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 Abstract The present paper introduces a possible implementation of the mortar 
finite element method in electrostatics. It presents the equations of the linear 
electrostatics, and the main features of the mortar finite element method. Within 
the frame of the mortar finite element method one can couple different 
discretization schemes, the method being famous over its flexibility. In order to 
facilitate an easier way to couple the discretization schemes involved we will 
take advantage of a dual Lagrange multiplier space .The mortar finite element 
method is used to solve a plane problem in the context of linear electrostatics. An 
algorithm for implementing numerically this method is also proposed. Finally, a 
numerical example is discussed and conclusions are drawn. 
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1. Introduction  
 
  In this paper we present a possible implementation of the mortar finite element method in 
linear electrostatics. The mortar finite element method is a non-conforming finite element technique 
developed relatively recently, which provides a flexible algorithm for coupling different discretization 
schemes. One of the main features of the method is to replace the exact continuity condition at the 
skeleton of the decomposition with a weak one. Thus, this method is extremely useful in the study of 
domains with singularities such as cracks [4], or concave domains with corners. The method was 
proposed by C. Bernardi, et al. [1], [2]. Later on, B. Wohlmuth developed a saddle-point formulation 
of a certain problem within the frame of the mortar finite element method in [7]. The major 
improvement to the method in [7] was the use of a dual Lagrange multiplier space which permits the 
implementation of a much simpler matching between the triangulations. The same idea of 
implementing a dual Lagrange multiplier space is also implemented in the present paper, but in a more 
direct way without taking advantage of the explicit implementation of the Lagrange multiplicators. In 
section 2 there is a short presentation of the basic equations of linear electrostatics under certain 
assumptions. Section 3 presents the weak form of the problem stated in the second section and the 
features of the mortar finite element method within the frame of linear electrostatics, underlining its 
capabilities as a domain decomposition technique. Section 4 presents a possible numerical 
implementation, proposing a numerical algorithm.       
 
 
2. Basic equations 
 



 

Let  be a bounded convex domain in the bi-dimensional Euclidian space. Suppose that the 
domain D is occupied by an isotropic and homogenous medium. As in [3], the basic equations of 
linear electrostatics are: 

D

  
• Gauss Law:  
 

        ρ=Ddiv                                                           (2.1) 
 

• Electrostatic form of the Faraday law: 
 

0E =rot                      (2.2) 
 

• Constitutive relation: 
 

ED ε=       (2.3) 
 
where  is the electric field intensity and  is the electric flux density or, alternatively the electric 
displacement, 

E D
ε  is the electrical permittivity and ρ  represents charge density. 

 We can see from (2.2) that E is a potential field, i.e. there exists an electric potential 
(voltage) defined by: V

 
V−∇=E       (2.4)  

 
In this way, supposing that ε  is constant, from the relations (2.1)-(2.4) we can write: 
 

ρε =∆− V        (2.5) 
 
To this equation we’ll attach the following boundary conditions: 
 
    VV ~=  on Γ         (2.6) 
 
where V~  are continuous functions given on Γ . Thus the boundary value problem is to find V  which 
satisfy (2.5) and the boundary conditions (2.6). 

In this way, by changing accordingly the variables, the first fundamental problem of linear 
electrostatics becomes: 

 
fV =∆− on      (2.7) D

 
0=V onΓ .      (2.8) 

 

where 
ε
ρ

=f .

 
 
 
3. Weak formulation. The mortar finite element method 
 

In order to implement the mortar finite element method, let’s consider a non-overlapping 
decomposition of  into polyhedral subdomains , D kD Kk ≤≤1 , 
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=  where .  (3.1) I klDD kl ≠∀Φ= ,

 
Let’s suppose that each intersection , I kl DD ∂∂ lk ≠  is either empty, a vertex or a common 

edge. Each subdomain  is associated with a family of shape regular simplicial triangulations kD
khτ , 

, where  is the maximum of the diameters of the elements in 0;kk hh ≤ kh
khτ . Next, we’ll follow the 

ideas from [7] and we consider linear conforming finite elements ( )
khkDS τ,1  on the individual 

subdomains, and enforce homogenous Dirichlet boundary conditions on , where I kΓΓ kk D∂=Γ . 

