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Abstract. An effective technique to obtain a bound of the global error is presented. Nonlinear 
constitutive relationship is treated by the polarization iterative fixed point method (PFPM). Since the 
field problem to be solved at each iteration step is linear, by using the Green function method (GFM), an 
iterative integral expression of the error is obtained. PFPM being a Picard-Banach fixed point procedure, 
the bound for the norm of the difference between computed and exact solutions results as a sum of the 
error introduced in the iterative procedure and the error due to the chosen discretization mesh. 

 

1 Introduction 

Due to the complexity of the nonlinear electromagnetic field equations, numerical methods are 
the only option in the vast majority of problems. Numerical solutions represent, however, 
approximations of the exact field. Linear problems, in contrast to nonlinear ones, allow for a 
quantitative evaluation of the “distance” between the numerical solution and the exact one, e.g. 
static linear fields, where the hypercircle theorem [1], [2] applies. 

Two main procedures are actually used for the evaluation of the computing errors. The first one 
takes into account discontinuities of the normal or tangential components induced by the numerical 
technique. This procedure is used particularly as a criterion for adaptive meshing. The second  
procedure is more consistent. It defines certain magnitudes that become zero when the numerical 
solution equals the exact one. These magnitudes – positively defined quantities – are called error 
estimators in what follows. 

For static or stationary linear fields, according to the hypercircle principle, the “distance” is a 
suitable defined norm of the difference between the two solutions. For instance, let (B*,H*) be the 
exact solution of the boundary value field problem governed by ∇⋅ B*=ρ, ∇× H*=J and B*=µH*, and 
let (B,H), be a set of independent fields, B≠µH, solutions of ∇⋅ B=ρ and ∇× H=J. The norm can be 
defined as 

ν
ν

µµ HBHBB −=+−
2
1

2
*     and     νν

µHBBB −≤−*        (1) 

where νX is the inner product  2
νX = ∫

Ω
ΩdXXν , and ν , symmetric and positively defined, is the 

reluctivity tensor (inverse of the permeability tensor). Ω is the spatial domain of the field problem. 
   For nonlinear media a suitable error estimator is [3]: 

)(),( BHB W=L + ∫
Ω

Ω⋅− dW HBH)(*         (2) 

where )(W B and )(W* H are the energy and the co-energy of the magnetic field. A similar error 
estimator is based on the constitutive relationship 

µε )F( BH −=       (3) 

Relation (3) defines the error for the linear problem in the hypercircle principle sense.  
The bound of the “distance” between numerical and exact solutions for nonlinear field problems, 

was reported in [4]. Both polarization iterative fixed point method (PFPM) and finite element 
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method (FEM) were employed. In this paper PFPM and Green function method (GFM) are used to 
obtain this bound for the nonlinear field problem in unbounded regions. 

 
2 Errors Evaluated by the PFPM Procedure 

The stationary magnetic field verifies 
    JH =×∇ , 0=∇ B , )F( BH =  in Ω              (4) 
In PFPM, the constitutive relationship )F( BH =  is replaced by: 

  IHB += µ        (5) 
where the non-linearity is hidden in the polarization I [5]: 

)G()F( BBBI ≡−= µ  .        (6) 
The permeability µ can be chosen such that the function G  defined by (6) is a contraction, i.e. 

νν θ BBBB ′′′≤′′−′ - )G()(G ,  for any BB ′′′,          (7) 

where θ <1. In the case of an isotropic medium one can choose at any point P∈Ω , µ(P) < 
2 minµ (P) where: 

BB
BB

BB ′′−′
′′−′

′′′
=

)F()F(

,min
sup1

µ
 

BB
BB

BB ′′−′
′′−′

=
′′′

)(F)F(

max ,
inf1

µ
 .     (8) 

Since minµ is greater then the vacuum permeability 0µ , µ in (5) and (6) can be chosen to be 0µ . In 

this case 
Mµ

µθ 01−= , where =Mµ
Ω∈P

sup )P(maxµ . 

The PFPM consists in the following iterative procedure: 
a) let )( 0B  be an arbitrary initial value thus, from (6),  )G( )()( 00 BI = ; 

b) at each step n, n ≥ 1, )n(B  and )n(H  are computed from the linear equations 
JH =×∇ )n( , 0=⋅∇ )n(B , )n(B = )n(H µ + )n( 1−I       (9) 

c) the new polarization )n(I  is corrected by (6) i.e. )G( )n()n( BI = . 

