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Three-Dimensional Integral Method for Modeling
Electromagnetic Inductive Processes

Annie Gagnoud

Abstract—This paper describes a three-dimensional integral
method that models electromagnetic phenomena taking place
during inductive melting. The method is well suited to inductive
systems undergoing sinusoidal excitation at midrange or high
frequencies. Under these conditions, only the surfaces of the
conductors need to be meshed. The unknowns of the model are
current density and scalar electrical potential. Power density,
electromagnetic forces, and electrical impedance can easily be de-
rived. Comparisons between numerical results and measurements
confirm the accuracy of the model.

Index Terms—Eddy currents, induction heating, integral equa-
tions, numerical analysis.

I. INTRODUCTION

I N INDUCTION melting, a sinusoidal variation of the ex-
citing current creates eddy currents in the material to be

melted. The frequency of the excitation signal is generally in the
kilohertz range. An induction-melting installation mainly con-
sists of an inductor coil surrounding a crucible that contains the
load. Different kinds of crucibles exist for different applications.
The crucible may be cylindrical, segmented, or have a rectan-
gular cross section, and can be made of electrically conducting
or nonconducting materials. The load can be an insulator, such
as an oxide, a semiconductor, or an electrical conductor. For
computational reasons, configurations are often assumed to be
axisymmetric. However, for certain shapes, for example, those
used in continuous casting or cold crucible processes, better re-
sults can be obtained by taking into account the three-dimen-
sional (3-D) nature of the configuration.

In induction-melting installations, conductors and non-
magnetic materials are exposed to relatively high frequencies
( kHz). This can cause difficulties in numerical modeling due
to the small skin depth. Further complications are introduced by
the 3-D geometry, the small slit width separating segments (for
cold crucible devices), and the infinite boundary conditions.

Different numerical approaches have been used to model this
kind of electromagnetic problem, including the finite-element,
boundary-integral, moment, and integral methods.

The finite-element method has long been used to solve 3-D
eddy-current problems involving a variety of unknowns and
formulations. The stability and accuracy vary according to the
solution chosen. Various 3-D magnetic vector potential formu-
lations have been developed, studied, and compared [1]. Many
authors concentrated on the conditions ensuring the unique-
ness of the potentials and the stability of the finite-element
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formulations at low and high frequencies. A number of authors
have adopted formulations using the magnetic vector potential

and the electrical potential to solve 3-D eddy-current
problems. This 3-D approach can be used to determine the
shape of the free surface in cold crucible systems and to study
the influence of the frequency on the shape of the molten
surface in a rectangular cold crucible [2]. A formulation using

magnetic vector potential and electrical vector potential
has been applied with the edge-element technique [3]. This
approach is of interest for magnetic regions with different
permeabilities. The authors compared this formulation with the
classical method and discussed its advantages. This method
was applied to induction heating systems.

With all numerical methods, it is difficult to take into account
the consequences of a thin-skin effect and unbounded domain.
Different ways of dealing with the small skin depth have been
proposed.

A current sheet approximation can be used to model the weak
penetration of the eddy current in an integro-differential method
to model the cold crucible device [4], [5].

Another solution is to use the surface boundary impedance,
based on a one-dimensional (1-D) approximation, combined
with the replacement of the conductors by a boundary condition.
The impedance boundary condition is an effective method that
can handle skin depth effects in linear media. This condition is
used in both the finite-element and boundary-integral methods.
A number of articles have been published on this subject.

The use of this boundary condition and the errors that can
occur when the approximation is not justified have been previ-
ously discussed [6]. A modified surface impedance for an edge
in the transverse electric case has been proposed and compared
with the classical impedance. Elsewhere, a high-order surface
impedance boundary condition (SIBC) has been combined with
the finite-element method [7]. This high-order SIBC presents
some advantages including higher accuracy and the possibility
of taking the effects of the curvature of the conductor surface
into account. A methodology to select the order of approxima-
tion best suited to a given problem has been proposed [8]. A
3-D finite-element model coupled with impedance boundary
conditions has also been developed and applied to the study of
radio-frequency plasma [9]. We have previously proposed a 3-D

finite-element formulation , with an impedance boundary
condition to study electromagnetic continuous casting. The
free surface of the meniscus is determined by the pressure
equilibrium [10].

