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The active electrostatic torque acting on a novel double–action electrostatic angular microactuator is 
computed by analytical methods of different degrees of approximation and by a finite element 
numerical method.  
 
 

INTRODUCTION 

 Microelectromechanic devices represent a subject of increasing interest due to the 
increasing number of applications they find in industry, communications, medicine, military, 
and many other fields made them. In particular, electrostatic angular microactuators [1,2] can 
be used in the accurate driving of the read/write arm of computer disk devices. The analysis 
and design of such microactuators has to take into account specific restrictions derived from 
the manufacturing process specific to the integrated circuit technology.  
 A preliminary performance evaluation of a microdevice is needed, with a view to 
establish the range of the proper design and manufacturing requirements. In this respect, the 
evaluation of the actuation (positioning) characteristic of the angular actuator is essential. The 
present paper proposes a double–action electrostatic angular microactuator and gives 
successive approximations of its differential–operation active torque.  
 

DEVICE  MODEL  AND  SIMPLIFYING  ASSUMPTIONS  

 The usual electrostatic angular microactuator [1] is an interdigitated structure 
consisting in two interleaved conducting radial comb structures, attached to coaxial circum-
ferences, with long comb teeth inserted in each other's comb gaps (fig. 1). The stator teeth are 
placed at a driving potential  V  with respect to the null potential  V0  of the rotor teeth. The 
ensuing attraction between the stator and rotor teeth results in an electric revolving torque, as 
long as the rotor teeth start from an asymmetrical position with respect to the stator teeth. The 
rotor reaches an equilibrium position when the electric active torque is balanced by a restoring 
elastic torque.  
 The electrostatic microactuator under study [3] is a novel, modified version of the 
above structure, consisting in two electrically insulated interleaved stator radial comb 
structures between which the rotor radial comb structure is placed. A unique positioning 
characteristic is obtained if the rotor teeth are placed in active gaps of the stator teeth 
separated by idle stator gaps. While the rotor comb structure is placed at null potential  V0 = 0, 
the stator comb structures can be placed at different driving voltages  V1  and  V2 , which 
gives increased control on the positioning characteristic of the actuator (fig. 2).  
 Some simplifying hypotheses are supposed to apply: 11 
    1°. The teeth length is much larger than their width and height and than the distances to 
neighbouring teeth;  
    2°. The teeth height is fairly larger that the distances to neighbouring teeth;  
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    3°. The idle gaps are sufficiently large so that the electrical potential distribution between 
them is not influenced by the position of the null potential rotor teeth over their range of 
rotation;  
    4°. The electrostatic levitation associated with the presence of the screening conducting 
plane at null potential under the comb structure is negligible.  

       
       Fig. 1. One–sided mocroactuator              Fig. 2. Two–sided microactuator  

 The radial placement of the comb teeth imply that it is a three-dimensional problem of 
the electrostatic field that has to be studied, according with the above simplifying 
assumptions, for a single active gap of the actuator. However, two approaches to much more 
manageable two-dimensional treatments of the electric field problem can be considered. First, 
under the same simplifying hypotheses, the field structure can be considered as that of radially 
placed plane plates. Second, the radial variation of the field structure can be approximated by 
a set of plane–parallel field structures at successive radii, followed by an approximate Gauss 
integration [4] of the resulting torque values. This second approach is also considered for a 
finite element numerical model.  
 

ANALYTICAL  COMPUTATION  OF  THE  ELECTRIC  TORQUE  

 In the first analytical approach, simple approximations of the electric torque are based 
on the circular arc approximation of the field lines between fixed and mobile zero width teeth 
[5], for the repetitive actuator structure of the mobile tooth between two energized stator 
teeth (fig. 3). Taking into account the screening role of the mobile tooth of negligible width, 
the capacitances to the adjacent fixed teeth are computed separately as  
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where  H  is the tooth height,  L  is the tooth length, Θ  is the half angle between stator teeth,  
θ  is the angular displacement of the mobile tooth withg respect to its median position (here, 
towards the  V1  stator tooth), and  R  is the mean radius in terms of the limit radii  a  and  b  
of the mobile tooth. Operating in terms of the electric co–energy  W* , the associated torques 
result then simply as  
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 The dependence of the  total electric torque on the  revolving angle can be linearized if  
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a differential control is supposed, corresponding to fixed teeth potentials composed of a 
common–mode component  V  and a differential–mode component v  (v < V) , such that  

 vVVvVV −=+= 21 ,               .  

