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Abstract: This paper contains an analysis of the local adaptive approach for Finite Integrals
Technique (FIT), suitable and efficient in solving electromagnetic field problems encountered in
compact modelling of on-chip passive structures at high frequencies. More scientific applications
have the property of high speed varying solution in small surfaces/volumes of the modeled domain. To
solve efficiently this kind of problems, the adaptive strategies are used to concentrate grid nodes in
regions where probability of errors appearance is. In this way the quality of approximated solution
can be improved while the total number of nodes is maintained at a low level. The Adaptive Mesh
Refinement (AMR) technique we propose uses Octree data-structure. Theoretical aspects and
obtained numerical results are presented.

Introduction

Dynamic adaptive numerical techniques for solving the equations obtained by integral
or differential methods have the advantage of concentrating the computing effort in the
interest zones of the problem domain [1]. In the case of hierarchic adaptive refinement
methods, are identified domain regions that requires increased solution precision and finer
meshes are dynamically added in these regions. AMR based techniques are starting from a
rare mesh with a minimum accepted resolution that covers the entire computing domain.
While the solution finding process is advancing, the domain regions that are requiring
refinement are marked and replaced with a finer mesh in a recursive or iterative process [2].
The obtained mesh constitutes an adaptive dynamic hierarchy.

AMR techniques have been used in a great variety of disciplines like fluids dynamics,
astronomy, meteorological simulations, mechanics, electromagnetism and thermodynamics.
Rapid mesh generation constitutes a novelty subject. First steps have been made in fluids
dynamic problems from aeronautic industry. A fast and stabile method for mesh generation is
given in [3]. The algorithm strategy is based on intersection of components in order to find
out the external surface followed by a volume refinement. The intersection schema is based
on a geometric engine which is using an adaptive error estimator and it is automatically
manipulating geometrical degenerations by a tie-breaking routine. In the worst case, the
complexity order of the algorithm is )log( NNO .

An important aspect in AMR is to avoid parasite nodes that are generated on transition
from finer to rare regions of the simulating domain. An algorithm that studies this problem is
proposed in paper [4].
Operations that can be done by using a hierarchic adaptive mesh according to the reference
algorithm proposed by Berger and Oliger [5] are as follows:

• Time integration is the refresh operation done on each grid on each level from the
hierarchic adaptive mesh. The integration is done using an application specific
quadrature technique.
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• Inter grid operations are used to communicate the solutions for hierarchic adaptive
mesh. Basic operations are of extension, defined from a rare to a finer mesh, and
restriction, defined from a finer to a rare mesh.

• Grid regeneration takes into consideration three steps – (1) marking the regions that
have to be refined in function of specific criteria; (2) unifying the marked points; (3)
generating the refined mesh. Regeneration can consists in building a new refinement
level or adding of additional grids on some levels and/or deleting the existing grids.
Parallelization of adaptive methods based on hierarchic AMR consists in partitioning of

hierarchic adaptive mesh on a computing network nodes and performing the concurrent
operations for the local problem domain regions [6]. Parallel AMR applications are requiring
two kinds of communications: inter networks communication and intra network
communication.

A 3D hybrid adaptive mesh refinement algorithm with code named Enzo [7] was
projected for high resolution simulation of Universe astrophysical structure formation.
Parallel implementation of the algorithm does not impose a depth or complexity limit of the
adaptive mesh. To lower the complexity order of the algorithm the  Structured Adaptive Mesh
Refinement (SAMR) method was adopted.

At this time there are three main alternative methods that can be used at local mesh
refinement [8]. First method consists in recursive refinement applied to all domain cells, thus
obtaining dynamical data structures of Quadtree type in 2D and Octree type in 3D [9]. The
tree connection provides necessary information for multi grid based methods. Even local
refinement can be easily implemented by using this data structure, the disadvantages are the
difficult vectoring (on vectorial architectures), and the bandwidth minimization for
maintaining local information (on machines that use the processor cache memory). To avoid
the overloading due to go through the three, it is used a map of leaf nodes kept in another data
structure.

