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Active Power Loss in Thin Nonmagnetic Tape
Generated by Two-Sided Inductor Heater

GRZEGORZ SZYMANSKI

Abstract—A method for calculating eddy current losses that are pro-
duced in thin nonmagnetic tape and generated by a two-sided induction
heater is presented. The integral equation method permits an approx-
imate solution of the problem. The distribution of the current density
and the active power loss in the tape are considered. It is shown that
the integral equation method is more useful to analysis of the system
with a big flux dissipation than the finite element method.

INTRODUCTION

ECENTLY, particularly in magnetic field papers, the

finite element techniques have been used to analyze
the electromagnetic field [2], {4]. The electromagnetic field
equations also can be solved by the integral method [5],
[6], [91; [10]. The finite element (FE) method is naturally
intended to solve internal problems. Consequently there
must be a description of the distinct area constraints and
boundary conditions because with the FE method the
whole area must be covered by the elements. The external
problems have boundary conditions described to infinity.
Thus the external problems must be approximated by in-
ternal problems.
- These approximations, especially in a system with a big
flux dissipation, may leave very big spaces to be covered
by the elements, thus giving very large systems of linear
equations to be solved. Of course, in the integral method
the system matrix is fully populated, but the number of
nonzero elements in the finite element method can be
somewhat larger.

In [7] it is shown that the number of unknows can be
significantly reduced with no loss of accuracy, by the use
of a combined technique, i.e., a finite-element boundary-
integral technique. The integral method makes it possible
to reduce the field analysis to the conducting area and to
the boundary surface of the nonconducting ferromagnetic
medium, thereby removing the need to calculate the field
in the whole region.

In practice, induction heating systems have large flux
dissipation. In these systems, the solution of the whole
system is not required but knowledge of the power loss in
the heated substance is important. The considerations are
based on the assumption that the permeability of the mag-
netic shunt of the inductor is constant. Thus the system
examined is considered linear. The nonlinear effect can be
taken into account, but additional integral equations for
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fictional currents within a nonconducting ferromagnetic
bar must be formulated. The values of these currents are
calculated with the successive approximation method [9].
A tape of finite width is considered. The thickness of the
tape is assumed to be small, as compared with the depth
of penetration, whereas the length is infinite. It is as-
sumed that all field quantities or currents vary with time
as exp(jot) and are complex. In the paper the magnetic
vector potential formulation is used [3]. This approach
makes it possible to formulate all boundary conditions by
the same type of potential. The rectangular coordinate
system is applied. The system considered is assumed to
be infinitely long along the y-axis.

Thus the problem is two-dimensional. Three-dimen-
sional problems, can be analyzed as well as 2D problems,
but in 3D problems the formulation of the integral equa-
tions for magnetic charges on the boundary surface of
nonconducting ferromagnetic media is more useful. In the
following, the displacement currents are neglected. In such
cases the fundamental solution of the Poisson equation is
defined by

AP, Q) =1, 5_; SL (Q KP, QdL, (1)

where
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INTEGRAL EQUATIONS

The metallic tape, as shown in Fig. 1, is situated be-
tween conductors that represent coil windings. Near the
conductors there are two magnetic nonconducting shunts.

Alternating current [ is flowing through the conductors.
For conductors placed in free space (without tape and
shunts), these currents would generate the primary field
described by the vector potential:
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On the surface of the shunts, the following boundary con-.
ditions must be satisfied.
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nx AY =n x A®

1 n X rot AY = n X rot A®, 3)

Ks

The system shown in Fig. 1 can be analyzed as a system
without magnetic shunts, but with additional conduction
currents flowing on the boundary surface [6]. These cur-
rents have only line density and only a y-component. These
currents make satisfying the boundary condition (3) pos-
sible. The vector potential generated by these currents is
given by ’

AP =1, ;‘—7‘; <§>Ll Q) K(P, Q) dL, )

AP) =1, ;‘—; @LZ Q) K, QdLy. (5

The vector potential generated by the eddy current flow-
ing through the tape is given by

AP =1,72 Sm P, Q) K, Q) dLg.  (6)

The total vector potential in the system as shown in Fig.

