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Abstract - The signal’s amplitude and phase measurement by acquisition systems and FFT transform 
can be subject of uncontrolled errors because of intrinsic properties of Fourier Transform. The paper 
proposes a correction method based on the best evaluation of the fundamental frequency and 
calculation of the fundamental RMS for voltage and current as well as their phase by using the 
definitions of these quantities. To validate the method virtual experiments on generated signals and 
laboratory measurements were made. There is a very good agreement of measurements and calculated 
values. 
Index Terms - Fourier transform, Harmonics, Leakage and grid effect, Optimisation. 
 

1. INTRODUCTION 
 

ORE and more to measure the parameters of a signal becomes a difficult task because 
we have to measure signals delivered by the converters of power electronics. The 

analogical instruments were good for sinusoidal signals but today we have to look for 
satisfactory processing strategies of acquired new signals. The harmonic analysis of the 
acquired signals is achieved usually by FFT (Fast Fourier Transform). Because of the grid 
effect and energy leakage of FFT [4], the calculated signal parameters as frequencies, 
amplitudes and phases, are not precise [1],[2]. 

M 

The user of harmonic analyse has to be aware that the sampling frequency fs and 
frequency resolution ∆f are limited and the evaluation of signal frequency different of a 
multiple of ∆f is subject to unknown errors. The paper proposes an analysis of the errors and a 
method to improve the precision of the evaluated results by an acquisition system built around 
LabView. The described experiments were done with a three pulses rectifier that gives 
currents and voltages with many harmonics, including the mean value (zero order harmonic). 
 

2. PROBLEM’S FORMULATION 
 

Let’s consider a voltage or current signal that contains the fundamental harmonic 
)tf2sin(2Ay 111 ϕ+π=                                                                                                         (1) 

The signal is acquired with a sampling frequency fs and N samples, that is with a frequency 
resolution . If the frequency fN/ff s=∆ 1 of the fundamental harmonic is not a multiple of 
frequency resolution ∆f we can write this frequency as 

f)k(f1 ∆α+=                                                                                                                           (2) 
The coefficient  will help us to evaluate the error given by harmonic analysis for the 
signal y

)1,0(∈α
1. The Fourier Transform of the signal y1 with N samples is  
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                                                                                     (3) 
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where ∆t is the time pitch. The real and imaginary components of the integral (3) are given 
below: 
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We’ll assume that the discrete „exploring frequency” ω has the form (5) where m is an 
integer  )2/N,0(m∈
ω = 2*π*∆f*m                                                                                                                          (5) 
With 
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we can obtain from (4) the amplitudes and , the real and imaginary parts of mAc mAs )(F ω  
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For α = 0 both components of (7) have a zero limit except the case m=k where for Asm we 
obtain: 
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This means that at location m = k we’ll have the value A and everywhere m ≠ k, we’ll 
have zero. Of course, in this case the amplitude spectrum is very „clean” and the signal 
frequency f1=k*∆f is right evaluated. The phase (against the beginning point of the sampling) 
of the harmonic components m*∆f of the signal is wrong evaluated because 
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gives indetermination. LabView delivers in this case a continuous evolution of the wrong 
evaluated phase, perhaps conserving the idea that the phase „has to grow” anyway. In order to 
prove the phase evolution for α = 0 and α ≠ 0 we considered the following signal and his 
acquisition with ∆f = 1Hz.  

)t)20(*3*2sin(2*8.0)t)20(2sin(2)t(y α+π+α+π=                                                               (9) 
For α ≠ 0 (α =0.2 for Fig.1) the amplitude spectrum is no more „clean”, the actual 

frequency is „somewhere” between two adjacent (m = k and m+1) locations where the 
detected amplitudes are much greater then the values in the neighborhood. The phase angle 
evaluation is better because with a “dirty” amplitudes spectrum the amplitudes     Acm ≠ 0 and 
Asm ≠ 0 and 
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arctan can be evaluated. The phase angle has a monotonous evolution till 

m = k and a sudden jump of π radians to the location m+1. This property can be used as 
identification criterion for the location m = k. Fig.1 demonstrates how strong works this 
criterion for the signal given by (9).  

In Fig.1 for the frequency f1 = 20,2Hz we have k1 = 20 and α = 0,2. This means that 
at the location k1 = 20 there is no more the rms of the first harmonic A1 = 1. But the pic 
detector (a VI of LabView) will indicate k1 = 20 because the amplitude at k1 = 20 is greater 
than the amplitudes in the neighborhood (α < 0,5). For the third harmonic of 20,2 Hz the 
frequency is f2 = 60,6Hz. Because here for third harmonic α > 0,5, the pic detector will 
indicate the location k2 = 61 for f2!  In spite of this, the phase jump is located at k2 = 60, that 
is in the right place! To calculate the evaluation’s error of the fundamental RMS A from 
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relation (1), we built the RMS values of the signal (7) for m = k and m = k+1 with α growing 
from 0 to 1. The two amplitudes are represented in Fig.2 for k = 20. The pic detector will 
„find” the amplitude in the k location as representative for the signal y1 so long as α < 0.5, 
and the amplitude in the location k+1 for α  >  0.5. 

