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The energy distortion coefficients of circular cross–section bimetallic conductors are computed under 
periodic non–sinusoidal conditions. The properties of the distortion coefficients along with their range 
of variation are discussed in relation with the conductor dimensions.  
 
 

1.  INTRODUCTION 
 
 The energy distortion coefficients (THDP – Total Distortion Coefficients of Power), 
as defined by A. Ţugulea [1], give a global dimensionless evaluation of the weight of 
harmonic components  Pν  (ν = 1 ,2,…)  and direct current component  P0 in the active power 
loss in linear solid conductors operating under periodic non–sinusoidal conditions, with 
respect to either the total active power  P  (THDP1), or the fundamental component of the 
active power  P1  (THDP2),  
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The associated formulae are expressed in terms of the harmonic resistance increase  

coefficients of solid conductors  KRν  and the square of the harmonic distortion coefficients δν  
of the periodic current,  

 

11    ,    
1 1

22
0

1
2

2

2
1 −














δ+δ=

+
= ∑

∞

=ν
ννR

R
K

K
THDP

THDP
THDP

THDP , (2) 

     
where  
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 In the case where the first harmonic component of the current is absent (double–
alternance rectified currents, for instance), the energy distortion coefficients are 
correspondingly redefined [2] taking as a reference the direct current component of the active 
power and current, respectively,  
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where  
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2.  HARMONIC RESISTANCE INCREASE COEFFICIENTS  
OF THE CIRCULAR CROSS–SECTION BIMETALLIC CONDUCTORS  

 
  
 
 
            The model under consideration is a very long 
cylindrical solid conductor of radius  a  surrounded by 
a coaxial hollow cylinder of inner radius  a  and outer  
radius b, placed in an insulating medium. The 
corresponding conducting domains D1 and D2, and the 
insulating domain D3, are supposed to be linear and 
homogeneous, with constitutive parameters as 
indicated in fig. 1.  
 
 
 

Fig. 1. Cross–section of the bimetallic 
conductor 

 
The considered conductor carries a periodic non–sinusoidal current of intensity  i(t)  

with a return path placed at an infinite distance. The solution of the electromagnetic field 
diffusion problem in the conductor [2] yields the expressions of the harmonic resistance 
increase coefficients as  
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In the above formulae In and Kn are the modified Bessel functions of the first and 

second kind of integer order and complex argument, the complex propagation constant in the 
outer conductor, corresponding to the ν th harmonic of the current, is  
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α 2 is the reciprocal of the corresponding penetration depth for the first harmonic of the 
current.  
 
 

3.  ENERGY DISTORTION COEFFICIENTS OF BIMETALLIC CONDUCTORS  
 
 Energy distortion coefficients are calculated for steel–aluminium bimetallic 
conductors of type A1/S1A [3] used in the overhead lines for electric power transport. Their 
core is made of one or more concentric stranded steel wires and their outer layer is made of 
similar concentric stranded aluminum wires.  
 The theoretical model presented above can be used for the study of such stranded 
conductors within the limits of the following approximations:  

(a) the constitutive parameters are taken as surface average values,  
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where  NS  and  NAl  are the number of, and  dS  and  dAl  are the diameters of the steel, 
respectively aluminum wires, and µS = 1000 µ0, µAl = µ0, σS=7 ⋅106 S/m, σAl=34 ⋅106 S/m; 
  (b)  the steel core is magnetically linear, as the computation of the current distribution 
in the core confirms the fact that it remains under  3%  of the total current, so that the level of 
the magnetic field strength is placed in the linear part of the steel magnetization curve.  
 The energy distortion coefficients are computed for all the 37 types of steel–
aluminium conductors in the selected set, taking into account 20 harmonic components of six 
typical non–sinusoidal current waveforms,  
•  symmetric alternating rectangular current waveform (DS)  
•  pulsating rectangular current waveform (DP)  
•  symmetric alternating triangular current waveform (TS)  
•  pulsating triangular current waveform (TP)  
•  single–alternance rectified sinusoidal current waveform (RM)  
•  double–alternance rectified sinusoidal current waveform (RB)  
and two experimental alternating current waveforms E1 and E2 [2].  
 The variation range of the energy distortion coefficients of the considered set of 
bimetallic conductors are presented in Table 1 for the considered current waveforms, along 
with that of the current distortion coefficients (THD  – Total Harmonic Distortion),  
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redefined by A. Tugulea [4] for the case where there current waveform has no fundamental 
component as  
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Current distortions Range of energy distortion coefficients Current 
waveform THD1 THD2 THDP1min THDP1max THDP2min THDP2max 

