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The major difficulty in the nonlinear circuit analysis is to solve nonlinear algebraic equation
systems. The known algorithms have generally a bad convergence and requires a large amount
of calculus. We propose an original method that improves the efficiency and robustness of the
time domain analysis. The method is suitable for nonlinear and/or time-variant analog lumped
circuits. It builds the state-output equations symbolically and solves those using numeric
methods. The main idea is to strongly minimize the dimension of the nonlinear algebraic equation
system, without requiring matrix inversions. This algorithm allows an accurate analysis and the
convergence problems are strongly minimized. Using this method, we have built a dedicated
program in MATLAB and solve many applications successfully, without convergence or stability
problems.

1 INTRODUCTION

The analyzed circuit may contain any type of nonlinear and/or time-variant elements, the
four types of linear controlled sources and any type of excess elements; there are no
restrictions on network topology, excepting the consistency assumptions [1,3,5,6,7]. The
nonlinear capacitors must be voltage controlled and the inductors — current controlled. The
nonlinear characteristics can be nonmonotonic.

Other advantages of our algorithm are:

- it formulates the circuit equations symbolically;

- it requires only a single graph and a single associated normal tree;

- it does not require a companion resistive circuit;

- the method does not require matrix inversions;

- the input branches of voltage-controlled sources are simply modeled by independent zero-
current sources;

- the input branches of current-controlled sources are simply modeled by independent zero-
voltage sources;

- the mathematical model contains: an ordinary differential nonlinear equation system (state
equations) with the state variables: the essential capacitor voltages and the essential inductor
currents; two linear algebraic equation systems (output equations), having as variables the
inputs of controlled sources, the tree-linear-resistor voltages and the cotree-linear-resistor
currents respectively; a nonlinear algebraic equation system (output equations), having as
variables the tree-nonlinear-resistor voltages and the cotree-nonlinear-resistor currents; the
dimension of this nonlinear algebraic equations system is the smallest possible for the
analyzed circuit.

2 THE GENERAL FORM OF STATE- OUTPUT EQUATIONS

We will formulate the state equations to the general form:
Mo -X=M;-X+M, -y, + M-y, + M, -y; +
+M;-z2+ My -2+ M, -y, (D
X(t) =X

where:

t t

X = [Uca i, |' 1s the state-variable vector (the essential capacitor voltages and the essential
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inductor currents); we use the index “a” for tree and “c” — for cotree;

y=[y\ v v.]"isthe output variable vector, having the components:

y, = [U.fc i Etc]‘ the voltages of independent zero-current sources used as inputs for voltage-

controlled sources and the currents of independent zero-voltage sources used as inputs for
current-controlled sources;

y, = [u L R‘d]t the tree-linear-resistor voltages and the cotree-linear-resistor currents;

t

Y, =[URM iR‘m]‘ the tree-nonlinear-resistor voltages and the cotree-nonlinear-resistor
currents;
z=[u. i]' the independent inputs;

M, =M,(x) the state matrix; m,, M,, M,, M,, M, are always constant matrices; M, M, are:

62
zero, if the circuit does not contain excess elements; constant matrices, if all excess

elements are linear; state depending, if the circuit contains nonlinear excess elements.
The output linear algebraic equations are

No-y, =N -X+N,-y,+N;-y;+N, -z (2)
Po ¥ =P -X+P,-y +P;-y; +P, -2 (3)

where all matrices are constant.
The output nonlinear algebraic equation system is:

Qo(X, ¥,1)- Y3 =Qp - X+Qy -y, +Q5- ¥, + Q4 -2+ W, 4
where: Q, is a state dependent matrix; if the circuit contains time-variant resistors (as

models for switches), the matrix is time-dependent too; w, is a vector of incremental
sources of local linearized nonlinear resistors.

Remarks (only for particular applications):

1. If the square matrix N, is easy to invert symbolically, the output variable y, can be
eliminate from equations (1), (3) and (4);

2. If both N, and p, are easy to invert symbolically, the output variables y, and y, can be
eliminated from equations (1) and (4);

3.1f all N,, P, and Q, are easy to invert symbolically, all the output variables y can be

eliminated from state equations; the analyzed circuit is described completely only by state
equations (1) [1-3].