The boundary-integral method is also currently used to
model 3-D eddy currents. A boundary-integral formulation,
with simple single and dual layers, is well adapted to large
and complex applications because the number of unknowns is
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reduced to a minimum [11]. An original 3-D method has been
proposed to extend the application of the surface impedance
to nonlinear materials and applied to the induction hardening
process [12].

The integral or moment method can also be used to solve
the thin-skin eddy-current problem for a linear material. In the
past, this method has generally been applied to axisymmetric
geometries [13].

We have extended this model to the cylindrical cold crucible
configuration and proposed a method to take the segmentation
of the cold crucible into account [14].

Our aim is to develop a 3-D numerical model that is capable
of describing electromagnetic problems including skin effects in
linear materials. It is important to know global quantities such
as joule power, electrical impedance, and local values of param-
eters such as power density and electromagnetic forces. Local
parameters can be determined by classical methods (finite el-
ements or boundary integral). However, it is rather difficult to
obtain values for global quantities, such as electrical impedance,
and to choose a stable formulation for the 3-D problem. The in-

tegral method uses the current density and the electrical po-
tential ; it is based on the local Ohm’s law, the Biot–Savart
relationship, and the conservation of current. Only the active
electrical part of the domain is meshed. These physical relation-
ships are used directly in the numerical formulation, which leads
to a linear system. It is possible to calculate the local values for
power density and force density as well as global values such as
joule power and electrical impedance. The electrical impedance
can be directly deduced from the solution. The difficulty lies in
extending this methodology to 3-D geometry. For this reason, it
is important to develop a general numerical approach.

In three dimensions, this method is of particular interest when
the electromagnetic skin depth is small compared to the size of
the conductors: the mesh is limited to the surface and, conse-
quently, the range of the linear system is reduced.

II. 3-D INTEGRAL METHOD

The objective here is to implement a new numerical method,
based on a physical approach and adapted to inductive melting
processes and the modeling of 3-D configurations. To obtain
a general approach, we use the interpolation, derivation, and
integration techniques commonly used in the finite-element
method. In this way, it is possible to adapt the integral method
or moment method (MM) to complex 3-D geometries.

A. Physical Equations

The two equations on which the model is based are:
• the local Ohm’s law equation

(1)

where is the current density, is the electrical conduc-

tivity, is the electrical scalar potential, is the mag-
netic vector potential, and is time;

• and the equation for the conservation of current

(2)

In the conditions of interest here, it is possible to use a par-
ticular solution of the vector potential. In an inductive melting
process, the interaction between the velocity of the melt and the
magnetic field can be neglected. The local expression of the po-
tential vector is obtained by the Biot–Savart law

(3)

represents the volume of the conductors, the magnetic
permeability of air, while represents the distance between the
point concerned (point where the potential is calculated) and the
source point in the volume . This relationship implicitly takes
into account the boundary condition at infinity.

Given the alternating nature of the exciting current, complex
notation is required to express the electromagnetic quantities.
Relation (1) becomes

(4)

The subscript denotes the complex value of the variable, is
the angular frequency, and .

When the Biot–Savart law (3) is substituted in the Ohm’s law
(4), we obtain an integral relationship between the current den-
sity and the electrical potential

(5)

Our electromagnetic problem can then be described by (2)
and (5). These relations only apply to the conducting regions.
Note that with this approach, the current density and electrical
potential become the unknowns.

The electromagnetic skin depth is defined by
. When the frequency is around 10 kHz and

the load is an electrical conductor 10 m , the
skin depth 5 10 m is very small compared to the size
of the device (0.05 m to 1 m). It is, therefore, possible to apply
an exponential decay when the 1-D approximation is valid

(6)

where is the complex value of the current density at the
surface of the conductor, and is the distance of an internal
point to the surface in the direction normal to the surface. The
decay law (6) is substituted in the integral in relationship (5).

When the electrical conductivity has small variations, the in-
tegral on each conductor can be separated into the product of
two integrals: one with respect to the normal at the surface of
the conductor and the other with respect to the surface of con-
ductor . The integral, therefore, becomes

(7)

Relationship (7), based on the impedance boundary condition
(IBC), is valid when the radius of curvature is significant and the
surface point is far from the edges and corners. Therefore, when
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Fig. 1. First-order staggered elements on a plane surface. The current density
has two components on the vectors tangent to the surface t1, t2.

the surface of the conductor has edges and corners, relationship
(7) is not accurate and the resulting error depends on the con-
figuration of the electric field and skin depth [6]. We have not
yet introduced an adjustment to the boundary impedance condi-
tion. In a future publication, we will examine the possibility of
introducing a better-adapted model.