The second alternative is the use of structured Cartesian meshes, usually associated to
the Adaptive Mesh Refinement approach (AMR). In this approach, the cells from a
refinement level are organized in an orthogonal grid which usually contains a number of
some hundreds cells. By using structured arrays in function of connections number allows
compact allocation of an entire sequence of grid on almost 20 memory words.  The main
disadvantage is that of complexity for implementation at programming level.
The third alternative consists in using a data structure in which the connections are explicitly
memorized with the grid. The advantages provided by Cartesian grids are resulting in
extremely compact data structures. In paper [4] it is used a data structure based on faces in
which the grid is discretized in a list of cells faces that have as reference the Cartesian cells
form the other face. Adjacent cells from different levels of refinement (that can differ with at
most a level) are introduced in this structure and refined faces are indicating to the
corresponding cells from a face and the same thick cell from the other side. Cartesian nature
of hexahedral allows to faces and cells from a network to be memorized in almost 9 words per
cell.

The algorithm proposed in this paper is based on Octree Adaptive Mesh Refinement
for Finite Integrals Technique [13]. The local error estimator is computed by the dual Finite
Integrals Technique (dFIT) [14].

Algorithm principles

In order to obtain a robust and efficient computing system for auto-adaptive simulations, it
was developed an OOP implementation using C++. This approach allows a better code
maintenance with a low probability of introducing additional errors. Essentially, the approach
is  based on the divide-and-conquer principle of the multigrid algorithm [10].  Due its
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advantages, for the numerical implementation it was used the Octree data structure. An
Octree is a data structure used to automatically represent the objects in the tridimensional
space, by grouping them hierarchically and excluding the void space domains. Octree based
spatial discretization consists in dividing a cubic cell that covers the interest domain in eight
cubic cells (octants). In this way, the computing domain is successively divided into octants
[11] until the boundary regions are approximated well enough. For an Octree to become
balanced it has to support the 2 to 1 constraint [12]. This constraint imposes the dimension of
an edge from a neighbour cell to not be two times bigger than the edge of current cell. Octree
data structure is represented as a tree which nodes can have eight leafs. The first octree node
is the root cell (Fig. 1), that is an array of eight neighbour elements. Each of these elements
can point to a block of neighbour elements where every element can have a reference to
another block of eight neighbour elements and so on uintil it is reached a maximum number
of levels. The last level is the leaf level on which are placed the leaf elements. Octree cells
numbering is done after Ox, Oy and Oz pozitive directions. An Octree node can have 26
possible directions: 6 neighbours along a face, 12 neighbours along a vertex, and 8
neighbours for an edge.

Fig. 1: Parent cell with one refinement level: tree structure with nodes and cells numbering

The solutions obtained from the two dual grids (voltages from the primary grid and
currents from the secondary grid) are used to compute the power density in the middle of
each each cell (a, b, c being the cells length after Ox, Oy, and Oz directions) in two different
ways:
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the local error estimator being:

JF pp −=ε .                                                             (3)
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As a global error estimator is based on resistance computed two times once by primary FIT
and second times by secondary (on dual grid) FIT methods:
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The pseudocode of the implemented algoritm has the following structure:
   InitialMeshGeneration();
   repeat
    FITsolving();// computes the lower boundary for the solution
    dFITSolving();// computes the upper boundary for the solution
    LocalErrorEstimator();
    GloablErrorEstimator();

MeshRefinement();
   until StopingCriteria

At each iteration, the mesh refinement method is controlled by the local error estimator.
Refinement is applied where the estimator has a relativelly high value, compared to an
addaptive thrshold. If the global error estimator is bigger than it was in the previous iteration,
then the value of threshold is decreased. If its value becomes closer to zero, an uniform
refinement is applied. Therefore, it can be said that multigrid algorithm with uniform grid is a
limit case of AMR algorithm for the situation in which the value of this threshold becomes
zero.

Mesh refinement process continues until the stoping criteria is achieved, as follows:
• If the resistence computed with dFIT becomes smaller than the resistance computed

with FIT;
• If the global error becomes smaller than a referenced value (e.g. 310− );
• If the maximum number of adaptive mesh refinement steps is achieved (by default, 10

steps).

Numerical results

The test problem consists in finding the resistance of  “L-shaped” conductor. Geometrical
data of this problem (Fig. 2) are as follows: a= b= c= d= e=1µm. The conductivity of
metallic region is σ1 = 106 S/m, while the insulator conductivity is σ2 = 10-2 S/m.
The accurate value of conductor resistance is known as being R=2.558523Ω .