 

  
Fig. 1 FFT amplitude and phase spectrum, α ≠ 0 Fig. 2 The amplitude values given by a LabView    

pic detector for 0 < α < 1 
 

The maximum error of the evaluated amplitude appears when α ≈ 0.5 and it is great 
enough: 35%. The error and the evolution of the amplitudes ak and ak+1 against α are 
practical independent of frequency resolution ∆f as we can see in Table I built with LabView. 
The sampling frequency is constant, but the number of samples N has two different values, 
that is for the first two rows ∆f = 1Hz and for the last two ∆f = 0.2Hz. Signal frequency f1 is 
different for each row, but the value for α is the same, α = 0,5. 

 
Table I The amplitude error for different ∆f and different signal frequencies, but the same α 

No fs N f1 k ak ak+1 φk φk+1

1 1000 1000 20,5 20 0,631866 0.641319 2,1027 5,2280 

2 1000 1000 200,5 200 0,635592 0,637646 2,0924 -1,045 

3 1000 5000 20,1 100 0,635650 0,637579 2,0960 5,2343 

4 1000 5000 200,1 1000 0,636414 0,636825 2,0940 -1,064 
 

The ratio ρ of the amplitudes at the location k and k+1 offers good information about 

the value of α. In spite of the equation’s form, the evolution of ratio 
1k

k

a
a

+

=ρ  is remarkable 

smooth as Fig.3 shows. This means that calculating the ratio ρ we can obtain by solving the 
equation  (10) the value of α, and consequently the right value of the frequency f1. A very 
close idea is presented in [1]. To obtain the value of α, the equation (10) can be solved 
numerically because the variation of ρ is smooth. 

The calculated value of the ratio ρ gives a neighborhood where the iterative methods 
have a good convergence. 
 



ATEE - 2004 
 

22

2222

22

2222

1k

k

)1k2()1(
)2sin()1k(4)k(4)2cos1(

)k2(
)2sin(k4)k(4)2cos1(

a
a

+α+−α

πα++α+πα−

α+α

πα+α+πα−

==ρ
+

       (10)                                         
 
The most important problem remains the 
identification of k. This is why the study of the 
phase evolution for α ≠ 0 is very important.  

 
 

 
Fig. 3 Ratio ρ = ak / ak+1 against α

 
3. CORRECTION METHOD BASED ON BUNEMAN FREQUENCY 

ESTIMATOR 
 

The basic idea of the paper is to offer a correction method with the LabView 
instruments. The frequency f1 of the fundamental y1 is the most important parameter to be 
determined. Having the frequency f1 we can use the well-known evaluation method of the 
signal’s amplitude by integration over the period T1=1/f1. The Buneman estimator of 
frequency is a Virtual Instrument (VI) of the LabView library. It calculates the successive 
frequencies of the sinusoidal components by using the results of FFT. The Buneman 
algorithm identifies two maximum values ak and ak+1 of a neighbourhood and their locations 
k and k+1. For a given ∆f the unknown frequency f1B is calculated as: 
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As we can observe, the Buneman algorithm uses the information about a 
neighbourhood where the frequency f1 is fund. The data of Table 1 can be used to verify the 
Buneman’s algorithm accuracy. With the estimated Buneman frequency f1B we can evaluate 
the integrals for the calculation of  “sin” and “cos” components (As and Ac) for the actual 
signal amplitude A of y1. 
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Of course the Buneman period TB doesn’t match to an integer number of time pitch 
∆t. We have to be aware of these, foreseeing appropriate methods of interpolation for the last 
time gap. The problem of the integration method can be important for higher harmonics of the 
signal y (t) and a low sampling frequency.  

 
4. CORRECTION METHOD BY USING VARIABLE FREQUENCY 

RESOLUTION 
 

The principle of this correction is an iterative FFT post-processing of the acquired data 
taking at each iteration a number of samples N’ smaller than the number of samples N of the 
acquisition. In fact, we try to eliminate or reduce as much as possible the leakage effect by 
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searching an appropriate number of samples N’ that verify the equation 

'
S

new11 N
f

kf =                                                                                                                                       (13) 

with k1new integer. From the initial analysis by FFT we have a rough approximation of f1

N
f

kf S
old11 ≅                                                                                                                             (14) 

Consequently, the new value of N’ has to verify the relation 

old1

new1'

k
Nk

N =                                                                                                                            (15) 

A practical solution of the problem is to build a “for” boucle, decrease the N’ at each 
iteration, to do a FFT for the files with decreasing length N’, searching the pic in the 

amplitudes array and save the amplitude pic and the frequency '
S'

1 N
f

k  corresponding to the 

location of the local amplitude maximum. It is worth to outline that all the iterations are done 
on the initial acquisitioned data file. After the output from “for” boucle we search in the array 
of maximums the “highest maximum”.  

