
ATEE - 2004

FIXED POINT DSP ANALYSIS AND CODE GENERATOR MATLAB
FOR MOTOR CONTROL APPLICATIONS

Liviu KREINDLER, Augustin IGNAT, Daniel POPA and Aurelian SARCA

Politehnica University of Bucharest, Romania
Spl. Independentei 313, Bucharest

Tel. +40 1 413 7657, E-mail: l_kreindler@technosoft.ch

ABSTRACT: This paper propose a state-of-the-art development approach of digital motor control
applications, which implements the developers’ old dream: start with the complete system model,
design the control blocks and analyse its expected behaviour by simulation, then automatically
generate executable code for the target control system and perform the tests on the real system. Such
an approach not only significantly reduces the development time, but also lets you focus on the
application functionality and performance, thus shortening the road from design and laboratory phase
up to the industrial application level.

I. INTRODUCTION

Embedding the Matlab code generator feature in a DSP-based motor control structure offers
many significant advantages, as compared with classical approaches: automatic C code
generation - eliminates the need to handwrite C and Assembly code; visual modelling and
simulation - selection of control structure; optimisation of control parameters for specific
application aspects; analysis on the DSP system; validation of the solution on the real control
environment; “plug-and-play” approach (you get a ready-to-run platform).
Using a step-by-step approach, you can change components in the system one by one – either
at H/W level (motor, power converter, sensors), or at S/W level (system model, controllers,
etc.). Each change can be individually tested and validated, as soon as it has been made. If any
problem occurs, it will be easy to locate the error source, as normally this error will be related
to the last performed change in the system structure. This will significantly reduce the time
required to migrate from the initial kit to your final application, as well as the volume and
level of support you might need for this process.

II. MOTOR CONTROL STRATEGY

From the general equations of the synchronous drive, we obtain the relations (1) that represent
the Matlab/Simulink mathematical model used in this paper:

ΩFmrm
dt
dΩJ

)iψi(ψp
2
3m

dt

dψ

dt
dθψi Ru

dt
dθψ

dt
dψ

i Ru

dqqd

q
dqq

q
d

dd

⋅−−=

⋅−⋅⋅=

++=

−+=

(1)

The implementation of a digital motor control scheme requires a microprocessor able to
implement all required computations, including coordinates transformations and specific
control loops (as current, speed and/or position). Specific I/O interfaces are also needed, as

mailto:l_kreindler@technosoft.ch

ATEE - 2004
PWM outputs, analogue inputs for current/voltage measurement and speed/position
measurement specific interfaces.
As quite significant computational power is needed, the DSP controllers offer a good device
covering these features.
In this paper, the PMSM digital control scheme is implemented using a DSP controller
produced by Texas Instruments. This DSP is a component of the TMS320 family, specifically
designed for motion control and having a 150 MIPS computation speed.
The PMSM digital motion control scheme has the following components and features:

- the motor currents are measured using current transducers placed on inverter legs;
If the three measurements and PWM signals are synchronized, then the measured
motor phase currents can be used in the fast control loop.

- the motor speed is estimated from motor position using an incremental encoder. In
order to keep the model simple, the speed information is obtained from the motor
position difference at successive time samplings;

- the model uses two control loops:
o current control fast loop - 100 sµ ;
o position/speed control slow loops - 1 ms;

- the mathematical computations are performed in IQMATH format;
- the fast loop control uses discrete PI controllers, and the slow one uses PID ones

The motion control strategy is presented in Fig. 1. and has the following modules:

- communication: transmit/receive the motion commands from a
computer/industrial application to reference generator;

- reference generator: generate the speed/position reference of the motor;
- motor control: contains the speed/position controllers;
- current control: contains coordinates transformations, and flux/current controllers;
- PWM generator: based on voltage reference, issues the correct PWM commands

towards the inverter;
The software is organized on different priority levels such as:

- command interpreter;
- reference generator;
- I/O Data Exchange - used for debugging;
- interrupts: serial communication, A/D conversions, fast/slow loops;
- I/O Interface: serial, A/D converter, PWM generator as command for inventor

bloc, timers, encoder;

PWM generator

Communication module

Motion commands

Motion language interpretor

Motion
parameters

Motor reference Reference generator Motor control

Current
 reference

Current control Current control

Fig. 1. Motion control program structure

ATEE - 2004

III. MODELLING OF THE POSITION VECTOR CONTROL SCHEME

apter, based on the already
xisting blocks in the Matlab-Simulink simulation environment.

The general diagram of a drive system that controls the position of an electrical motor is
presented in Fig. 2. To model an electrical drive system as the one presented in Fig. 2, you
need to develop specific components as presented in this ch
e

Fig. 2. Block diagram of an electrical drive system

aspects related to
xed point representation and computations, as used in the DSP controller).

