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ABSTRACT 
 

The trajectories of fine particles (≤ a few µm) in an electrostatic precipitator (ESP) are 
modelled taking into account the secondary gas flow induced by horizontal ionizing electrodes. In 
particular, in an electrostatic precipitator with horizontal ionizing blades,  the secondary flow in the 
form of axial rolls can be vigorous and the resultant gas flow inside the precipitator can be considered 
as axially invariant to a first approximation. A numerical simulation of charging, transport and 
collection of fine particles is presented, based on the approximation of a gas flow independent of the 
axial variable. The bi-dimensional character of the distributions of electric field E and ionic space 
charge q which plays an important role in the charging of particles is taken into account. This allows 
simulating the particles trajectories and the dynamics of their charging. 
 

1. INTRODUCTION 
 

Electrostatic precipitation is a commonly used technique to clean the gases exhausted 
in atmosphere by many industrial factories or plants. But the efficiency of collection of 
industrial precipitators (ESPs) is generally poor for the fine particles of size ranging from 0.1 
to 1 µm which are hazardous for human health. In order to try to improve the removal of fine 
particles it is necessary to characterize their properties and behavior during the precipitation 
process. Many attempts were proposed to account for the observations and measurements on 
laboratory and industrial ESPs. The oldest one is the simple analytical approach of Deutsch 
[1] refined by Leonard [2]. More recently numerical models were developed by several 
authors (Meroth [3], Medlin [4], Egli et al. [5], etc..). The electrohydrodynamic effects are 
retained with different degrees of complexity. However, almost all recent numerical models 
consider the simplified case of homogeneous discharges along the cylindrical corona 
electrodes, which restricts the influence of the electrical forces on the gas flow mainly to 
velocity modulation in a horizontal plane (Oxy in Fig. 1-a).  
 In a previous work performed on two laboratory ESPs with vertical “barbed” 
electrodes and horizontal ionizing blades [6,7,8], a rather vigorous secondary flow in the form 
of axial rolls was observed as sketched in Fig. 1-a. These rolls arise from the periodicity along 
the vertical direction Oz of the distributions of electric field E, charge density ρ and force 
density ρE. A first important observation is that the gas flow inside the filter exhibits the same 
structure in all cross-sections Oyz. To a first approximation, the secondary flow does not 
depend on the axial direction Ox. This two-dimensional (2-D) character of the large scale 
secondary gas flow allowed to perform a rather simple analysis of particle motion in a 
convective cell (Fig. 1-b). 
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2. TWO-DIMENSIONAL (2-D) NUMERICAL MODEL OF GAS FLOW 
 
 We retain the case of the plate-plate electrostatic precipitator with horizontal ionizing 
blade (Fig. 1a). The flow visualization [6-9] reveals a well organised secondary flow with 
rather strong velocity  components in the  Oyz  plane. The gas motion  is vigourous  and  must  

  
a) b) 

 
Fig. 1. a) Plate – plate with ionizing blades investigated precipitator with schematic axial rolls; 

b) Convective cell (computation domain). 
 

have some marked effect on the particule trajectories and on their collection. To go further in 
this study and get a better estimation of the influence of gas flow structure, we do perform a 
numerical study concerning the charging process and trajectories of the particles inside of a 
convective cell (Fig. 1b). 
 The determination of the solution of the gas flow problem is difficult due to the 3-D 
character of the Coulomb force density distribution and of the associated flow. Nevertheless, 
as the mean cross flow pattern appears to be approximately invariant along Ox, it is not 
unrealistic to consider a much simpler 2-D problem. Indeed the forced gas flow, which tends 
to damp out the secondary rolls of vertical axis does not strongly affect horizontal rolls (the 
mean streamlines are then helices). The problem can be simplified by considering that the 2-D 
force density resulting from averaging Fe (electric strenght acting on the gas) along the Ox 
direction drives the axial rolls. We can then formally accept an uniform injection of charge 
along of horizontal blades (which permit to consider a plane symmetry of ionic space charge 
and electric field).  
 The problem is governed by the equations of Poisson, Navier-Stokes and conservation 
of current and mass: 
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where V and  are the electric potential and field, q is the charge density, εV−∇= E 0 the gas 
permittivity, j the current density, U(u,v,w) the gas velocity field, ρg the gas mass density, p 
the pressure and η the gas dynamic viscosity.  
 The constitutive equation for the current density is: 
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i
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where Ki and D are the ion mobility and diffusion constant respectively.  
 The diffusion current is totally negligible in comparison to the current due to the drift 
of the ions. Since the drift velocity of ions (~ 60 m/s) is much higher than the typical velocity 
Ug of the forced flow, the convective component is neglected in the ionic current density, 
which is simply: 
    j = Ki qE.       (6) 
 
