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Abstract To determine the extreme of the power functionabse of the linear and resistive circuits is a
problem of utmost importance, with quite usefubtbgcal and practical applications. In the presewntrk it is
demonstrated that the energetic steady state dfitbeit, realized at a certain moment, represemttate\
theorems.

1. INTRODUCTION

Tellegen’s theorems have a special theoretic inamod due to their generality and
their help to easily demonstrate other practicgdamant conclusions. Thus, for given steady
state of a circuit, marked respectively with priemel second superscript, the line matrix of
the voltages elements (branchpg]), and the column matrix of the currents of the elets

(branches}i], proves the relations, [1], [2]:

[u]li'1=0 (1)

and

[u]li'1-[u1li1=0, )

called respectively®iand 2? theorem of Tellegen.

From Tellegen’s *Ltheorem, applied to the particular case whenwioestates are the
same, we get the following relation between théagd and current of a circuit element
(branches) in a given steady state:

[u[i]=0, 3)

also called the power conservation theorem. If thesnumber of elements (branches) of the
circuit, while the voltagey, , and the current,, of the each element are the same reference
sense, we obtain the following relation, out o&tien (3):

L L
[ulli]= > ukix = X pk =0, (4)
k=1 k=1

which means that the algebrical sum of instantasi@sorbed powers at the terminals of the
elements in a circuit is nill at any moment.
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The same as with other conservative systems, sunfeahanical or thermical [3], the
electric conservative system in a steady statenegilso represents an extreme energetic state
[1], [4].

Because the theorem of the power conservatioddd3 not show the energetic
character of the electric circuit, the present wattkmpts a demonstration that the stationary
and cvasistationary regime of the linear and rigsigtlectric circuit represent a minimum
state as for as the powers absorbed at the tesretehents of the circuit are concerned.

2. DETERMINING THE EXTREM OF THE POWER FUNCTIONAL FOR
LINEAR AND RESISTIVE CIRCUIT IN STATIONARY REGIME (D.C.)

We take the case of a linear and resigtircuit in a stationary regime (d.c.). After
transformation all the independent current souritle @quivalent independent voltages
source, for each k branch of the L branches otitoeiit, Ohm’s theorem is a follows [5],

(fig.1):

Uy = Rl - Ex. ®)
R =
no I . ﬁ’ n;
—>—d ] $
Vi,k // U Vj,k
Py U
Fig. 1

If we mark the potentials of the nodes where tihednch is connected; , andv;,,
the current of each branch can be described usagd't Kirchhoff's theorem:

Iy =G (Vix =V + Ex) - (6)

The absorbed power at all the branches of theitiscdescribed as functional

F=P:RN L R
_ L 2o 2 (7)
F=P(\V,Vo,...VN) = 2 Relic = 2 G (Vi i —Vj k +Ex)*
k=1 k=1
wherei, j =12,...,N, N being the number of nodes of the circuit.

The functionalF = P(V,,V,,...Vy ) is obviously a function of clasg?within R" set
and it is positively defined, tha(V;,V,,....Vy))0,0V, O RY.i=12,...,N.under this
conditions, the extremes of the functiorake P(V,,V,,...Vy) are minimum points and they
can be obtained by solving the system [6]:

oP oP oP

—=0—=0,...,—=0. (8)
vy oV, oV
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By using the power expression (7), the partial derivatesystem (8) lead to the
following equations system:

22|k20,22 |k=O,...,2 Z|k=0, (9)
|an1 |an2 lanN
identical with the system of Kirchhoff equation for cuteefi™ Kirchhoff's theorem),
expressed for all N nodes of circuit.

Consequently, we get the following theoréifi Theorem of Minimum Power —
TMP1) the minimum of the absorbed power by the branchiseair and resistive circuit in
stationary regime (d.c.) is satisfied by the solutionthe currents and voltages of the circuit,
and these are the currents and voltages which verifyttamd 2¢ theorem of Kirchhoff.

3. DETERMINING THE EXTREM OF THE ACTIVE POWER FUNCTIONAL

FOR LINEAR AND RESISTIVE CIRCUIT IN CVASISTATIONARY REGIME

(A.C)
A similar demonstration can be done also for cvasistaty regime (a.c.) of the linear

and resistive electric circuit.
By using the symbolical method, the voltage at every brahttfeaircuit is equal to:

Uy =Raly —Ek, (10)
and the current of branch k can be expressed applyingh¢ifits second theorem:
I =Gk Vik Yk tEw- (11)

