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Abstract – The paper presents alternative neural network (NN) solutions for the control of induction 
motor (IM) and permanent magnet synchronous motor (PMSM). Both NN methods, based on vector 
control, were compared with the classical respective method control for IM and PMSM. The proposed 
NN for IM is related with sensorless drives, based on a model reference adaptive system (MRAS) and 
the NN is designed to estimate the electrical rotor speed. As an alternative solution to classical vector 
control of PMSM, an inverse model neural controller with a simplified mechanism to reduce the speed 
offset during the control process is proposed. All the algorithms were experimentally tested in order to 
prove capabilities of NN to control the AC machines.  The experimental tests have been developed 
around Motorola DSP56F805 fix-point processor to control the IM and respectively with DS1104 for 
PMSM control. 
 

I. INTRODUCTION 
 

The interest for sensorless induction motor (IM) drives has been constantly rising 
during the last years. The fact that the rotor speed is not measured, but estimated, has several 
important benefits, especially related to higher robustness, lower cost and lower sensitivity to 
noise. In this paper an on line trained neural network (NN) [1] is presented as an alternative 
solution to the classical model reference adaptive scheme (MRAS) [6], to estimate the rotor 
speed for a squirrel cage induction machine. The classical and respective the NN control 
algorithms, were experimentally tested using a Motorola DSP56F805 fix-point processor.  
The high performance control of permanent magnet synchronous machine (PMSM) for 
industrial applications has received also a wide interest lately due to the recent achievements 
in high-energy permanent magnet materials [3]. Using the good learning ability and the high 
robustness of the NN an inverse control for PMSM [2], it is presented as an alternative 
solution for classical vector control. The experimental tests for the classical vector control and 
for the inverse neural control of PMSM were obtained using a real-time DS1104 system. 
A. Sensorless technique based on model reference adaptive scheme (MRASPI) 

The block diagram of the sensorless direct rotor field oriented control (DFOC) of 
induction motor using the MRAS technique [6] is presented in Fig. 1. Two flux estimators are 
used the first is a VI estimator as reference model, and the second is an estimator as adaptive 
model, designed with the following equations: 
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The classical method to estimate the electrical rotor speed (MRASPI) is deduced 

according with the Popov’s hyperstability theorem [5]. The adaptation mechanism is based on 
the error signal, between the rotor flux components.  
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This tuning signal is the input of a proportional integral element, which outputs the estimated 
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Fig. 1.  MRAS based DFOC scheme Fig.2. Neural network sensorless control of IM 
   

B. Neural Network based method to estimate the electrical rotor speed (MRASNN) 
The adaptive ωI  flux observer can be designed like a simple neural network, if the 

discrete form of (2) is used:  

 ( ) ( ) ( 3322111-kψkψ xwxwxwi )r
i
r +++=

ωω
 (5) 

where:  rmrr ThLwhwThw ==−= 321 ,, ω  (6) 

∑

∑
( )krdψ

( )krqψ

( )1−krdψ

( )1−krqψ

( )1−kisd

( )1−kisq

1w

3w

3w
2w

1w

2w

Using an on-line back-propagation 
algorithm with momentum term, a two layer 
neural network as can be seen from the Fig. 
3, is supervised trained to minimize the error 
between the fluxes generated from the VI 
estimator (desired) and respectively from the 
NN the ωI

Iω

 estimator. The weights of the 
neural network are functions of the electrical 
parameters or electrical speed of IM as (6) 
suggests. 

Fig. 3. Neural network architecture for IM control 

 
The neural network has two neurons, with three inputs each (the stator currents and the rotor 
fluxes), and two outputs (the estimated rotor fluxes):  
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The electrical speed is adaptively computed as a weight of the neural network using the on-
line back propagation algorithm, and afterwards is used to drive the induction motor: 
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where: η  is the learning rate of the neural network, α is the momentum term coefficient, h is 
the sampling time, and: 
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The algorithm described above is applied in this paper for a sensorless direct field oriented 
control of induction motor. 
 