 Therefore the "electrical" problem can be decoupled from the "hydrodynamic" one. At 
steady state, equation (2) leads to: 

    0.
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The assumption of a 2-D problem (the x derivatives of all variables except the pressure is 
zero) results in a decoupling of the two equations for the components v and w of the velocity 
vector [9,10]. Classically a stream function Ψ is introduced defined by [9,10] : 
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Denoting the axial vorticity by Ω,  eq. (4) leads to : 
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The component of the gas velocity in the Ox direction u results from Navier-Stokes equation 
on this direction (remembering that 0=

∂
∂

x
u ): 
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 By taking into account the periodicities and the symmetries, the computing domain is 
restricted to the section of one roll, y varying from 0 (the center of the blade) to the collecting 
plate and z from 0 to s/2 (s is the vertical period of the blades) represents the calculus cell. 
The details concerning the boundary conditions of constitutive equation can be found in 
[9,10,11].   
 The equations have been put in finite differences form using a rectangular mesh. The 
Poisson equation is solved using the successive over-relaxation method (SOR). q is obtained 
by using the method of characteristics. The solution of the electrical problem is determined by 
successive approximations: V being given, a new q distribution is obtained by interpolating 
between the previous one and the solution of (7); then a new V distribution is determined by 
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solving (1). The computation starts by taking the harmonic potential. About 10 successive 
approximations are usually enough to achieve a good convergence [9,11]. 
The vorticity equation, (10) defines an initial-value problem treated by using the first upwind 
differencing method [9-11]. Once the vorticity distribution is obtained, we do solve the 
equation (9). The calculation (resolution of (9) and (10) alternatively) is continued up to a 
point where a steady state is reached. The equation (11) is similar with (10) and we do solve it 
using the same method. Here the source term is the pressure gradient and we choose a value 
which led to a mean gas flow velocity in the x direction of ~1 to 2 m/s. 
 

3. PARTICLE TRAJECTORIES MODEL 
 
 Based on the determined distributions of electric field, ionic charge space density and 
velocity field of the gas flow, we developed an exploratory study on the trajectories of 
particles inside of a convective cell. We focus our study on fine particles trajectories (particles 
diameter dp~0.1 to 3 µm) and do neglect some of the smallest strength acting on the particles 
(gravitationnal strengh, Magnus effect and Basset strength…[12]). Then on the basis of the 
fundamental relation of dynamics the trajectory of a particle is defined by the following 
equation: 
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where r is the position of particle, qp is the particle charge, taking as reference the saturation 
charge qlim , evaluated using (13) for a mean electric field Vappl/d and εr is dielectric constant 
of the particle material. Cu(dp) is the Cunningham factor that have to be used in the Stokes 
law when the particles size is not too large in comparison with the mean free path of gas 
molecules ( λg =0.065 µm for air). 
 The saturation charge is expressed as follow [13]:  
 
    ( ) ( )zyxddq pp ,,E2

0lim ⋅⋅= βπε     (13) 
 
The charge qp is a function of time and we retained the so-called “Field-Modified diffusion“ 
charging model developed by Lawless [14,15]. This model retains the two basic mechanisms 
of field (qf) and diffusion (qd) charging. While the field charging process is dominant for 
particles diameter above 1µm, the diffusion charging process becomes predominant for 
particle diameter under this size. Nevertheles, both mechanisms participate to the 
accumulation of charge on particle until the saturation charge (qlim) is reached. Then the only 
mechanism involved in particle charging is the diffusion charging process. The detalied 
equation of charging process are given in [14,15]. 
 