Each common edge between two subdomains , I lk ΓΓ lk ≠ , i.e. each interface is associated with an 

one dimensional triangulation, inherited from 
khτ  or 

lhτ . The above interface will be denoted by klΓ  

or  if its triangulation is inherited from lkΓ khτ  or from 
lhτ , respectively. In this way, we can write: 

 

U
(k)l

klk
M∈
Γ=Γ ,      (3.2) 

 
where ( )kM  denotes the subset of {  so that  is an interface for }N,...,2,1 I kl ΓΓ ( )kl M∈ . In the 

frame of the above, the union of all interfaces S  can be decomposed uniquely: 
 

U U
K

k (k)l
lk

1= ∈

Γ=
M

S       (3.3) 

 
Next we will introduce the mortars and the non-mortars, following the ideas from [1],[2] 

and[6]. We have ( ) ( )kk MM ⊂  so that for each set { }lk, , Kk ≤≤1 , ( )kl M∈  either ( )kl M∈  
or ( )lk M∈  but not both.  

The elements of ( ){ klKkkl M }∈≤≤Γ ,1|  are called mortars and the elements of 
( ){ klKklk M∈≤≤Γ ,1| }are called non-mortars. The second set will be the one from which the 

Lagrange multiplier space, that we are about to introduce, will take its mesh. The Lagrange multiplier 
space will play a major role in the further development of the mortar finite element method. 

In order to obtain the weak form of the first fundamental problem of linear electrostatics we 
define the following solutions space : Ω
 

( ){ }DVDHVV ∂=∈=Ω  pe 0,| 1 ,   (3.4) 
 
We suppose that the solution is continuous on D  and thus we’ll have: . In this 

case the existence and uniqueness of the weak solution is an immediate consequence of the Lax- 
Milgram theorem applied on the space Ω .  

( )DH 1
0≡Ω

We consider a weight function ( )DHW 1
0∈ . Multiplying the equation (2.7) by W  and 

integrating the resulting equation on , we can state the weak form of the first fundamental problem 
of linear electrostatics: let’s determine 

D
Ω∈w  so that: 

 

∫ ∫ Ω=Ω∆
D D

VfdVdW , ( )DHw 1
0∈∀ .   (3.5) 

 
Let’s define the following functionals on ( ) ( )DHDH 1

0
1
0 × , and respectively on : ( )DH 1

0
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∫ +=
D

yyxx dxdyVwVwVWB ),,,,(),(    (3.6) 

 

∫=
D

WfdxdyWl )( .     (3.7) 

 
In this way, the weak form of the problem (2.14), (2.15) can be stated: find , so that:  Ω∈V

 
)(),( WlVWB = , ( )DHW 1

0∈∀ .   (3.8) 
 
One can notice immediately that the theory presented here for the Poisson equation still holds 

for any elliptical equation. In order to obtain the non-conforming aproximating weak form of the first 
fundamental problem of linear elasticity, we will define the following constrained aproximating 
solutions space : hΩ
 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

Μ∈Θ∂=Θ∈=Ω ∏
=

h

K

k
khkh DWbDSWW ~, pe 0,,,|

1
1 τ , (3.9) 

 
where ( )

khkDS τ,1  is the space of  conforming finite elements and 1P hΜ~  is the Lagrange multiplier 

space that will be specified in the following. In the definition (3.9), ( )⋅⋅,b  is a bilinear functional so 
that: 
 

( ) [ ]∑ ∑
= ∈

Γ
=Θ

K

k (k)l
ii

lk
wWb

1

,,
M

µ , , ( )∏
=

∈
K

k
kDHW

1

1 ( )∏ ∏
= ∈

′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ∈Θ

K

k (k)l
lkH

1

2
1

M
, (3.10) 

 

where  and [ ]
kllk iWWW ΓΓΓ −= |||

lkΓ
⋅⋅, is the duality pairing on ( lkH Γ2

1

) . Within these notations, 

the non-conforming formulation of the mortar finite element method can be stated: find hhV Ω∈  so 
that: 
 

)(),( hhh WlVWB = , hhW Ω∈∀ .   (3.11) 
 
 In (3.9), the Lagrange multiplier space hΜ~  is given by: 
 

(∏ ∏
= ∈

ΓΜ=Μ
K

k (kl
lkhh

1 )

~~
M

)

)

,    (3.12) 

 
where the local space ( lkh ΓΜ~  is a modified trace space of the finite element functions in ( )

lhlDS τ,1 . 