1 is the sum of four components (2), (4), (5), and (6):
CA(P) = Ay(P) + Ay(P) + Ax(P) + A3(P). ()

The additional conduction currents (4) and (5) that flow

on the boundary surface of the shunt must satisfy the line
integral equations (6): . :
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Fig. 1. Analyzed system.

The total currents on the boundary surface are equal to
Zero: .

@L Q) dLy =0 ao

L2

It is easy to show that the eddy current that is generated
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in the tape must satisfy the integral equations (8):

JpowoA
2T

JpowoA

o §>L1 (P, Q) K(P, Q) dL, +

JiowaA

(§ (P, Q) K(P, Q) dLy + 7(P) +
L2 27

SL Q) K(P, Q) dLy = —jwoA Ay(P) (12)

and

SL Q) dLy =0, (P)€lLs;. 13)
3

The electromagnetic field in the system we obtain from (7)
is the result of a solution of the integral equations of the
system (8)—(13). The active power loss converted into heat
in the tape is given by

1
Iu = —

o (14)

L Q) dLo.

APPROXIMATE SOLUTION

Consider a system as shown in Fig. 1. The perimeter of
each bar is divided into N1 = N2 subsections AL, and the
width of the tape is divided into N3 subsections AL. Thus
in the system there are N = N1 + N2 + N3 subsections,
The position of AL, is determined by the coordinates (x;,
z;) of its center. The current density 7(x, z) can be ex-
panded in the operator domain:

N

n=1

Tn €n (15)
where the 7, are constants and ¢, are the basis functions.
The basis functions for the problem discussed are defined

by
o
©On = O,

The coefficient 7, appearing in (15) is the approximate
value of the current density in AL;. It is easy to show that
the system of integral equations (8)-(13) can be reduced
to a system of N linear equations

on A'L,
on all other AL,.

- - -
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The submatrices of (16) are defined in the Appendix. The
numerical solutions of (16) can be found with digital com-
puters. This computation results in the approximate val-
ues 71, 75, * * *, 7 of the current density on the boundary
surface and in the tape. The total active power loss in the
tape we obtain from
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Fig. 2. Current density in the tape.
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As an example, we consider the system with the following
data:a = 0.1m, b = 0.0l m, 2d = 0.1 m, 2¢ = 0.05 m,
h=0005m, A=00005m,7=1A,w=100 x/s,
o = 56 MS/m, pu; = 1000. The perimeters of the bars are
divided into N1 = N2 = 70, and the tape is divided into
N3 = 25 identical subsections. The result of the calcula-
tions are shown in Fig. 2. The active power loss converted
into heat in the tape is P, = 0.1527 W/m. The active power
loss can be treated as a measure of approximation and
computation errors. For double the number of subsections,
N = 330, the active power is P, = 0.1525 W/m. The re-
sult for the division into N = 165 subsections is the same
as that for the division into N = 330 subsections within
three significant digit accuracy. The results are compared
with an analytical method in Appendix II.

amn

FINAL REMARKS

The method presented permits the use of a digital com-
puter to compute the electromagnetic field in a system with
large flux dissipation. This method does not require ex-
tensive computer memory space.

The use of the integral method [6] for the analysis of
similar systems [1] has decreased the number of un-
knowns twenty times with respect to the FE method. The
integral method has also decreased the number of ele-
ments three times with the respect to the nonzero element
of the FE method. It is evident that solution times will
reduce as n’. The needed number of unknowns for the

“analysis of this system with the integral method is equal

to 165, but with the FE method the improvement will be
greater than in the above-mentioned papers. A small num-
ber of linear equations makes possible a muitiple calcula-
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tion of the analyzed system for different parameters. This
ability is particularly important for calculations of the
transient processes in these system [2], [8]. Consequently
many problems that are beyond the practical limit of pre-
vious approaches can be easily handled.