The total electric torque per mobile tooth (fig. 4) can thus be written as  

 
22

2

2
0

21 11
2

−



















−






 +






 +=+=
Θ
θ

Θ
θ

Θ
θ

Θ
ε

V
v

V
v

R
VHL

TTT    ,  

and admits successive approximations as  
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the last one only being considered in [1].  

                 
         Fig. 3. Radial plates approximation              Fig. 4. Electrostatic torque  T(θ )  

 The more detailed second analytical treatment approaches the actuator cell under study 
as a complete electrostatic system of conductors. An  Oxyz  reference system is considered, 
with the Oyz plane as the plane of symmetry of the active stator gap and the Oxy plane as the 
basis plane of the fixed teeth, as in fig. 5. The following notations are introduced: tooth height  
H , mobile/fixed tooth width  G = 2g , (G << H) , teeth elevation  h , (h < H) , above the 
reference plane, distance  D , GD )2...1(≅  , between mobile–fixed teeth symmetry planes at 
rest (when no driving potential applied). The interteeth distance obviously depends on the 
local radius  r , so that  D = rΘ , where the interteeth angle (at rest)  Θ  is around 3⋅10–3 rad. 
The fixed teeth are at potentials  V1  and  V2 , respectively, while the mobile tooth and the 
screening conducting plane are at null potential.  
 The complete electrostatic system of conductors is described, in terms of charges and 
influence coefficients per unit length, by [6,7,8]  
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and, as a consequence of symmetry,  ( ) ( )xDx −= 21122 αα  .  
 The analytical computation of the influence coefficients is done, in the limits of the 
field line approximation, in terms of the intermediate variables  

 rGDxrGDx θθ +−=−−= 21 ,           ,  

where the deviation of the mobile tooth from its rest position (at potentials  V1 = V2 = 0) is  
rx θ=  .  

 The influence coefficients per unit length result as  
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          Fig. 5. Plane–parallel approximation         Fig. 6. Electrostatic torque  T(θ )  

 Taking into account the differential control, the local electrostatic torque per unit 
length on the mobile tooth at a given radius  r  is then computed as [7,8]  

 ( ) ( ) ( )














∂
∂−

∂
∂=

∂
∂

∂
∂

−+
∂

∂++
∂

∂+=
12

122
2

2
1

22
2

11
2

,
22 xx

rVVvVvVT
θθ

α
θ

α
θ

α
               ,  



ATEE – 2004  
 

  

where  
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       Fig. 7. Electrostatic torque  T(θ )       Fig. 8. Electrostatic torque  T(θ )  

 The total torque is computed for the same set of numerical data as before [1] V = 40 
V, v ∈  [–30,30] V, H = 30 µm, h = 10 µm, G = 3 µm, a = 600 µm, b = 1400 µm, Θ = 3 
mrad, N = 120 teeth, by using a three–point Gauss approximate integration formula [4],  
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and is presented in figs. 6 and 7.  
 

NUMERICAL  COMPUTATION  OF  THE  ELECTRIC  TORQUE  

 The finite element numerical model [4] is similar to that used in the second analytical 
approach (fig. 5): according with the simplifying hypotheses, it is extended laterally by 
distances  D  and above the teeth structure by a distance  3(h+H) . Homogeneous Neumann 
conditions are enforced on the upper boundaries and given potentials  V = 0  and  V = V±v  
are considered on appropriate conductors along with homogeneous Dirichlet conditions  V = 0  



ATEE – 2004  
 

  

on the lateral boundaries. For each of the angular positions  θ = 0 , ± Θ / 2  , ± Θ/2 , three 
values of the radius, 2/)( ba +   and  3/)(2/)( abba −±+  , were considered.  
 The finite element solution of the plane–parallel problem gives directly the value of 
the force per unit length acting locally on the mobile tooth, whence the computation of the 
electric torque is straightforward, by using the same approximate Gauss integration as before. 
The total torque is computed for the same set of numerical data as above, and is presented in 
fig. 8. along with the result of the analytical plane–parallel approximation, for a typical case.  
 

CONCLUSIONS  

 A novel configuration was proposed for an electrostatic angular microactuator, for 
which the active electric torque was calculated by two analytical methods and by a finite 
element numerical method. The analytical methods approached the system as a two–
dimensional electric field problem consisting in either a set of radial plates or a set of plane–
paralel conductors where the radial variation of distances was accounted for by an 
approximate Gauss integration. The finite element numerical method was applied for the 
second model, with a similar post–processing step.  
 The computed results agree with each other and, in the simplest approximation given 
by the first analytical approach, is similar to published results [1].  
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