Consequently, for thin-skin conditions, knowledge of the cur-
rent density and electrical potential at the surface of the con-
ductor is sufficient to describe the current density everywhere
in the conductor.

B. Mesh of the Studied Domain

Generally, the various components of an inductive melting
installation are relatively simple. The conductors can be de-
scribed by elementary volumes such as hexahedrons, cylinders,
cones, and helixes. The liquid surface is smooth and its shape
results from an equilibrium between magnetic pressure, hydro-
static pressure, and surface tension. For example, the liquid sur-
face can have a meniscus shape, as in continuous casting of steel
or in a cold crucible.

In this approach, only the conductors are meshed. The geom-
etry is, therefore, a set of objects. Simple shapes such as hexa-
hedrons or cylinders are considered; more complex shapes will
be studied in the future.

The unknowns are the current density and electrical po-
tential . The current density vector is tangent to the surface

of the conductor, because is only defined in the conductor,

skin depth is thin, and . Therefore, the problem
can be described using only three complex unknowns corre-
sponding to the two components of the current density plus the
electrical scalar potential. The skin is thin and, therefore, the
mesh is limited to the surface of the conducting region. Two
staggered meshes are used, one for the scalar potential and the
other for the current density. The nodes of the current density
are the center of the scalar potential elements.

The algorithm for the mesh is based on five steps.
• Creation of nodes on the surface of each object.
• Creation of the elements of each object.

• Creation of nodes, for which the coordinates are cal-
culated at the center of elements by polynomial in-
terpolation. The two tangential vectors are calculated by
derivation (Fig. 1).

• Creation of nodes on the edges of the objects.

• Creation of the elements.
Fig. 2 shows an example of a mesh for a hexahedron. When the
object is not smooth, difficulties arise in dealing with the current
density at edges and corners. These difficulties are related to the

Fig. 2. Example of a mesh of the surface of a hexahedron with first-order
elements. Quadrilateral V elements are represented by solid lines and

quadrilateral
�!

J elements by broken lines.

Fig. 3. First-order staggered elements near an edge. The current density nodes
3 and 4 have one component along the vector t1 tangent to the edge.

choice of both the decay law and the unknowns. The density is
zero on corners and has a tangential orientation on the edges.
Care must be taken when creating the density elements in the
vicinity of edges (Fig. 3) and corners.

C. Numerical Implementation

It has been previously shown that the quantities and
may be calculated by solving the two relationships (2) and (5)
at the surface of the conducting regions.

1) Ohm’s Law: Ohm’s law (5) is written at each current den-
sity node of the mesh. In this relationship, two terms have to
be expressed with respect to the unknowns at the nodes: the gra-
dient of the electrical potential and the integral. Polynomial in-
terpolation is used to calculate the gradient and integral.

On each element, the electrical potential is interpolated
using the first-order Lagrange polynomial with nodes

(8)

where is the complex value of the electrical scalar poten-
tial at node , and is the polynomial interpolation
function on the element. Using this interpolation, compo-
nents of the gradient of the scalar potential can be expressed by
the derivative of the polynomial function with respect to the co-
ordinates of the reference element as follows:

(9)
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(a) (b)

Fig. 4. Example of a 3-D element (cube) associated with a quadrilateral
element (square). (a) Real 3-D element. (b) Cube.

We write .
The gradient of is calculated at the current density node

at the center of the electrical potential element, i.e., at the coor-
dinates ( , ) of the reference element . The mesh
is constituted by surface elements in a 3-D configuration. To
obtain a general approach, a 3-D element is constructed on the
surface element by adding the normal vector of the surface
element to each node (Fig. 4). The Jacobian matrix is calculated
for this 3-D element. In this way, it is possible to calculate the
value of the gradient at the current density node with coordi-
nates ( , , ) in the 3-D reference element
associated with the electrical potential surface element.

When the inductor coil is not modeled, the current density is
imposed in the coil. Therefore, the integral is the sum of two
integrals

is the inductor coil domain and is the domain occu-
pied by the conductors with eddy currents. Hence relationship
(7) is applied to calculate the integral with respect to the con-
ductors with thin-skin eddy currents. It is possible to express
the integral on the surfaces of eddy-current conductors as a sum
of the integrals of each surface element of the current density
mesh.