More details about these spaces can be found in [1], [2]. These spaces should satisfy the following 
properties: 
 

( ) ( ) ( )( )I lkhlklkh WH ΓΓ=ΓΜ 1
0dim~dim ,   (3.13) 

 
( ) ( )lkhlkh W Γ⊂ΓΜ~ ,     (3.14) 
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where  is the trace space of ( lkhW Γ ) ( )
lhlDS τ,1 , i.e. 

 
( ) ( ) ( ){ }

lhllklkh DSVVWCWW
lk

τ,,|| 1
0 ∈=Γ∈=Γ Γ . (3.15) 

 
As in [1],[2], ( lkh ΓΜ )~

 is found to be a subspace of ( )lkhW Γ  given by: 
 

( ) ( ){ ( ),,,||~
1

0

lhllklkh DSVVWCW
lk

τ∈=Γ∈=ΓΜ Γ   

 
( ) }lkke DeePW Γ∈  ofendpoint an  contains which  of edgean  is ,| 0 . (3.16) 

 
 The nodal basis functions { }  of  lkN

ii 1=Φ ( )lkh ΓΜ~  associated with the interior vertices , 

 of  are given by: 
jp

lkNj ≤≤1 lkΓ
 

( ) ijji p δ=Φ ,      (3.17) 
 
where .  ( )lklkN ΓΜ= ~dim
 Next we will introduce the dual Lagrange multiplier space. The idea of using such dual basis 
functions spaces was first implemented in the work of L.R. Scott and S. Zhang[5]. Later on, B. 
Wohlmuth implemented the idea considering the dual of the Lagrange multiplier space in a saddle 
point formulation of  a certain variational problem[6]. Here we will follow the ideas from[6], 
regarding the construction of the dual Lagrange basis functions space. Let’s consider an edge σ  and a 
polinomial space  so that:  ( )σ1

~P
 

( ) ( ) ( )σσσ 110
~ PPP ⊂⊂     (3.18) 

 

and { ,  be a basis, so that: }N
ii 1=Φσ 2,1=N

 

∫ ≠Φ
σ

σ 0dsi .      (3.19) 

 

Within these notations, let’s define a dual basis { }N
ii 1=Ψσ , 2,1=N , ( )σσ

1
~Pi ∈Ψ  so that: 

 

∫∫ Φ=ΨΦ
σ

σ

σ

σσ δ dsds iijji , Nji ≤≤ ,1 .   (3.20) 

 
 From (3.20) we can see that the new basis is well defined [6] and, more: 
 

1
1

=Ψ∑
=

N

i
i
σ .      (3.21) 

 
One can immediately notice that each can be written as a linear combination of 

the{ ,  solving a  system. So we can state that: 

σ
iΨ

}N
ii 1=Φσ Ni ≤≤1 NN ×

 

( ) { }N

jjspanP
11

~
=

Ψ= σσ .     (3.22) 
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 From the way of the introduction of we have: σ

iΦ
 

∑
Φ⊂

Φ=Φ
i

ii
suppσ

σ ,      (3.23) 

 
where . Let’s denote: σ

σ |ii Φ=Φ
 

( ) { }ilki NiP Φ⊂≤≤Φ= supp,1|span~
1 σσ σ .  (3.24) 

 
One can notice ([6]) that for we have: I Φ=Γ∂ lkσ
 

( ) ( )σσ 11
~ PP = .      (3.25) 

 