III. EXPERIMENTAL RESULTS WITH IM 
 

The experimental tests were performed with a 2kW induction motor, controlled by 
Motorola DSP56F805 based board. The DSP56F805 is a 16 bits fix-point processor, and in 
order to control the induction machine a normalised Q15 mathematical model has to be 
derived. Considering the maximum values for stator voltage, stator current and electrical 
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speed as base quantities all the other quantities can be further obtained. The switching 
frequency of the PWM inverter was set to 5 kHz and the test were performed with no load.  

The voltage references in synchronous frame are obtained from the digital current 
controllers and as is known in order to obtain high dynamical performances the synchronous 
stator voltages have to be decoupled [6]. In the present paper a method to compensate the 
invertor dead time is also considered for the stationary reference stator voltages [7]. Another 
aspect, which needs special attention, is the implementation of the VI rotor flux estimator, 
because of the open loop dc integration problem and the zero speed operation [8].  

The proposed neural network scheme for sensorless induction motor control 
MRASNN is experimentally tested in this paper for a direct rotor field oriented scheme and 
the results are compared with a classical MRASPI scheme. The tests were performed at low 
speeds below 500 rpm in order to demonstrate the effectiveness of the NN based scheme. 
Similar speed profiles were created for both scheme, reversion from 500 rpm to – 500 rpm 
and tests at minimum stable speed. 

 

Fig. 4. Speed reference profile from 500 rpm to  
-500 rpm for MRASPI 

Fig. 5. Speed reference profile from –500 rpm to 
20 rpm for MRASPI 

Fig. 6. Speed reference profile from 500 rpm to 
–500 rpm for MRASNN 

Fig. 7. Speed reference profile from –500 rpm to 
10 rpm for MRASNN 

 
For the MRASPI the minimum long time stable speed were obtained at 20 rpm, and 

for the MRASNN the minimum was settled at 10 rpm, as Fig. 5 and respectively Fig. 7 
shows. The dynamical performances, the rising time for the MRASNN (0.56 s) is better than 
for the classical MRASPI (0.71 s). The performances of the MRAS based schemes can be 
improved if the rotor time constants variation is taking into the consideration, because of the 
ωI  estimator. The MRASNN scheme can be improved if the NN will be fully trained for the 

remaining elements of the weighting vector, because is inverse proportional with . This 
method it is not used into the present paper and remains a possible research direction. 

1w 1T
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IV. NEURAL NETWORK SOLUTION FOR PMSM 

 
A. Vector Control of PMSM (PMSMPI) 

The classical vector control technique is used in order to obtain high torque sensitivity 
of the PMSM through decoupling the quadrate axis – axis q and direct axis – axis d 
components of the stator currents formulated in the synchronous rotating reference frame [6]. 
In order to control the PMSM a PI speed controller is designed and synchronous PI current 
regulators were used. The reference current on axis d is set to zero and the speed is obtained 
from the rotor position available from an incremental encoder. 
B. Neural Network Inverse Control of PMSM (PMSMNN) 

The mathematical model of PMSM is described in [6] and it is not necessary to be 
available for the NN vector control. However it is possible to obtain the analytically inverse 
dynamic of the PMSM after some calculations starting from the differential equations of the 
mathematical model: 
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where A, B, C, a, b, c, d, f are constants and depends by machine parameters and sample time 
[2].  The purpose of the NN is to map the nonlinear relationship between the (q) axis current 
and the rotor speed. The proposed NN is presented in Fig. 9, and contains three hidden and 
one output neurons, with log-sigmoid activation functions.  
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Fig. 9. Neural Network architecture for PMSMNN  

The NN inputs are the rotor speed at the present and previous two samples intervals 
and respectively the previous current sample. The corresponding output of the NN is the 
present current sample of the q-axis current. The NN has to be trained off-line in order to 
obtain the initial values for the weights matrices W and Z, and for the bias values w0 and z0.   

qi

The training data were obtained from the open loop control of the PMSM, generating random 
values for the current [3].  The data set is then normalised and the NN is trained using the 
Levenberg-Marquardt back propagation algorithm, which quickly converge to the prescribed 
error.  It is known that the NN based just on the initial weights and without a suitable method 
to update the weights and bias through the on-line back propagation, it is an unacceptable 
solution for high performance drives. The inconvenience occurs due to the fact that the NN 
acts like a proportional regulator, which introduces an offset between the imposed and 
realized rotor speed. In order to overcome this situation the NN has to be online trained, but 
this task is evidently difficult to be accomplished due to the facts that the desired signals are 
not available in real time drives, and from highly computational reasons. 

qi

In the present paper a simplified method to correct the NN dynamics is considered 
based on the fact that an integral component has to be added to the output of the NN. The 
proposed structure is presented in Fig. 10.  
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 In the present paper a simplified 
method to correct the NN dynamics is 
considered based on the fact that an 
integral component has to be added to 
the output of the NN.  