 
This value corresponds to the best fit of 
amplitude and the best fit of the frequency f1.  
 The question is how much iteration is 
necessary to obtain the best fit? Let us 
analyze Fig. 4 that present the evolution of 
the evaluated error against the number of 
iterations. The conclusion is that to obtain 
the lowest error value, in the relation (15) 
k1new has to be k1new ≅ k1old - 4÷5.  The 
described algorithm is very simple to 
introduce in the LabView  program that 
gives the first frequency evaluation by FFT.  

Fig.4 Frequency evaluation error against 
iterations number  

 
 

5. EXPERIMENTAL RESULTS 
 

The experiment was focused on two quantities, the phase current in secondary winding 
(zigzag connection) and the phase voltage in order to verify both the amplitude evaluation and 
the phase difference of two quantities. For any rectifier with diodes, the phase difference 
between phase voltage and the first harmonic of phase current is zero, or very small because 
of commutation process. On the other hand, because the grid frequency is very close to 50Hz 
we can easy simulate the effect of frequency resolution on detected amplitude by choosing 
different values for the number of samples. Table 2 presents some measurements that sustain 
the theory presented in previous paragraphs and some remarks. The phase jump is always 
located at the right value of k, for any value of coefficient α. The phase shift of current is 
small and always lagging that prove his commutation origin. For α = 0,5 the amplitudes of the 
first harmonic located in the detected k location and the neighbor location are very close each 
to the other, and the amplitude doesn’t indicate the right location of the harmonic’s frequency. 
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Table 2   Experimental results 
N
o. 

fs 
[Hz] 

N ∆f 
[Hz] 

αest De
t.  
k 

i ρ Actual 
α 

Calc. 
Fr. [Hz]

fB
[Hz] 

If(i) 
[A] 

Ifk 
recon
str. 

ϕif(i) 
[rad] 

Uf(i) 
[V] 

ϕuf(i) 
[rad] 

∆ϕ 
[rad] 

1 4000 4000 1 0 49 0     1,233  0    
      49 0.0309    0,043 1,3916 2,678 3,497 -3,465 0,14 
      50  0.9697 49,9697 49,97 1,391  5,812 114,34 -0,328 0,143 
2 2000 3222 0,6207 0,55 80 0     1,229  0    
      80 1,125 0,47213 49,95166 49,951 0,936 1,3896 -1,357 77,092 -1,212 0,1451.9 
      81     0,832  -4,497 68,599 1,927 0,1408 
3 4000 6444 0,6207 0,55 80 0     1,223  0    
      80 0.9084 0,5255 49.98479

2 
49,984 0,843 1,3916 3,292 69,485 3,431 0,139 

      81     0,928  0,15 76,519 0,292 0,142 

 
Another remark is that the amplitudes spectrum for the first experiment in Table 2 is 

not “purely clean”. At the location i = 49 the amplitude of phase voltage is Uf49 = 3.497V and 

for i = 50 Uf50 = 114.349V. The actual value of the ratio 
1k

k

a
a

+

=ρ  is very small as we can see 

in Table 2. Solving the equation (10) we obtain α = 0.9697. The actual value of the grid 
frequency can be calculated by the equation  (2): Hz9697,49f)k(fK =∆α+= . To see how 
powerful is this method of evaluating the signal’s frequency we gave the Buneman frequency 
in the column fB of the Table 2. The Buneman frequency is very close to the frequency 
evaluated with the improved value of α.  

 
6. CONCLUSIONS 

 
The paper proposes a new approach of the FFT errors and suggests also correction 

methods based on the initial acquisitioned data, without a new acquisition. The phase jump is 
the most powerful method to detect the location k for any harmonic. It is possible to identify 
the signal’s frequency and to calculate the signal’s parameters with a very good precision. The 
reliability of Buneman frequency detector is very high. 

The experiment shows very clear that the proposed approach opens many possibilities 
to improve the measurement’s results based on FFT. The correction method by a post-
processing with variable frequency resolution gives good results. We have to be aware that 
even the grid frequency has very small variations from a measurement to another. For a 
converter fed machine we have to take into account this reality and proceed consequently.  
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