( ) 1≥n
)n(B  and ( ) 1≥n

)n(H  are Picard-Banach sequences converging to the exact nonlinear solution 

(B*, H*). For simplicity we denote ( )(1B , )(1H ) of the first iteration by  (B, H) – the exact linear 
solution of (9), and )( 0I , by I. The deviation of the first value B and the target B* is determined by: 

ν
BB −* ≤

νθ
)(1

1
1 I∆
−

            (10) 

where 
ν

)(1I∆ = 
ν

II −)(1  . From the initial value I, determined from )( 0B , B may be obtained 

through any numerical method, for example Newton-Raphson, combined with FEM or with GFM 
for unbounded regions. We need only one step in PFPM procedure (n=1) in order to evaluate the 

error with formula (10). The numerical solution )(Zapap IB =  is an approximate value of B, the 

exact solution of the linear problem (9). From (6), we have )G( ap
)(

ap BI =1  and 
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Equation (10) becomes: 

νapBB −* ≤
νν apBBBB −+−* ≤ 

θ−1
1

ν
apBB − +
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The error in formula (11) can be expressed as 

 
νapBB −*  ≤ )(

1
1

NZap
εε

θ
+

−
           (12) 

where 
apZε =

ν
apBB −  is due to the approximation introduced by the numerical method used for 

solving the linear field problem and  Nε =
ν

II −)(
ap
1 is due to the nonlinear procedure. 

 
3 Determination of the Error Due to GFM Application 

 The problem of solving the magnetic field having non-zero sources J and ρ may be easily 
replaced by a field problem where the sources are zero. The constitutive relationship must be 
adjusted accordingly, while keeping the bounds minµ , maxµ . So, for simplicity we will farther 
consider that 0=∇ B   and 0H =×∇ .  
 If the polarization I is corrected by the flux density B, then the permeability µ in (5) and (6) can 
be chosen to be the vacuum permeability µ0 [5]. The linear field problem of each iteration may be 

solved by using the Green functions for unbounded regions: 
R

G
π4
1=  or 

R
lnG 1

2
1
π

= , in 3-D or 2-

D problems, respectively. For the numerical solution, the region with nonlinear media Df  is 
discretised in fn elements and the flux density B is approximated by the average values in each 

element iω , i=1,2,…, fn . In the 2-D case, we have: 

iapB = ∫=
ii

i d~

ω
Ω

σ
 1 BB = ∫

∂
−
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     (13) 

where iσ  and iω∂  are the area and respectively the boundary of the element iω . The polarization 
is obtained from (6) and therefore it has also constant values kI  in each element kω . The 
magnetic vector potential A is therefore given by: 
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Accordingly, (13) becomes: 
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The error due to the numerical method is: 

apZε =
2
ν

BB ~− =
22 2
ννν BBBB ~~, +−     (16) 

where the inner product and the norm are only computed for the nonlinear region Df. Since 

ν
BB ~, = 

2
ν

B~ and 2
νB = νµ IHB +, = HB, + νIB, = HB, +

ν
IB,~ , equation (16) becomes: 

 

apZε = HB, +
ν

BIB ~,~ − = HB, HB ~,~− = ∫
∂

⋅−

fD
dSV nB HB ~,~−   (17) 
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4 Numerical Examples 

We consider a rectangular permanent magnet (PM) which has a B-H characteristic 
corresponding to the magnetization direction as plotted in Fig.1, with maxrµ =16 and  minrµ =1.2, 

and a transverse relative permeability Trµ =1.2. The PM is placed in 2-D unbounded space. The 
magnetic field is solved iteratively, using (15) and (6). The PM region is discretised in polygonal 

elements and so the tensors ikα  of equation (15) may be analyticaly calculated. The boundary 
integral needed in equation (17) is numericaly computed, using the scalar and vector potentials: 

 ∫
∂

⋅−

fD
dSV nB = ∫

∂
−

fD
VdA = ∑ −+−≅ ++

k
kkkk ))P(A)P(A))(P(V)P(V( 112

1   (18) 

where the points kP  belong to the boundary Df , vector potential A is analytically computed by 
equation (14) and scalar potential is also analytically computed with: 

∑ ∫
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The  corresponding global error in (12), normalised with respect to the remanent flux density, 
versus the number of nodes of  the discretization mesh, is plotted in Fig.2. 

 
5 Conclusions 

A method for calculating a bound of the error of the numerical solution with respect to the exact 
solution, for nonlinear magnetic field problems, is presented. The non-linearity is treated by PFPM. 
In the cases of unbounded domains, GFM may be employed for solving the linear field problem of 
each iteration. The norm of the error due to GFM depends by the domain discretization, but it may 
be accurately computed (17), while the global error has a bound which depends strongly by the 
contraction factor (12) that may be in the proximity of the unit for strong nonlinear media. By 
applying the above presented techniques, the error due to the nonlinear iterative procedure can be 
easily brought arbitrary small.   
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Fig.2. Global relative error
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Fig.1. B-H relationship for PM
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