Fig. 10.  Neural Network control of PMSM 
 

V. EXPERIMENTAL RESULTS WITH PMSM 
 

The DS1104 system is used to control the PMSM and combines the functionality of a 
TMS fix-point DSP with powerful MPC8240 processor, for hardware related features and the 
Matlab/Simulink RTI for easy software development. The control algorithm is developed 
under Simulink environment using C in conjunction with s-functions. Different quantities can 
be visualized in real-time and saved from the experimental stand using the ControlDesk 
application. Field oriented control requires information about the rotor position and speed, 
which is obtained from an incremental encoder, which provides 2500 lines/rpm and numerical 
computation. It is well known that at start time for correct operation the relative position have 
to be adjusted accordingly to avoid the reset of the first index. The correction algorithm 
compute the absolute position as can be seen in Fig. 13, either for parasite index signals, 
which means the reset of the counter. The rotor speed is obtained from absolute position using 
a digital low pass filter and (11). 
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The performances of the PMSMPI and PMSMNN schemes were compared for speed 
profile from 250 rpm to 500 rpm and for reversion from 500 rpm to – 500 rpm, as Fig. 11, 12 
shows. The results show the abilities of the NN to generalise and to control the PMSM in real-
time environments. Special attention has to be accorded to the training process in order to 
obtain the initial values of the NN weights and biases. The training data was generated using 
open loop scheme for PMSM for a speed range 314± rad/s, which means rpm, and 
contains 80,000 pairs of input-output data vectors. The inputs of the NN are normalised, for 
better numerical representation due to the nature of the log-sigmoidal activation functions of 
the neurons between

750±

[ 9010 .. ÷ ]. The switching frequency of the PWM inverter was set to 5 kHz 
and the schemes were tested with load (Fig. 14). As for IM control a method to compensate 
the inverter dead time is also considered for the stationary reference stator voltages [7]. 

Fig. 11. Speed profile detail of PMSM control 
from 250 to 500 rpm 

Fig. 12. Speed profile detail of PMSM control 
from 500 to -500 rpm 
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Fig.13.Relative/absolute pos. during the reversion  Fig. 14. Rotor speed response to load torque 

 
IM data 

Rated Output Power: 2 kW 
Rated Torque: 14 Nm 
Rated Voltage: 220 V 
Rated Frequency: 50 Hz 
Rated Speed: 1350 rpm 
Stator Resistance: 2.71 Ω 
Rotor Resistance: 3.73 Ω 
Stator Inductivities: 0.284 H 
Mutual Inductivity: 0.269 H 
Inertia: 0.05 kgm² 

 
PMSM data 

Rated Torque: 7 Nm 
Rated Current: 11.7 A 
Pole Pairs: 4 
Rated Speed: 750 rpm 
Rated Frequency: 50 Hz      
Resistance: 0.33 Ω 
Inductivities: 11.2 mH 
Inertia: 19e-4 kgm² 

Fig. 15. Stator current response to load 
torque with PMSMPI 

  

 
VI. CONCLUSIONS 

 
This paper presents alternative neural network based solutions to AC motor drives. 

There are presented two neural networks based schemes for sensorless induction motor 
control, MRASNN and respectively for permanent magnet synchronous motor control, 
PMSMNN. The proposed NN solutions were experimentally compared with the respective 
classical methods, MRASPI and PMSMPI in order to validate the effectiveness of the 
algorithms. The presented results show that the neural networks offer alternative solutions to 
classical control schemes with comparable performances. In the presented schemes the neural 
networks structures are relatively simple and the required computational effort it is not higher 
than in the other classical schemes. Even more than that, with presented PMSMNN scheme 
the on-line training of the neural network is avoided and the computational effort remains at a 
reasonable level with good dynamical performances. 
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