NOMENCLATURE
A Vector potential.
I Current in a conductor.
P, Power converted into heat in a tape.
¢ Conductivity of a tape.
6; Kronecker delta.
to Permeability of vacuum.
#s Relative permeability of magnetic shur
w Angular frequency.
7 Line current density.
1, Unit-length vector along y-axis.

APPENDIX I
The submatrices of (16) are defined by

= =1, B = Spwn) — —
Cll {Cm,n} {ly ( m,n’ n,Nl) . » +1

: |:S n, X ly X gradp,, K(P,, O,) dL,
ALy

- SAL ny X 1, X grady; K(Py;, Q) dLnB,
1<m=<Nl -1,

Lu—1
Cy, = {Cnn} = {; ;f:‘]

1=n=<NI1

: H 1, X totp, 1, K(Pp, O,) dL,
AL,
-l
1<

m=<=~NI1 -1,

ny X rotpy 1, K(Pyy, Q) dLnB,

Nl+1=n=<Nl+N2

1pur—1
Cis = {cun} = z;;ij;T

: H 1,y X 10tp, 1, K(Py, 0,) dL,
Alp

- SAL ity X rOth ly K(Ple Qn) dLn:B’
l=m=Nl-—1,

Nl +MNM+1=n=<N

1 u 1
G = {cun} = {;;f'*'_l

. l:g n, X I'Otpm ly K(Pm, Qn) dLﬂ
AL,
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- S nNé X I'OtPNZ 1y K(PNZ’ Qn) dLn}}a
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Ni+1l=m=<N+N-1, 1 =n<NI
1p—1
= =11, 6pn — 6, S o A
C22 {Cm,n} {y(m, ,N2) 7rl"f+1
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4

ALp
Nl +1x
Nl +1=<

X ly X grasz K(PN29 Qn) dLn}}’

m=<NIl+N2 -1,
n<Nl+N2

. [SAL" n, X rotp, 1, K(P,,, Q,) dL,

- SAL,. Ryy X IOth ly K(PNZa Qn) dLn}}’

Nl +N2+1=<n=N,
Nl+1=m=<Nl+N2—-1

The submatrices of the right side of (16) are the column
matrices as shown below

2

= 1
F = {fa} = {"— £ [n,, X rot Ay(Pp)
o pr + 1

— ry X rot Ao(PNl)]}’ l=m=NI-1

F2 = {fm} = {_E&L—_—l [nm X 1ot AO(Pm)
po w1
— ny; X 1ot Ag(P, Nl)]},
Nl+1=m=<N +N -1
Fy = {fu} {= —jwod [A(Pn) ~ Ao(Py)] ly},

NM+N+1=m=<N-1.

APPENDIX II

Let us consider the system shown in Fig. 1a = b =
d = — o, u, = oo, The vector potential in the region
between both the magnetic shunts satisfies the Poisson
equations:

2A 2

S+ L0 = B + 0) — 8 = A1 8 — B,
0<x<c

2 2

T+ SR = el e+ 0 — b — 0] 3 + B,

—-c<x=<0 (19)
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Fig. 3. Comparison of the methods.

and the boundary conditions

Ai [;=0 = 42 |z=0 20)
a4
?541 — 22 = juwoA Ax, 0) 1)
Z |;=0 0z 7=0
A
oa| o4, @)
az =C 0z z=-c

Equations (20) and (21) state that the tangential compo-
nent of the electric intensity is continuous, whereas the
tangential component of the magnetic intensity is discon-
tinuous at the surface carrying current.

In accordance with (22), the tangential component of
the magnetic intensity vanishes at the surface of the mag-
netic shunt.

When we use the Fourier transform, the solution of the
boundary-values problem given by (19)-(22), takes the
form

3. The differences are due to approximation and compu-
tation accuracy.
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The current density in the plate is given by
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and can be found by means of (23). Consider the system
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