 
Figure 1 Mortar shape functions 

 
Let’s consider a global Lagrange multiplier space ( )lkh ΓΜ  on every non-

mortar , , lkΓ Kk ≤≤1 ( )kl M∈  so that: 
 

( ) ( )lkhlkh ΓΜ=ΓΜ ~dimdim .    (3.26) 
 
Within the frame of the notations previously introduced, the global basis functions of  are 
given by: 

( lkh ΓΜ )

 

∑
Φ⊂

Ψ=Ψ
i

ii
suppσ

σ .     (3.27) 

 
 A graphical representation of the dual basis functions is given in figure 1;usefull properties of 
the { }  family are discussed in [7].  lkN

ii 1=Ψ
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4. Numerical implementation 
 
 

One can easily notice that the bilinear form ( )⋅⋅,B  is uniformly elliptic on . This will 

imply that our problem (3.11) has a unique solution on . Let’s denote by  the matrix associated 

with the bilinear form  on  and by l  the vector associated with the linear form 

hh Ω×Ω ˆˆ

hΩ̂ B

( )⋅⋅,B hh Ω×Ω ˆˆ ( )⋅l  

on , where  is given by: hΩ̂ hΩ̂
 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

Μ∈Θ∂=Θ∈=Ω ∏
=

h

K

k
khkh DWbDSww , pe 0,,,|ˆ

1
1 τ . (4.1) 

 
Thus the algebric form of the equation (3.11) is: 

 
lBu = .      (4.2) 

 
 A possible algorithm which implements this method can be the following one: 

 
- define the model geometry 
- define the non-overlapping subdomains 
- generate the distinct triangulations on the subdomains 
- assemble the matrix  B
- assemble the vector l  
- solve the system (4.2) 
- postprocess the solution 

 
 

 
Figure 2 Non-matching grid 
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Let’s consider our domain [ ] [ ]1,01,0 ×≡D  decomposed in two distinct subdomains 
 and  (figure2) with the associated unstructured triangulations of 

parameters 0.05 and 0.15.  
( ) ( 5.0,01,0 × ) )( ) ( 1,5.01,0 ×

In our numerical example we’ll take the charge density ρ , so that the exact solution is given 
by:  

 
( ) yxyxv ππ sinsin, ⋅= .    (4.3) 

 
 In figure 3 (left) one can notice the mortar solution plotted against the analytical 
solution(right). 
 

 
Figure 3 Mortar solution vs. analytical solution 

 
 In figure 4 there is a graphical representation of the error in the L2 norm versus the number of 
elements. From figure 4 we can see that there is a considerable increasing accuracy of the method as 
the number of elements increases. 
 
 
References: 
 
 

1. C. Bernardi, Y. Maday, A.T.Patera, Domain decomposition by the mortar element method, 
Asymptotic and numerical methods for partial differential equations with critical 
parameters(H. Kaper et al., Eds.), Reidel, Dordrecht, 1993. 

2. C. Bernardi, Y. Maday, A.T.Patera, A new nonconforming approach to domain 
decomposition: The mortar element method, Nonlinear partial differential equations and their 
applications (H. Brezis et al., Eds.), Paris, 1994. 

 

 8



 

 
Figure 4 Error in L2 norm vs. number of elements  

 
 

3. F.Hantila, T.Leuca, C.Ifrim, Electrotehnica teoretica, Ed. Electra, Bucuresti, 2002. 
4. R. Răducanu, Mecanică computatională, Casa de editură Venus, 2004. 
5. L.R.Scott, S.Zhang, Finite element interpolation of nonsmooth functions satisfying boundary 

conditions, Math. Comp. 54, 1990. 
6. P.P.Teodorescu, Probleme plane in teoria elasticitatii, Vol.I, Ed. Acad. R.P.R., 1961. 
7. B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, 

SIAM J. Numer. Anal. 38, 2000. 
 

 
 

 9


	Răzvan Răducanu
	Abstract The present paper introduces a possible implementat

	1. Introduction
	2. Basic equations
	3. Weak formulation. The mortar finite element method
	4. Numerical implementation
	References:

