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The major difficulty in the nonlinear circuit analysis is to solve nonlinear algebraic equation 
systems. The known algorithms have generally a bad convergence and requires a large amount 
of calculus. We propose an original method that improves the efficiency and robustness of the 
time domain analysis. The method is suitable for nonlinear and/or time-variant analog lumped 
circuits. It builds the state-output equations symbolically and solves those using numeric 
methods. The main idea is to strongly minimize the dimension of the nonlinear algebraic equation 
system, without requiring matrix inversions. This algorithm allows an accurate analysis and the 
convergence problems are strongly minimized. Using this method, we have built a dedicated 
program in MATLAB and solve many applications successfully, without convergence or stability 
problems. 

1 INTRODUCTION 
The analyzed circuit may contain any type of nonlinear and/or time-variant elements, the 

four types of linear controlled sources and any type of excess elements; there are no 
restrictions on network topology, excepting the consistency assumptions [1,3,5,6,7]. The 
nonlinear capacitors must be voltage controlled and the inductors – current controlled. The 
nonlinear characteristics can be nonmonotonic. 

Other advantages of our algorithm are: 
- it formulates the circuit equations symbolically; 
- it requires only a single graph and a single associated normal tree; 
- it does not require a companion resistive circuit;  
- the method does not require matrix inversions; 
- the input branches of voltage-controlled sources are simply modeled by independent zero-

current sources; 
- the input branches of current-controlled sources are simply modeled by independent zero-

voltage sources; 
- the mathematical model contains: an ordinary differential nonlinear equation system (state 

equations) with the state variables: the essential capacitor voltages and the essential inductor 
currents; two linear algebraic equation systems (output equations), having as variables the 
inputs of controlled sources, the tree-linear-resistor voltages and the cotree-linear-resistor 
currents respectively; a nonlinear algebraic equation system (output equations), having as 
variables the tree-nonlinear-resistor voltages and the cotree-nonlinear-resistor currents; the 
dimension of this nonlinear algebraic equations system is the smallest possible for the 
analyzed circuit. 

2 THE GENERAL FORM OF STATE- OUTPUT EQUATIONS 
We will formulate the state equations to the general form: 
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where: 
[ ttt

LcCa iux = ]  is the state-variable vector (the essential capacitor voltages and the essential 
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inductor currents); we use the index “a” for tree and “c” – for cotree; 
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 is the output variable vector, having the components: 
[ ttt

1 ECJC iuy =  the voltages of independent zero-current sources used as inputs for voltage-
controlled sources and the currents of independent zero-voltage sources used as inputs for 
current-controlled sources;  

[ ttt
2 RclRal iuy =  the tree-linear-resistor voltages and the cotree-linear-resistor currents;  

[ ttt
3 RcnRan iuy =  the tree-nonlinear-resistor voltages and the cotree-nonlinear-resistor 

currents;  
[ ttt

JE iuz =   the independent inputs; 
)(00 xMM ≡  the state matrix;  are always constant matrices;  are: 

zero, if the circuit does not contain excess elements; constant matrices, if all excess 
elements are linear; state depending, if the circuit contains nonlinear excess elements. 

54321 ,,,, MMMMM 76 , MM

The output linear algebraic equations are 

zNyNyNxNyN ⋅+⋅+⋅+⋅=⋅ 43322110                          (2) 

             zPyPyPxPyP ⋅+⋅+⋅+⋅=⋅ 43312120                             (3) 

where all matrices are constant. 
The output nonlinear algebraic equation system is: 

042312130 ),,( wzQyQyQxQyyxQ +⋅+⋅+⋅+⋅=⋅t                (4) 

where:  is a state dependent matrix; if the circuit contains time-variant resistors (as 
models for switches), the matrix is time-dependent too;  is a vector of incremental 
sources of local linearized nonlinear resistors. 
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Remarks (only for particular applications):  

1. If the square matrix  is easy to invert symbolically, the output variable  can be 
eliminate from equations (1), (3) and (4);  

0N 1y

2. If both  and  are easy to invert symbolically, the output variables  and  can be 
eliminated from equations (1) and (4); 

0N 0P 1y 2y

3. If all ,  and  are easy to invert symbolically, all the output variables 0N 0P 0Q y  can be 
eliminated from state equations; the analyzed circuit is described completely only by state 
equations (1) [1-3]. 