Fig. 2: “L-shaped” test problem
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The relative error was determined by using the following relations:
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Fig. 3: “L-shape” resistance relative error variation in function of node numbers – uniform grid
and AMR grid.

In figure 3 it is presented the “L-shape” resistance relative errors versus number of nodes for
uniform grid and AMR-Octree grid. Figure 4 presents the mesh obtained with AMR-Octree
algorithm for an imposed global error of 110− .

Fig. 4: Refined mesh

Conclusions

Adaptive mesh refinement has been used for nearly two decades in electromagnetics to speed
the convergence of different computing methods. This technology has two principle
elements: unstructured mesh generation and local error estimation. In this paper is introduced
an algorithm for computing the local and global error estimation based on dual Finite
Integration Technique. Compared with the traditional multigrid algorithm, the new one
requires less total nodes, therefore lower computing cost, in order to obtain same solution
accuracy.

Acknowledgements

The research of the authors for results presented in this paper was supported by European
Union FP5/IST/Codestar project.



ATEE – 2004

References

[1]. Manish Parshar and James C. Browne. Distributed Dynamic Data-Structures for Parallel Adaptive
Mesh-Refinement, 1995.

[2]. Istvan Bardi, Gaunghen Peny, and Zoltan J. Cendes. Improovements in Adaptive Mesh Refinement and
Multilevel Methods in Electromagnetics. In URSI GA 2002, 2002.

[3]. M.J. Aftomis, M.J. Berger, and J.E. Melton. Robust and Eficient Cartesian Mesh Generation for
Component-based Geometry. In 35th AIAA Aerospace Sciences Meeting, Reno NV, January 1995.

[4]. Wim Schoenmaker, Wim Magnus, Peter Meuris, and Bert Maleszka. Renormalization Group Meshes
and the Discretization of TCAD Equations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21:1425{1433, December 2002.

[5]. Marsha J. Berger and Joseph Oliger. Adaptive mesh re_nement for hyperbolic partial differential
equations. Jurnal of Computational Physics, 53(2):484{512, March 1984.

[6]. Marsha Berger and James C. Brown. On Partitioning Adaptive Grid Hierarchies. In HICSS (1), pages
604{613, 1996.

[7]. Greg L. Bryan, Tom Abel, and Michael L. Norman. Achieving Extreme Resolution in Numerical
Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation. In Super
Computing 2001, Denver, Colorado, November 2001.

[8]. M.J. Aftomis, M.J. Berger, and J.E. Melton. Adaptive Cartesian Mesh Generation. In RC Handbook of
Grid Generation, 1998.

[9]. Georg Border and Ralf Deiterding. A Distributed Memory Adaptive Mesh Refinement Package for
inviscid Flow Simualtions. In Proc. of Colloquium on Fluid Dynamics, Institute of Thermodynamics,
Academy of Sciences of Czech Republic, Prague, pages 9{14, October 1999.

[10]. William L. Briggs, Van Emden Henson, Steve F. McCormick, A Multigrid Tutorial (2nd Edition),
SIAM, 2000.

[11]. Manish Parshar and James C. Browne. Object-Oriented Programming Abstractions for Parallel
Adaptive Mesh-Re_nement, 1996.

[12]. Tiankai Tu, David R. O'Hallaron, and Julia C. Lopez. Etree - A database-oriented method for
generating large octree meshes. In 11th International Meshing Roundtalb, Ithaca, NY, pages 127{138,
September 2002.

[13]. M. Clemens and T. Weiland. Discrete electromagnetism with the finite integration technique. Progress
In Electromagnetics Research, PIER, 32(3):65-87, 2001.

[14]. D. Ioan, M.Radulescu,G.Ciuprina, Fast Extraction of Static Electric Parameters with Accuracy
Control, in Scientific Computing in Electrical Engineering (W.H.A. Schilders et al Eds), Springer,
2004,pp.248-256.


	Catalin Ciobotaru, Daniel Ioan
	Introduction
	Algorithm principles
	Numerical results
	Conclusions
	Acknowledgements
	References