The integral on the eddy-current conductors now becomes

(10)
where is the total number of surface elements of the cur-
rent density mesh, the surface area of the current density
element and the skin depth in element . The following
relationship analytically calculates the integral with respect to
the normal direction for a small skin depth:

A Lagrange polynomial interpolation is used to express
the value of the complex current density at the surface of the
conductor

(11)

represents the number of the nodes of element and
is the polynomial interpolation function on the current density
element. The following relation may thus be obtained:

(12)

The real coordinates of a point ( , , ) of an element can be
expressed by the Lagrange functions of the reference
elements as follows for example for coordinates:

(13)

where represents the first coordinate of node of the ele-
ment. Actually, the geometrical functions are the same functions
used for the interpolation of the unknowns. The differential of

area can be expressed by vectors and by the relation

(14)

(15)

The density at node is extracted from the integral with re-
spect to the surface . To calculate the integral, we use numer-
ical methods: the Gauss method for a quadrilateral element and
the Hammer method for a triangular element.

Ohm’s law at each node of the current density mesh is given
by the following relation:

(16)

At each node of element , the current density has two com-
ponents, and , and can be expressed by the fol-
lowing relation:

(17)
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where the vectors and are tangent to the surface of the
current density element at node . This two unit vectors are or-
thogonal and are calculated by taking the derivative of the poly-
nomial functions.

The last step is the projection of Ohm’s law onto these two
vectors to obtain two linear relations on each node .

When node is an edge node, the density has only one com-
ponent and only one projection is required. Therefore, in this
special case, one relation is obtained for Ohm’s law.

2) Conservation of the Current: The relationship
is taken into account by integrating over a control volume.

The following relation is obtained:

(18)

Using Green’s theorem, we obtain

(19)

where is the boundary of the control volume and is the
external normal to the control volume. In our case, the density
current is tangent to the surface of the conductors and the con-
trol volume is the current density element. Consequently, this
integral is the sum of the integrals on the edges of the current
density element. We use a polynomial interpolation of the cur-
rent density (11). On the edges of the element, the differential

weight can be expressed by the vectors and defined in
(15).

The density current at each node is expressed by the relation-
ship (17), providing a second linear equation. The conservation
of current is applied to each density current element. However,
when the surface is closed, one relation is eliminated and re-
placed by a Dirichlet condition on .

3) Linear System: This numerical formulation leads to a
linear system

(20)

where is a full nonsymmetric matrix, is the vector of
unknowns constituted by the components of the current densi-
ties and the electrical potential, and is the second vector of
the system that is equal to the vector potential created by the
coil when the current density is imposed in the coil. The terms

, , are constituted by complex numbers. To solve this
system, the Gauss method with a total pivot is used.

D. Particularities of the Method

The particularities of the method developed here are the same
as those of the boundary-integral method.

• The matrix is full, nonsymmetric, and badly conditioned
but the mesh is reduced to the surface of the conductors.

• A singular integral appears when node is on the inte-
gration element. The numerical integration on this partic-
ular element is applied with a higher number of integration
points. It is possible to test other numerical solutions.

• The magnetic induction is calculated by integration as in
the boundary-element method. This gives more accurate
results than the finite-element method.

E. Modeling the Symmetries and the Periodicity

To reduce the size of the linear system, we introduce the pos-
sibility of taking into account periodicity in the azimuth direc-
tion as well as planes of symmetry and antisymmetry. In this
method, when a plane of symmetry or antisymmetry cuts a con-
ductor, we impose a:

• Dirichlet condition on the electrical potential on an an-
tisymmetrical plane;

• Dirichlet condition on the normal component of the cur-
rent density on a symmetrical plane.

However, in this method, the contribution of all the current
densities to the magnetic vector potential must be taken into ac-
count. For this, new elements must be created using the sym-
metry, antisymmetry, or periodicity functions. Given that the in-
tegral must be taken over these new elements, the CPU time for
the integral calculation of the terms of the matrix is not reduced
as much as in other methods.

F. Values of Postprocessing

The unknowns of this method are the current density and the
electrical scalar potential. Therefore, it is easy to calculate the
following.

• The local values:
• joule power density: , where

is the conjugate of ;

• magnetic induction obtained using the Biot-
Savart law;

• electromagnetic force density

.
• The global values:

• joule power in every conductor by integration of the
power density;

• electrical impedance , where is the
resistance and is the inductance.

III. NUMERICAL RESULTS

To demonstrate the validity of this 3-D model, we have
studied two different geometrical configurations. The re-
sults are compared with experimental measurements and the
calculations obtained using quasi-3-D software developed a
few years ago [14]. The latter is also based on an integral
method, but was adapted to axisymmetric or cylindrical cold
crucible configurations. This software is called axial software
to differentiate it with respect to the new 3-D software.

A. Configuration no. 1

First, we study the simple problem consisting of a hexahe-
dron-shaped load and an inductor with five turns. The configu-
ration is illustrated in Fig. 5(a).

The height of the hexahedron is 0.1 m and its sides mea-
sure 0.06 m. It is made of copper 5 10 m .
The length of the sides of the square turns of the inductor is
0.08 m. The numerical simulation is carried out for a frequency
of 20 kHz and a coil current of 1000 A. We analyze the results
obtained for the global and local values.

1) Electrical Impedance Results: The influence of the mesh
of the 3-D software package is studied on the equivalent elec-
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(a) (b)

Fig. 5. Hexahedron load and inductor with five turns. (a) Geometry and mesh.
(b) Current density vectors on the surface of the hexahedron.

Fig. 6. Influence of the mesh on the value of the resistance.

TABLE I
INFLUENCE OF THE MESH ON THE VALUE OF THE INDUCTANCE

trical impedance (Fig. 6 and Table I). The value of the resistance
is obtained in two ways.

• The resistance is deduced from the joule power in the
load.

• The complex impedance is deduced from the vector poten-
tial calculated on the inductor. and represent the re-
sistance and inductance of the load, respectively. The load
is an electrical conductor, so this inductance value is neg-
ative (due to the eddy currents).

The two calculations of the resistance converge on asymp-
totic values for the refined mesh. The number of unknowns at
convergence is about 3000. The resistance converges faster
than the resistance . The difference between the two asymp-
totic values is around 2.5%. The dispersion of the values of in-
ductance is rather small (Table I). The maximum error compared
to the asymptotic value is 3%.

The results obtained by this 3-D software are compared with
those obtained using the axial software (Table II). With the axial
software, a cylindrical configuration designed to give the same
induction flux was used.

There is very good concordance between the two numerical
models for the inductance. For resistance, on the other hand, the
relative difference between the two software packages is consid-
erable (15%). However, the geometry of the two configurations
is different: for the hexahedron, the load cross section is a square
and for the cylinder, it is a circle. Given that the perimeter of the
square is greater than that of the circle, it is normal that the re-
sistance is greater for the hexahedron.

2) Current Density Results: This section presents the anal-
ysis of the distribution of the current densities. Fig. 5(b) shows

TABLE II
ELECTRIC IMPEDANCE OBTAINED BY THE TWO SOFTWARE PACKAGES

Fig. 7. Current density at 20 kHz on a vertical face of the hexahedron and
cylinder. Hexahedron: 3-D software. Cylinder: axial software.

Fig. 8. Geometry and mesh of a hexahedron with a helical inductor.

the current density vectors on the surface of the hexahedron.
The direction of the vectors is horizontal and they turn around
the load. The higher densities are opposite the inductor.

A comparison between the current density distributions
obtained by the two models, 3-D and axial, is presented
(Fig. 7). The curves of the current density as a function of
are drawn. For the axial software, the component of the density
is azimuthal. For the 3-D software, the curve is taken along a
vertical line in the middle of a face ( ) and the component of
the density is on the axis. The differences between the two
curves are minor and are only noticeable at the extremities of
the curves.

3) Helical Inductor: We will now look at the influence of
the shape of the inductor. With the 3-D software, it is possible
to study a helical inductor (Fig. 8).

The electrical impedance results obtained for the two config-
urations [Fig. 5(a) and Fig. 8] are compared in Table III. This
3-D effect has a significant influence on both the resistance and
the inductance and affects the global values by 7% or 8%.

4) Conclusion: These results indicate that this 3-D software
provides reliable values for global terms such as electrical
impedance and local terms such as current density.