The active power absorbed by all the L branches of the tiscui

L L
2
P=3 Relli|” = X Gul(% k =Xk +aEk) +(Yik — ¥jk *bEK)] (12)
k=1 k=1

where: the real and imaginary parts of the complex potevitigandV ; , of the nodes i and |
where the k branches is connected, is

% k =Rel; 1, vik =Im[V; ], (13)
Xj.k =Re|\_/j,k]1yj,k :|m[\lj,k], (14)

and respectively, the real and imaginary parts of the indepérditage source of the k
branch, is

aE,k = REEk], bE,k = Im[gk] . (15)

The active power has been defined as the functional
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F=p:R:N _ R

L 9 9 (16)
F =P(X, X2, XN» Y1, Y2, YND) = 2, Gkl(% k =Xk Fag k) + (Vi k ~ Yjk *bE )],
k=1

and it is quite obviously a function cla€% inR*" | and is positively defined i.e. for all the
pair (X,V;),i =1...,N,then P(X;, X5,...,Xn» Y1, Y2,---,Yn )) 0. Consequently, the minimum
points of the active power functional is the saln$ of the system [7], [8]:

a_P:O,a_P:O’a_P:O,a_P:O oP opP =0. (17)
0xq oy 0x ay, ' oxy | OyN

The partial derivates from the system (17) leatthéoequations:

2 3 1k]=0,2 Y [14]=0...2 Xiy|=0 (18)

Ik[lnl anz anN

which are identical to the Kirchhoff's equations éurrents (1 Kirchhoff theorem),
expressed for all the nodes N of the circuit.

Consequently, the following theorem can be is{@&tTheorem of Minimum Power
—TMP 2) the minimum of the active power absorbed by thadires of a linear and resistive
circuit in a cvasistationary regime (a.c.) is séieigl by the solutions in currents and voltages

of the circuit, and these are the currents andagss that verify theSand 2 theorems of
Kirchhoff [9], [10].

4. EXAMPLES

4.1. We consider the d.c. circuit shawfigure 2. The power absorbed of the
branches of the circuit is (7):

Vi1
A
I
Ry R2 H Rs3
e
V>
Fig. 2

P=Gy(Vo -4 + Ep)% +Gy(V Vo) % +Ga(Vy —Va) .,

The minimum of the absorbed power are solutiorth@kystem (8), which represent
the T theorem of Kirchhoff expressed in node 1 and 2:
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oP

v = 201V2 V1 +E) +2Gp(Vy ~Vp) +2G3(Vy ~V2) = 2(-Ip + 1o +13) =
1

=2 Zlk =O,
lanl
oP

N 2G (V2 ~V1 + B1) —2G5(V; —V2) = 2G3(Vy —Vo) =213~ 12— 13) =
2

=2 ZIK:O'

lk DnZl

4.2. We consider the three-phase resistive cinswgtar connection, shown in figure 3.

11 R1
1¢ | I
1 Ro N
10
U 1 Rs
¢ | I
U
Uso R,
0¢ 1
\i/
Uno
Fig. 3

If we know the three-phase symmetrical voltagethefsystem
Uj0=U,U,g=U(-a-jb),Uzy=U(-a+ jb),

and if we consider that the neutral point displagenvoltage is
Uno =U X+ y),

then the active absorbed power can be expresseslaipn:

P=Y Rl +Rol2 = G (Uko-Uno)2 +GoUfio =
=2 R +Ryl§ = 2 G (Uko ~Uno) oYNo =

k=1 k=1
=U AGy[(1- x%) + y2] +Gyl(-a—x?) +(-b - y)?] + G[(-a- x?) + (b— y)*] +
+Go(xZ +y2)}.

The minimum of the active absorbed power are theisos of the system:
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‘;_P =U2[-2G, (1~ X) - 2G(~a— X) — 2G3(~a— X) + 2Gpx] = 0,
X

oP

% =U2[2G,y - 2G,(~b-y) - 2G3(~-b - y) + 2Ggy] = 0.
Results:

X

- Gl—Gza—Gga y= —sz+ng

3 3 ’

2.Gx +Go 2.Gk +Go

k=1 k=1
3
2. GkUyo

which are similarly with the formuldJ yq :"321—, obtained by using the'theorem

2.Gk +Go
k=1

of Kirchhoff in node N.
5. CONCLUSIONS

It has been established that the soigtof the linear and resistive electric circuit, i
d.c. and a.c. regime, represent a minimum of tiserdled power in the circuit.

To find a satisfying answers to thislgem, it is necessary to give an exact definitions
of the power categories used in the a.c. periajowe, written records of the specialists’
agreement upon these definitions don't exist so far

The energetic problem under debatbarpresent work has a wide range of practical
applications and it aims at cutting down the wastdbe energetically systems.
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