DS 0,435236 0,483426 0,174908 0,274019 0,211986 0,377447 
DP 0,771178 1,211360 0,587099 0,600075 1,42508 1,50047 
TS 0,120273 0,121153 0,0144422 0,0218763 0,0148280 0,0223656 
TP 0,868111 1,748920 0,733641 0,753013 2,75434 3,04879 
RM 0,707107 1 0,490095 0,499636 0,961148 0,998544 
RB* 0,435236 0,483426 0,190938 0,243418 0,235999 0,321734 
E1 0,305046 0,320313 0,0940170 0,135011 0,103774 0,156084 
E2 0,720977 1,040430 0,523018 0,634809 1,09713 1,73829 

* - coefficients computed according to relations (11), (4)  
 

Table 1. Variation range of  THDP  and  THD  coefficients 
 
 

4.  CONCLUSIONS 
 
 An analysis of the computed values of the energy distortion coefficients of bimetallic 
conductors carrying periodic non-sinusoidal currents results in the following remarks:  
 (a) The values of the THDP  coefficients depend on the conductor structure and 
dimensions, and the current waveform.  
 (b) The monotonous dependence of the THDP1 and THDP2 coefficients on the 
computation parameter mα 2a = α Alb  is perturbed by small oscillations. This can be 
explained by the fact that the thickness of the aluminum main conducting layer,  

( ) ( )111 −−=−=− mbamab    , 
is not in a constant ratio with the outer radius  b  of the bimetallic conductor.  
 (c) The dependence of the THDP2 coefficient on the computation parameter mα 2a is 
more pronounced when the harmonic components of the periodic alternating current are 
inversely proportional to their order (the case with DS waveforms),  

νν
1~I    , 

than when these harmonic components are inversely proportional to the square of their order 
(the case with TS waveforms),  

2
1~

ν
νI    . 

 In turn, the dependence of the THDP2 coefficient on the computation parameter mα 2a 
is less pronounced in the case of inverse proportionality of harmonic components on their 
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order than in the case of inverse squared dependence on their order when a direct current 
component is present (DP versus TP). 

This trend is illustrated in figs. 2 and 3 for the relative values  
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where the bimetallic conductor with computation parameter  mα 2a = 1.015  was taken as a 
reference. The discussion does not apply to the experimental current waveforms E1 and E2, 
which lack a comparison reference, nor to the double–alternance current waveform RB , for 
which different formulae are used.  
 

 
 Fig. 2.  Relative variation of coefficients  THDP1  for different current waveforms  
 

 
Fig. 3.  Relative variation of coefficients  THDP2  for different current waveforms 
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 (d) The presence of a direct current component, as it is the case with the pulsating DP, 
TP, RM waveforms, is associated with a less pronounced dependence of the THDP1 and  
THDP2  coefficients on the computation parameter  mα 2a  as compared with that presented 
by the alternating  DS, TS, E1 , E2  waveforms (see also figs 2 and 3).  
 (e) The last two remarks are valid as well for other structures of solid conductors 
[2,5,6,7]. 

(f) The variation ranges of the energy distortion coefficients suggest distinct values 
for these coefficients and even significant departures from the corresponding distortion 
coefficients for the same type of current waveform.  
 This observation sustains the conclusion that the energy distortion coefficients THDP 
do indeed bring additional information on the characterization of the energy transfer under 
periodic non-sinusoidal conditions, which would not be available if the global distortion 
coefficients THD only would be used.  
 (g) It is hoped that the current use of the global distortion coefficient THD2 for 
currents and voltages will be abandoned in favor of, or, at least, complemented by, the use of 
energy distortion coefficient THDP2 , which is able to express more adequately the weight of 
the harmonic components of current and voltage in the active power loss as compared to the 
corresponding fundamental harmonic active power loss. 
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