3 TOPOLOGICAL FORMULATION OF STATE-OUTPUT EQUATIONS

Step 1:

We generate the associated graph, extract a normal tree and build the fundamental tree-
cotree incidence matrix D, using our algorithm described in [1]. We partition the
fundamental tree-cotree incidence matrix as follows:

D=7 Ds; D3y D33 Dy Dss  D3g Dy )
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The rows correspond to the tree branches, and the columns to the cotree. The partitions
correspond to: independent voltage sources ( £ ); input branches of current controlled sources,
not in C-E loops (E.); these are short-circuits modeled through independent zero-voltage

sources [1]; controlled voltage sources (E,); essential capacitors (C,); nonlinear voltage

controlled tree-resistors (R, ); linear tree-resistors (R, ); excess inductors (L, ); independent

an

current sources (J); input branches of voltage controlled sources, not in L-J cutsets (J.);

these are open-circuits modeled through independent zero-current sources [1]; controlled
current sources (J,); essential inductors (Z_); nonlinear current controlled cotree-resistors

R ); linear cotree-resistors (R, ); excess capacitors (C);
cn cl p c

The fundamental tree-cotree incidence matrix allows the expression of tree currents and
cotree voltages as [5-7]:

ia = _Dll (6)
u, = D'u,
Step 2:
The evolutions laws of essential capacitors and inductors are:
. dug, .
e, = Ca —< = Ca Uc, (7)
di .
U, =L —L=L,i
Lc c dt c'Lc

where we have the matrices of dynamic parameters. Using (6) and the fundamental tree-
cotree incidence matrix partitions (5):

|:Ca 0 :|.|:9C0:| _ 0 - D41 .|:uLa:|+
0 Lc iLc D;4 0 iCc

o -o, .'uRa,}{o —D43HuRan}r (8)

_Dé4 0 i _iRcl D5t4 0 ich

" 0 Dyl L_jCa + 0 =Dy, I?EC +
_th14 0 L 'zc D§4 0 Le
0

n 0 Dy7 | | YE ,
| Dl

considering ug- =0 and i, =0.

Step 3:
We express the controlled sources voltages/currents as:

Ug, _ A R | e (9)
i) G B |ig
where: A is the voltage transfer factor matrix; R is the transfer resistance matrix; G is the
transfer conductance matrix; B is the current transfer factor matrix.

Step 4:
The evolutions laws for excess elements:
di ;
=L —fLle_
uLa a dt alLa (10)
du
=C,—%=C.u
Ce c dt cCc

combined with (6):
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bele ey ol
iCc 0 Cc Dé;l 0 iLc (1 1)
Lo -os {uE} 0 -Dy {UE}
Dy, O e D, O iy
Eliminating all variables excepting x, y and z, the next steps allow the (1)—(4) equations
building where:
MO_{Ca_FDMCCD;l 0 :|;M1:|: 0‘ _D44}M2 45 M, = |: Ot _D42J;
0 L. +DsL, Dy Dy, 0 D34 Des 0

- . — . - 0 —
{ Ot D43}, Msz{ 01 D47}, sz{ Ot D41J { } { D77J
Ds, 0 Dy 0 D74
0
-D

M,
M. = 0 -Dy . L, 0 . 0 -Dy . A R _[1] D;6 A R >N Dfm 0 5
“loy o Jlo clloy o Jle BT 0 -Dsjle Bl [0 -D,
— D616 0 }9N3:|:D;6 0 JJNA‘:{D;G 0 :|7 P 64:|;

-D,, 0 -Dy 0 -Dy Dsz D42
0 —Dg|: 0 -Dg|: G D, |:
= 63 |, P, = [ 67 |, Q, = dat 53 (s
Ds, 0 Dy 0 -Ds; Ry
0 -D A R|. 0 -Ds,|- 0 -Ds |-
h = ¢ 55 . s Q3: ¢ 52 ’Q4: . 57 ’W():_
D; 0 G B Des 0 Dy 0

4 TIME DOMAIN EQUATION SOLVING
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In order to solve the (1)—(4) equations, we perform a time-discretisation and solve the four
systems alternatively, as follow:
» For the initial moment 7=¢,, using the initial conditions, we find the initial values of

output variables solving the algebraic equations (2)—(4);
» For the first step, over the time interval (z,,7,), we solve the system (1) numerically,

using an implicit algorithm, where the algebraic variables become the previous calculated
values;
» For the moment 7 =¢, we solve:

- the systems of algebraic equations (2), where the state variables and the output y,, y, becomes

the values from the previous moment ¢, ,, finding y, for r=¢;

n-12

- algebraic equations (3), where the state variables and the output y, become the values

from the previous moment ¢ _,, and y, becomes the previous calculated value, finding vy,

n—1°
for t=1,;

- algebraic equations (4), where the state variables become the values from the previous
moment ¢,_,, and y,, y, become the previous calculated values, finding y, for r=z¢,;

n-12

» For the time interval (¢ ) we integrate the system (1) numerically, where the

n» n+l

algebraic variables becomes the previous calculated values for r=¢, , and the initial
conditions are X for t=¢,

» We repeat the last two stages until the analysis time is achieved.

We are made a program under MATLAB 6 environment, based on the presented method.
It builds the equations symbolically and solves them numerically; the user can choose the
desired computational tolerances and the numerical integration algorithm out of lists of
choices. This program is an efficient tool for large-scale circuit analysis due to the high-
performance matrix computation in MATLAB [1, 4, 5].
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5 EXAMPLE

Let us study the dynamic behavior of the Chua’s circuit represented in Fig. 1, using our

dedicated program.

State space u3 - u20
15
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Fig 1. Chua’s circuit. Fig. 2. The state space u3—u20.

The operational amplifier is modeled through a voltage-controlled voltage source — 15; its
controlling variable is the voltage across an open-circuit modeled through an independent zero-
current source — 14. The diodes 9 and 10 are voltage-controlled nonlinear resistors.

The program finds the normal tree 1-8—17-15-3-20-9—10-5-12 and builds the circuit
equations as:
P the state equations in the form (1):
C3*Du3 = —i2—i4—il9
C20%Du20 = —i6—i7—-il1—il6-il8+1il9
L2*Di2 = u3+ul
L4*Di4 = u3—ub
with the variables x =[u3 w20 2 i4]";
» the output linear algebraic equation in the form (2):

(1-A15 14)*ul4 = u20-ul2

with the variable y, = ul4;
P the output linear algebraic equations in the form (3):

G5*u5 = i4

G12*u12+i13 = 0

R6%i6 = u20+u9

R7*7 = u20+u9 +u8
R11%11 = u20+uld*415 14
—ul2+ R13%13 =—-ul4*415 14
R16%16 = u20—-ulO+ul7
R18%18 = u20-ul0

R19%i19 = u3—-u20

with vy, = [u5; ul2; i6; i7; il1; i13; i16; i18; i19] * as variables;
P the output nonlinear algebraic equations in the form (4):

Gd9*u9 = —i6—i7+J0 9
Gd10*ul0 = i16+i18+J0_10

with the variables y, =[49 ul0]".

Solving the equations with the parameter values presented in [1], for the analysis time of
20 seconds, our dedicated program finds the time-domain solutions without convergence
problems. We display here only the state space u3—120, showing the known bounded chaos
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phenomena (Fig. 2).

6 CONCLUSIONS

The main advantages of the proposed method are the following:
- it does not require topology restrictions, excepting the consistency assumptions;
- it does not require matrices inversion;
- it requires only a single graph and a single associated normal tree;
- it requires relatively small algebraic equations systems solving; the dimension of the
nonlinear algebraic equation system is the smallest possible;
- it performs the symbolic equations building;
- it assures a very good computational stability and convergence.

Our dedicated program was made under MATLAB 6 environment. It builds the equations
symbolically and solves them numerically; the user can choose the desired computational
tolerances and the numerical integration algorithm out of lists of choices. This program is
an efficient tool for large-scale nonlinear circuit analysis. Further works will present it.
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