3 TOPOLOGICAL FORMULATION OF STATE-OUTPUT EQUATIONS 

Step 1: 
We generate the associated graph, extract a normal tree and build the fundamental tree-

cotree incidence matrix D, using our algorithm described in [1]. We partition the 
fundamental tree-cotree incidence matrix as follows: 
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The rows correspond to the tree branches, and the columns to the cotree. The partitions 

correspond to: independent voltage sources ( ); input branches of current controlled sources, 
not in C-E loops ( ); these are short-circuits modeled through independent zero-voltage 
sources [1]; controlled voltage sources ( ); essential capacitors ( ); nonlinear voltage 
controlled tree-resistors ( ); linear tree-resistors ( ); excess inductors ( ); independent 
current sources (

E
CE

cE aC

anR alR aL
J ); input branches of voltage controlled sources, not in L-J cutsets ( ); 

these are open-circuits modeled through independent zero-current sources [1]; controlled 
current sources ( ); essential inductors ( ); nonlinear current controlled cotree-resistors 
( ); linear cotree-resistors ( ); excess capacitors ( );  

CJ

cJ cL

cnR clR cC
The fundamental tree-cotree incidence matrix allows the expression of tree currents and 

cotree voltages as [5-7]: 

                                                          (6) 
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Step 2: 
The evolutions laws of essential capacitors and inductors are: 
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where we have the matrices of dynamic parameters. Using (6) and the fundamental tree-
cotree incidence matrix partitions (5): 
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considering  and . 0=ECu 0=JCi

Step 3: 
We express the controlled sources voltages/currents as: 

                                                            (9) 
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where:  is the voltage transfer factor matrix; A R  is the transfer resistance matrix; G  is the 
transfer conductance matrix;  is the current transfer factor matrix. B
Step 4: 
The evolutions laws for excess elements: 
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combined with (6): 
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Eliminating all variables excepting  and yx, z , the next steps allow the (1)–(4) equations 
building where: 
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4 TIME DOMAIN EQUATION SOLVING 

In order to solve the (1)–(4) equations, we perform a time-discretisation and solve the four 
systems alternatively, as follow: 
► For the initial moment , using the initial conditions, we find the initial values of 
output variables solving the algebraic equations (2)–(4);  

0tt =

► For the first step, over the time interval , we solve the system (1) numerically, 
using an implicit algorithm, where the algebraic variables become the previous calculated 
values; 

),( 10 tt

► For the moment ntt =  we solve: 
- the systems of algebraic equations (2), where the state variables and the output ,  becomes 

the values from the previous moment , finding  for 
2y 3y

1−nt 1y ntt = ; 
- algebraic equations (3), where the state variables and the output  become the values 

from the previous moment , and  becomes the previous calculated value, finding  
for ; 

3y

1−nt 1y 2y

ntt =
- algebraic equations (4), where the state variables become the values from the previous 

moment , and ,  become the previous calculated values, finding  for ; 1−nt 1y 2y 3y ntt =
► For the time interval  we integrate the system (1) numerically, where the 
algebraic variables becomes the previous calculated values for , and the initial 
conditions are  for 

),( 1+nn tt

ntt =
x ntt =  

► We repeat the last two stages until the analysis time is achieved.   
We are made a program under MATLAB 6 environment, based on the presented method. 

It builds the equations symbolically and solves them numerically; the user can choose the 
desired computational tolerances and the numerical integration algorithm out of lists of 
choices. This program is an efficient tool for large-scale circuit analysis due to the high-
performance matrix computation in MATLAB [1, 4, 5]. 
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Let us study the dynamic behavior of the Chua’s circuit represented in Fig. 1, using our 
dedicated program.  
 
 
 
 
 
 
 
 

 
 

 
 
Fig 1. Chua’s circuit.                                            Fig. 2. The state space u3–u20. 

 
The operational amplifier is modeled through a voltage-controlled voltage source – 15; its 

controlling variable is the voltage across an open-circuit modeled through an independent zero-
current source – 14. The diodes 9 and 10 are voltage-controlled nonlinear resistors. 
The program finds the normal tree 1–8–17–15–3–20–9–10–5–12 and builds the circuit 
equations as: 
► the state equations in the form (1): 
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with the variables [ ] t42203 iiuu=x ; 
► the output linear algebraic equation in the form (2): 
 122014)14151( u u *u_A −=−  

with the variable ; 141 u=y
► the output linear algebraic equations in the form (3): 
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with  as variables; [ ] t
2 19;18;16;13;11;7;6;12;5 iiiiiiiuu=y

► the output nonlinear algebraic equations in the form (4): 

  
⎩
⎨
⎧

++=
+−−=

10018161010
907699
_Ji i *uGd

_Jii  *uGd

with the variables [ ] t
3 109 uu=y . 

Solving the equations with the parameter values presented in [1], for the analysis time of 
20 seconds, our dedicated program finds the time-domain solutions without convergence 
problems. We display here only the state space u3–u20, showing the known bounded chaos 
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phenomena (Fig. 2). 

6 CONCLUSIONS 

The main advantages of the proposed method are the following: 
- it does not require topology restrictions, excepting the consistency assumptions; 
- it does not require matrices inversion; 
- it requires only a single graph and a single associated normal tree; 
- it requires relatively small algebraic equations systems solving; the dimension of the 
nonlinear algebraic equation system is the smallest possible; 
- it performs the symbolic equations building; 
- it assures a very good computational stability and convergence. 

Our dedicated program was made under MATLAB 6 environment. It builds the equations 
symbolically and solves them numerically; the user can choose the desired computational 
tolerances and the numerical integration algorithm out of lists of choices. This program is 
an efficient tool for large-scale nonlinear circuit analysis. Further works will present it. 
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