4. PARTICLE TRAJECTORIES AND CHARGE SIMULATION 
  
 In this model, the entry length corresponding to the development of the secondary 
flow is ignored. One of the most drastic approximations is to retain only the steady state 
vortical motion thus fully neglecting the effect of turbulence even though the mean velocities 
v and w depend globally to a certain degree on turbulence (the computations were performed 
with a mean velocity field corresponding to 1.3 m/s). We therefore obtain qualitative rather 
than quantitative results. 
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Fig. 2. Example of particle trajectory inside 
of a convectice cell for dp = 0.5, 1 and 3 µm 

injected at the same entrenance point 
(Vappl = 20 kV, Ug = 1.3 m/s). 

 

 
dp = 0.5 µm dp = 1 µm dp = 3 µm 

Fig. 3. Evolution of adimensional particle charge and charge limite along of the coresponding 
trajectorys given in Fig. 2   

 
 Fig. 2 shows an exemple of particle trajectories inside of a convective cell. We can see 
that the particle trajectory (practicaly the collection process) strong depends of the particle 
diameter dp. An important factor which can explain that is the evolution of the particle charge 
inside of the filter (Fig.3). These three examples shows that the time evolution of the charge  
qp of a particle depends on its trajectory (through the local values of the field and of the ionic 
space charge). It is clear that along the trajectory, at every position on the trajectory, the 
charging depends on local ionic charge density q and field strength. This leads to a steep 
increase in qp when the particle passes from a region of low charge density and/or electric 
field to one with high values of q and E. Fig. 4 a) and b) shows the importance of the entrance 
point of the particle in the filter (at x = 0) and the influence of the gas flow structure. Because 
the flow structure, the trajectory and the collection process strongly depends “the start” of 
each particle. Fig. 4 c) and d) presents the influence of particle diameter on the collection 
distance and charging process. For this example, when the entrance point is located on the 
symmetry boundary (OC – Fig.1-b) of the convective cell, it is interesting to observe that, the 
small particle (dp = 0.1 µm) can acquire a most important charge. In a first view, these results 
can appear stranger because the particle charge depends of their diameter. If we examine the 
Fig. 2 this observation is consistent because the small particles have the longer trajectories 
(several passages in the zones with high values of q and E) and, in consequence, the time of 
charge is different (see also Fig. 3).  
 

5. CONCLUSION 
 
 The numerical study that has been presented in this paper illustrates the extend and 
trends of large flow distortion, in shape of longitudinal rolls, in laboratory scale duct 
precipitator using ionizing horizontal blades electrodes. One of the most essential results that 
have rising up is that the dynamic of particle strongly depends of the gas flow structure, 
spatial distribution of ionic charge and electric field and particle charge.  These results 
however, are rather qualitative than quantitative. One shall keep in mind that, in our model, 
we did use assumptions that can have significant influences on the values obtained for the 
particle charge. To simulate the particle trajectories the modulation of the injection of charge 
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(corona discharge) according to Ox direction is neglected. Thus, this can have significant 
consequences on the charge qp, the spatial distributions of the electric field and space charge 
density is not representative of the real one. Another simplification consists in neglecting 
small scale turbulence; this one influences the movement of the very fine particles (lower than 
0.5 µm) . 
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Fig. 4. a) Collection distance xc * as a function of entrance coordinate y* for dp = 0.1 µm;  

b) Collection distance xc * as a function of entrance coordinate z* for dp = 0.1 µm;  c) Collection 
distance xc * as a function of particle diameter for the entrance point (0.7, 0); d) Particle charge as a 

function of diameter dp for the entrenance point (0.7, 0). 
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