The equivalent scheme, as implemented in the MATLAB-Simulink environment, is presented
in Fig 3. This includes the analogue parts (motor, power converter, sensors), as well as digital
ones (digital controllers, A/D, D/A conversions, and digital implementation
fi

Fig. 3. Motion control scheme model in Simulink

IV CODE GENERATION

Once the system has been simulated, and you are satisfied with its expected behaviour, you
can proceed to the next level: generating C/C++ code for the control blocks of the system, in
order to implement and test it on the 2812 DSP controller. To do this, you can use the Real

ATEE - 2004
Time Workshop tool of the MATLAB environment. It allows you to generate the complete
C/C++ code associated to the blocks of the system’s Simulink model.
The C code generated from MATLAB is finally included in a basic real-time interrupt
application, which can be executed on a TMS320F2812 DSP controller based module. Using

n the application on the real digital control environment.
ode generation is done in four steps if the compile option is selected; otherwise, there are

only tw t

2.

 generates the corresponding C code. If you

.tmf” file.
4. The compiling utility reads the ‘make’ file and compiles the C files, links the

the Digital Motor Control Developer Pro (DMCD-Pro) IDE platform, you will be able to
download and ru
C

o s eps.

1. The Real-Time Workshop analyses the Simulink model, and then it generates the
model.rtw file through a hierarchical representation.
The Target Language Compiler analyses the model.rtw file and, depending on the
options found in the “ti_c28xx.tlc” file,
choose to uncheck the “compile” option, the code generation process stops right
here; otherwise, the next steps follow.

3. The Target Language Compiler (TLC) compiles and builds the ‘make’ file, taking
into account the model defined in the “ti320c28xx

object and library files, then creates the .exe file.

The Fig. 4 shows how the code is generated by taking into account the user options:

et Language Compiler executes a TLC program that contains script files. As

The C++ code is

Fig. 4. Code generation steps

In the second part of the code generation process, the TLC generates the C++ code. The TLC
is an interpreter created to convert the model description found in the model.rtw into C++
code. The Targ
the TLC is an interpreter, the scripts specify how the code is generated, having as input the
model.rtw file.
Due to certain differences between TI’s C compiler used by DMCD-Pro, and the MATLAB
compiler, the generated C++ code is not compiled at MATLAB level.

ATEE - 2004
embedded i

n the DMCD-Pro projects, compiled in these projects using TI tools and then
downloaded and tested on the real-time environment of the DSP controller.

Fig. 5. C xx DSP

library

 CONCLUSIONS

The results were obtained using a MCK2812 motor control kit an ttman 3441 permanent
synchrono ical data presented below:

ce m

nt

6
 - peak torque 94 mNm

show the experimental results obtained using DMCD-Pro.

ode generation model using the Embedded Target for TI320 C28

V. EXPERIMENTAL RESULTS AND

d a Pi

us motor with techn

 - phase resistan 5.25 Oh
 - phase inductance 0.46 mH
 - torque consta 25 mNm/A
 - rated voltage 19 V
 - nomimal current 1.1 A

- rotor inertia 9.9 kgm210-7

- number of pole pairs 2

On the first column are presented the Matlab/Simulink results and on the second column are

time [s]

P
os

iti
on

 [b
its

]

ATEE - 2004

time [s]

I q
cu

rre
nt

 [b
its

]

time [s]

M
ot

or
 p

ha
se

s
cu

rr
en

ts
 [b

its
]

Fig. 6. Simulated (left column) and experimental results (right column)

As we can see from Fig. 6., there is a very good fit between the simulated and experimental
results. This validates the proposed approach, and confirms the correctness of the solution. At
this point, we can easily change specific control block in the Matlab-Simulik model, in order
to eventually test other control strategies and schemes and, once simulation results seem
satisfactory, test the new control schemes on the real DSP system.
The proposed solution represents an excellent platform for theoretical research and
experimental validation of advanced control schemes for digital motor control configurations,
and is specifically suitable for laboratory and advanced studies activities in this area.

VI. REFERENCES

[1] L.Kreindler, A.Sarca, R.Giuclea, L.Antognini, “High-level Tools for advanced Digital Motion Control
Applications Implementation”, SPS/IPC/Drives 2001 Conference, Oct. 2001, Nuremberg, Germany

[2] L.Kreindler, R.Giuclea, A.Sarca, V.Burtea, “High Level Graphical Tools for Fixed Point DSP Motor Control
Implementation”, IMCS Conference, San Jose, USA, July 1998

[3] P. Vas: “Future Trends and Developments of Electrical Machines and Drives”, Power Conversion and
Intelligent Motion PCIM’95 Conference, pp. 67-78, Nuremberg, Germany

[4] R. Isermann: “On the Design and Control of Mechatronic Systems — A Survey”, Ind. Electronics, Feb. 1996,
Vol. 43, No. 1, pp. 4-15

[5] MathWorks: “Targeting Real-Time Systems” – User manual MathWorks 2003

[6] Texas Instruments: “TMS320C24x DSP Controllers – Peripheral Library and Specific Devices”,Texas

 Instruments 1997

[7] Texas Instruments: “TMS320F2810, TMS320F2812 Digital Signal Prossesors” – Product Overview,Texas
Instruments 2000

	Spl. Independentei 313, Bucharest
	I. INTRODUCTION
	II. MOTOR CONTROL STRATEGY
	III. MODELLING OF THE POSITION VECTOR CONTROL SCHEME
	V. EXPERIMENTAL RESULTS AND CONCLUSIONS
	VI. REFERENCES

