=1687 CPU=6601 CPU =17 290 7 . » Node F (0.01,0.00216)
Elapsed time 0 h 40 min 1h 58 min 7 h 02 min 1200 e e
Same for all simulations: PG Penti 1Ghz RAM=512MO 4 Node G (0.01,0.0041)
1000 | : e
Fig. 2. Characteristics of the different simulations. B gt Node H (0.01,0.00663)
800 - Node 1 (0.01,0.008)
140";'emperature ("C) 4
i : 600 —--..p Node J (0.01,0.01041)
1200 — e oo 400 ./ ;__.____NQQQ.K(0.01,0.01229)
800 0 it Time (sec)
h 0 0.5 1 1.5 2 25 3
600 —
400 __ Fig. 4. Evolution of the temperature in differents nodes as a function of time.
2 —
00 | VI. CONCLUSION
0 e - ‘ Radius (m) . .
0 | 0002 0004 0006 0008 001 The paper presents only comparisons between numerical for-
Point A: r=Om Point B: r=0.01m mulations as no experlmental measurement concerning the ex-
ample presented above is available. Comparisons with other
Fig. 3. Temperature profiles between A and B at different instants. numerical methods such as the one using a modified equiva-

lent reluctivity is in progress. The presented results prove that
thermal time step is equal ¢, = 0.1 s and the accuracy the coupling between finite elements and boundary elements
associated with the Newton-Raphson solution procedure is ib&uccessful when the harmonic balance method is associated
same for all. Fig. 2 summarizes the characteristics for all simwith. Combined with the direct method which strongly couples
lations that have been realized. Fig. 3 gives temperature profileagnetodynamic and thermal nonlinear problems, it represents
between nodes A and B (see Fig. 1) at different time steps freamn interesting tool for the numerical simulation of induction
0.2t0 2.6 s every 0.2 s for simulations 3 and 2. At the end of theating processes. The direct method is easier to use and is com-
process simulation, the temperature has reached a maximurpatible with the use of boundary elements which avoids any
about 1347C in B and 571 C in A (simulation 3). If now both meshing of air and simplifies the treatment of moving parts. It
profiles are subtracted, it is calculated that the maximum temjives also accurate and faster results than a staggered method. It
perature difference is found maximum at node (0.0088,0.0) @uld be very simple to apply the direct method to an example
timet = 0.4 s. This quantity is equal tg-42 °C and the tem- including moving parts.
perature at this node is equal to 623 (simulation 3). It means
that the maximum temperature difference between the staggered
and direct (two harmonics) simulations is less than 7% (checked REFERENCES
for a_” nodes at any time) whereas the_tOta_I elaps_ed time Is ap[l] M. Feliachi and G. Develey, “Magneto-thermal behavior finite element
proximately reduced by a factor 3.5 with simulation 2. If now analysis for ferromagnetic materials in induction heating devi&gE
the same comparison is made for simulations 3 and 1, it leads_ Trans. Magn.vol. 27, pp. 5235-5237, Nov. 1991.
hiah . ¢ ture difference equal to 30% a32] Y. D. Terrail, J. C. Sabonnadiere, P. Masse, and J. L. Coulomb,
to avery high maximum temperatu ! qu 0 “Non-linear complex finite elements analysis of electromagnetic field
node (0.00922,0.03,= 0.4 s, Al = +218°C andf = 771°C in steady-state ac devices|EEE Trans. Magn.vol. MAG-20, pp.
(simulation 3). 549-552, July 1984. — .
In Eia. 4. the evolution of the temperature as a function of [3] R.Pascal,J.-M. Bergheau,and P.Ph.Qonraux, Dlrectcogpllng bet_ween
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time, from¢ = 0 still t = 2.6 s, is represented at different composition of magnetic vector potential,”fioc. 13th COMPUMAG
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operating conditions of this simple example, the direct methodI5] R-Pascal, P. Conraux, and J.-M. Bergheau, “Numerical simulation of in-
ith two harmonics gives quite accurate results compared to duction hgatlng processes—comparison between direct multi-harmonic
wit g q - _p and classical staggered approaches,Piac. 7th Int. Conf. Advanced
the reference. The advantage of the direct approach is that the Computational Methods in Heat Transf&. Sunden and C. A. Brebbia,
total elapsed time is reduced in comparison with the staggered_  Eds., Apr. 2002, pp. 393-403. . .
hod which requires a lot of savinas and readinas on the ph S_6] J.-M. Bergheau and Ph. Conraux, “FEM-BEM coupling for the
method whic qui ving ing phy modeling of induction heating processes including moving pads,”

ical disk of the computer. Shanghai Jiaotong Uniwol. E-5, pp. 91-99, June 2000.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