B. Configuration no. 2

We will now look at various 3-D cold crucible configura-
tions (Fig. 9). These cold crucibles are made of copper
5 10 m . The geometric characteristics of the cold
crucible configurations are presented in Table IV.

To test this 3-D model, electrical impedance measurements
were carried out. These measurements were based on the
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TABLE III
INFLUENCE OF HELICITY ON THE IMPEDANCE (MESH 5)

(a) (b) (c)

Fig. 9. Geometry and mesh of one segment of the three cold crucibles. (a)
Cold crucible 1. (b) Cold crucible 2. (c) Cold crucible 3.

TABLE IV
GEOMETRICAL CHARACTERISTICS OF THE THREE COLD CRUCIBLE

CONFIGURATIONS

analysis of the electric discharge in an oscillating circuit.
Tables V –VII present the impedance values and the percentage
error of the model results with respect to measurements for the
three cold crucibles.

The values of the electric impedance obtained using the 3-D
software compare favorably with measurements. For crucibles
1 and 2, the relative error in the resistance determined by the
3-D model is relatively small (around 5%). On the other hand,
the resistance determined by the axial software is far from the
measured values for these crucibles. In the axial software, the
periodicity of the cold crucible is taken into account but the seg-
ments are meshed into elementary currents with imposed direc-
tions. As a result, significant 3-D effects cannot be modeled. For
the third crucible, both software packages provide results that
compare well with the measured values, even if the 3-D method
appears to be somewhat better. The two models have similar er-
rors in inductance for crucible 1. The values of the inductance
are better for the axial software package for crucibles 2 and 3. In
the case of a cold crucible with a large number of segments, the
3-D software has no significant advantages over the axial soft-
ware: the computing time is greater and the numerical results
are no better.

For all of the examples considered, it appears that the 3-D
software gives a good indication of the value of the impedance
for a cold crucible configuration. Better results are obtained for
the resistance than for the inductance.

TABLE V
IMPEDANCE OF COLD CRUCIBLE 1 AT 10 kHz

TABLE VI
IMPEDANCE OF COLD CRUCIBLE 2 AT 25 kHz

TABLE VII
IMPEDANCE OF COLD CRUCIBLE 3 AT 25 kHz

(a) (b) (c)

Fig. 10. Distribution of the current density on the surface of one segment of
each cold crucible. (a) Cold crucible 1. (b) Cold crucible 2. (c) Cold crucible 3.

Fig. 10 shows the distribution of the current density at the
surface of the three crucibles obtained by the 3-D software for
a coil current of 1000 A.

The first cold crucible has only one slit and is higher than
the inductor. On the external cylindrical face of the crucible,
the current density is high in the middle, facing the inductor,
and very low at the top and bottom. In the slit of the crucible, a
significant vertical current density exists. For crucibles 2 and
3, the distribution of the current density on the external face
is not uniform along the axis. However, on the internal face,
the distribution is quasi-uniform. Note that there is an important
current density on the lateral face of the segment.

The distributions of the current density obtained by the two
software packages are compared for the first cold crucible.
Fig. 11 shows the variation of the azimuth component of the
current density at the middle of the external cylindrical wall
and Fig. 12 at the middle of the internal cylindrical wall. Fig. 13
and Fig. 14 present the curves of the two components (radial
and vertical) at the middle of the lateral wall of the slit.

Fig. 11 and Fig. 13 show small differences between the cur-
rent density curves obtained by the two models on the external
and lateral walls. The horizontal component of the density has
the same maximum facing the inductor. The most important
difference appears on the internal wall of the cold crucible
(Fig. 12). With the axial software, the horizontal current density
shows a maximum opposite the inductor whereas with the 3-D
software, the horizontal current is uniform along the axis
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Fig. 11. Real part of the azimuth component of the current density on the
external cylindrical wall.

Fig. 12. Real part of the azimuth component of the current density on the
internal cylindrical wall.

Fig. 13. Real part of the radial component of the current density on the lateral
wall of the slit.

Fig. 14. Real part of the vertical current density on the lateral wall.

on the internal wall. This is due to the fact that the vertical
component of the density is significant in the slit (Fig. 14). In
the axial model, this effect cannot be modeled.

IV. CONCLUSION

This paper presents a new method, based on physical equa-
tions, for dealing with 3-D eddy-current problems. This method
uses:

• an approach similar to the boundary element method for
Ohm’s law including a special solution involving numer-
ical integration on 3-D surface elements;

• an approach similar to the finite-element method in terms
of numerical derivation;

• the volume method for conservation of current.

