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Abstract—The aging of the ferromagnetic material, leads to changes of 
B-H relationship. This property may be used for detection of the degraded 
parts of ferromagnetic pieces. In numerical procedures the region with a 
possible aged zone is described by a finite number of subdomains where 
the flaw vector is defined with binary entries. Because of the small B-H 
changes, the magnetic field modifications linearly depend (matrix T) by 
the flaw vectors. Using a double Gauss pivotation scheme, an enough well 
conditioned and invertible submatrix is extracted from the matrix T. The 
unknowns associated with this submatrix (called main unknowns) can be 
easely obtain by a linear relationship from the rest of the unknowns 
(called minor). In the set of the minor unknowns we search for that vector 
which gives the smallest error of the principal unknowns in comparison 
with the values 0 or 1. This procedure leads to a spectacular increasing of  
the efficiency, in comparison with the known procedures.  
 

I. INTRODUCTION 
  
 The aging of the ferromagnetic material, which may be caused by 
mechanical stress, does not modify the conductivity but leads to changes of B-
H relationship. This property may be used for detection of the degraded 
regions [5],[6]. Computation of static difference magnetic field seems to be the 
best procedure in this case. The smallness of B-H relationship changes, its 
nonlinearity, and high accuracy of computation the magnetic flux density in 
the measurement points add new problems for solving the magnetic field.  

An efficient procedure for reconstruct the aged region is presented in this 
work. A linear dependence between the magnetic field modifications and the 
small variation of the B-H characteristic is accepted. The polarization iterative 
method [9] is applied for the solution of nonlinear magnetic field, as well as to 
analyse the magnetic field modifications when small variations of the B-H 
characteristics in the magnetic material occur. The Green function is used for 
computing the linear magnetic field at each iteration. For given measured 
values of magnetic flux density we select that flaw vector which has the 
smallest difference in comparison with the values 0 or 1. 

In this paper we consider a 2-D problem, but the method may applied also for 
a 3-D structure. 



 

 

II. DIRECT PROBLEM 

A. Matrix T 
In Fig.1: 
•  fD  - is the ferromagnetic piece where a small variations of the B-H 

relationship occurs; 
•  dD  - is the damaged zone where we  suppose that the flaw may be 

localized It is divided in n subdomains iω  in order to describe the flaw 
shape;  

•  In the vecinity of fD  we have m’ points where m=2m’ components of the 
flux density may be measured.  

Let n2∈ξ  be the flaw vector having binary entries 0 (without flaw) and 1 
(with flaw). Solving the magnetic field problems with and without flaw, we 
obtain the vector  mR∈η  of the magnetic flux density modification in 
measurement points. For a small variation of the B-H characteristic, ηηηη linearly 
depends by ξξξξ: 

ξη T=        (1) 
 

Having the magnetic field in the case without flaw, in order to obtain the 
entries of the matrix T we have to solve n appropiate field problems for flaws 
defined by unit flaw vectors.  
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Fig. 1. Ferromagnetic piece and damaged zone 



 

B. Magnetic field in the case without flaw 
The polarization fixed point method is used. The non-linear relationship 

)(BH F= is replaced by IHB += µ , where )()(µ BBBI GF ≡−= . At each 
iteration k we compute a magnetic field in a linear media with plolarization 

)1( −kI : )k(B  = )( k )1(L −I  and, for the next step, the polarization is corrected by 
G: )( kk )()( G BI = .  

To increase the convergence rate of the iterative process, an overrelaxation 
technique is used. 
 Choosing vacuum permeability 0µ , each linear field problem may be solved 
by usage of  2-D Green function. Whole ferromagnetic domain fD  is divided 
in fn'  subdomains, including damaged zone subdomains. The average value of 
the flux density in subdomain iω  is given by 
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where J
iB  is the component of the current density and 
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ω∂  being the border of the subdomain ω. 
 
C. Variation in B-H characteristic 

We denote the magnetic flux density, the field intensity and the polarization 
vector, calculated in Section B, corresponding to a given material characteristic 

0F  (or 0G ) by 0B , 0H and 0I , respectively. For small modifications of the B-
H relationship, corresponding to the modified characteristic F (or G ) (see 
Fig.2), the difference magnetic field verifies the linear equations:  

0=∆×∇ H ,   0=∆⋅∇ B ,    IHB ∆+∆=∆ 0µ         (8) 
where the difference polarization  is evaluated as 

I∆ = B
B B
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The difference magnetic field is computed by the same method, as described in 
the previous Section, with the same influence matrix  αik . Since we now have 
a linear problem, the overrelaxation factor is given directly as 
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where )()()( W nn1n )()( III ∆−∆=∆∆ + . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. B-H modification 
 

III. INVERSE PROBLEM  

 In the inverse problem we know the vector aη  of the flux density 
modifications, altered by measurment error (noice) and we seek the unknown 
flaw vector ξξξξ.  
 Only a part pη  of measured values are usefull for the flaw reconstruction. 
They correspond to an enough well conditioned submatrix ppT  of the matrix 
T, obtained by a double Gauss pivotation scheme. Equation (1) may be written: 
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where p
p 2∈ξ  and l

l 2∈ξ  ( npl =+ ) are the vectors of main and minor 
unknowns, respectively. From (12) we obtain: 

 lpl
1

ppp
1

ppp TTT ξηξ −− −=         (13) 

and, for altered measured values: 

lplplpl
1

ppap
1

ppap PTTT ξξηξ −=−= −− ϕ          (14) 

In the set of the vectors l
l 2∈ξ  we search for those vectors which gives an 

enough small error of the entries of the vector apξ , obtained with (14), in 
comparison with the values 0 or 1: 
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Mainly, the computational effort is reduced to l2   multiplifications of the 
vector lξ  with the matrix plP . This advantage allow us to seek the bound ε so 
that the number of the accepted flaw vectors be smaller then an imposed value 
N. For a lot of accepted flaw vectors we may recomand that flaw which has the 
smallest error, or the best credibility defined by: 
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IV. RESULTS 
The procedure was verified for a tube (Fig.3), where an aged region has a B-

H relationship with 1% modification. For a dc current in tube, we obtained the 
flux densities in the measurement points by solving the direct problem. The 
damaged zone was described by the first n=36 subdomains.  A number of 12 
measurement points with m=24 values of flux density was used. After the 
computing the difference of the flux densities in measurement points, we 
amplified them by )( Mε1± , in order to take into account the measurement.  

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 A tube with a demage zone and the measurment points 
 
The dimensions of the matrix ppT  was 14×14 for a lowerbound Tε = 910− . It 

resulted the dimension l=22 for the minor vector lξ .  An upperbound N=10 
was chosen for the number of accepted flaws.  

The procedure was tested for an external flaw occupying the subdomains 
21, 22, 28, 34. For a measurement error of Mε =.2% we obtained 3 flaws 
drawn in Fig.4. For a smaller measurement error of Mε =.1% we obtained 5 
flaws drawn in Fig.5. 

For an internal flaw occupying the subdomains 3,4,10,16 and for a 
measurement error of Mε =.1% we obtained 2 flaws drawn in Fig.6. 
 
    

1) 1ε =3,07 2) 2ε =2,85 3) 3ε =3,11  

Fig.4. Reconstruction of an external flaw for Mε =.2% 

 

Credibility

0.0

0.2

0.4

0.6

0.8

1 2 3
Flaw number



 

 

   

1) 1ε =2,32 2) 2ε =1,42 3) 3ε =2,39 

  

 

4) 4ε =3,12 5) 5ε  =2,85  

Fig.5. Reconstruction of an external flaw for Mε =.1% 

 

  

 

1) 1ε  =0,527 2) 2ε  =0,499  

Fig.6. Reconstruction of an internal flaw for Mε =.1% 
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V. CONCLUSIONS 
The technique presented is shown to be highly efficient.  
In the procedure proposed for solving the direct field problem only the 

ferromagnetic domains are divided in subdomains which may have arbitrary 
geometry. For polygonal subdomains the entries of the influence matrix  α ik  
may be analytically evaluated. At each iteration, the magnetic field is 
numerically obtain by multiplying the polarization vector I with influence 
matrix α ik . We need less than 2 min. for calculation the entries of the matrix T 
with an 2.66GHz. INTEL processor.  

The difference between the magnetic fields of the normal and aged pieces 
may be obtain also by computing both fields. In the case of the damaged piece, 
the initial value of I used in the polarization method is just the final value of I 
obtained for the normal piece. Only about 10 iteration need for an error 
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. A comparison with the field difference directly calculated as 

in Section II shows the same results and computing time. 
The flaw reconstruction needs the testing of l2  minor unknowns in equation 

(14) and (15) instead of n2  used in other techniques. In our examples it seems 
that the number of tests is reduced of 142 times. A flaw reconstruction, 
including the search of the error ε, needs 20 sec.  

We may used how much measurement point we want, without the 
precaution of  their utility; the proposed procedure choices only the points 
which define the matrix T. 
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