In this way, we obtain a numerical model well-suited to in-
duction problems in linear materials. This method is particularly
effective for thin skin depths.

The validity of this method has been tested using examples.
Numerical results for a hexahedron agree well with axial soft-
ware results for an equivalent axial configuration. Numerical re-
sults for the electrical impedance using cold crucibles agree well
with measurements. For cold crucibles, this software presents a
significant advantage compared to the axial software when 3-D
effects are significant, such as when the number of segments is
small and the 3-D geometry must be taken into account.

Moreover, this approach can be used to study various geomet-
rical configurations. The inductor coil can be easily modeled. In
this way it is now possible, for example, to study the effect of
inductor coil helicity and the influence of the connections.

REFERENCES

[1] O. Biro and K. Preis, “On the use of the magnetic vector potential in
the finite-element analysis of three-dimensional eddy currents,” IEEE
Trans. Magn., vol. 25, pp. 3145–3159, July 1989.

[2] Y. Kawase and T. Yoshida, “3-D finite element analysis of molten metal
shape in rectangular cold crucible system,” IEEE Trans. Magn., vol. 35,
pp. 1889–1892, May 1999.

[3] D. Albertz and G. Henneberger, “Calculation of 3D eddy current using
both electric and magnetic vector potential in conducting regions,” IEEE
Trans. Magn., vol. 34, pp. 2644–2647, Sept. 1998.

[4] H. Tsuboi, M. Tanaka, T. Misaki, and T. Naito, “Three-dimensional anal-
ysis of eddy current and electromagnetic force in cold crucibles,” IEEE
Trans. Magn., vol. 30, pp. 3499–3502, Sept. 1994.

[5] H. Tsuboi, M. Tanaka, F. Kobayashi, and T. Misaki, “Three-dimensional
eddy current analysis of induction melting in cold crucibles,” IEEE
Trans. Magn., vol. 29, pp. 1574–1577, Mar. 1993.

[6] N. Aymard, M. Feliachi, and B. Paya, “An improved modified surface
impedance for transverse electric problems,” IEEE Trans. Magn., vol.
33, pp. 1267–1270, Mar. 1997.

[7] S. Yuferev and L. Kettunen, “Implementation of high order surface
impedance boundary conditions using vector approximating functions,”
IEEE Trans. Magn., vol. 36, pp. 1606–1609, July 2000.

[8] S. Yuferev and N. Ida, “Selection of the surface impedance boundary
conditions for a given problem,” IEEE Trans. Magn., vol. 35, pp.
1486–1489, May 1999.

[9] F. Z. Louai, D. Benzerga, M. Feliachi, and F. Bouillault, “A 3D finite ele-
ment analysis coupled to the impedance boundary condition for the mag-
netodynamic problem in radiofrequency plasma devices,” IEEE Trans.
Magn., vol. 32, pp. 812–815, May 1996.

[10] B. Dumont and A. Gagnoud, “3D finite element method with impedance
boundary condition for the modeling of molten metal shape in electro-
magnetic casting,” IEEE Trans. Magn., vol. 36, pp. 1329–1332, July
2000.

[11] J. Shen, Z. Andjelic, and B. Schaub, “A hybrid single and dual simple
layer boundary integral equation formulation for 3-D eddy currents,”
IEEE Trans. Magn., vol. 34, pp. 2636–2639, Sept. 1998.

[12] L. Krahenbuhl, O. Fabregue, S. Wanser, M. De-Sousa-Dias, and A.
Nicolas, “Surface impedances, BIEM and FEM coupled with 1D
nonlinear solutions to solve 3D high frequency eddy current problems,”
IEEE Trans. Magn., vol. 33, pp. 1167–1172, Mar. 1997.

[13] B. Maouche and M. Feliachi, “Analysis of the eddy current effect on the
impedance of an electromagnetic system supplied by LF or HF voltage
and using a discretized integral method,” J. Physique-III, vol. 7, pp.
1967–1973, Oct. 1997.

[14] A. Gagnoud and I. Leclercq, “Electromagnetic modeling of induction
melting devices in cold crucibles,” IEEE Trans. Magn., vol. 24, pp.
573–575, Jan. 1988.


