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The procedure based on scalar magnetic potential introduces cuts such that the multiply connected 
domain is transformed into a simply connected one. Each cut introduces an additional term containing 
the “hall” current multiplied by the solid angle under which the cut is seen. The kernel singularities 
are easily solved by analytical evaluation of the matrix entries. The surface integral is transformed in 
line integral along the surface boundary when the magnetic flux has to be calculated. In order to 
obtain the inductivities, the computing of the fluxes of the cuts needs a special treatment because of the 
kernel singularity.  
Index Terms— Boundary element method, scalar magnetic potential, magnetic flux.  
 
 

1.  INTRODUCTION 
 

It is well known that the smaller number of unknowns used by Boundary Element 
Method (BEM) in scalar potential formulations constitutes an important advantage in 
comparison with the formulations based on vector potential ones [1]. Unfortunately, use of 
scalar potential leads to some difficulties in the case of multiply connected domains. One way 
to overcome these difficulties is to separate the field component having  ∇×H=J and to use 
the reduced scalar potential. Another way, presented in this paper, is to use directly the scalar 
potential, together with cut contributions. Usually the normal component of the flux density 

nB  and the hall current i are given. Then the scalar potentials  and the magnetic flux ϕ of the 
cut are assumed as unknowns. The magnetic flux ϕ is also unknown and if the tangential 
component of magnetic field  tH  (therefore the scalar potential) is given. The problems 
regarding to the kernel singularities are easily solved by analytical evaluation of the matrix 
entries, while the singularity regarding to the computation of the cut flux ϕ needs a special 
treatment.  
          
 

2.  BOUNDARY INTEGRAL EQUATION OF SCALAR POTENTIAL 
 

The integral equation used in scalar BEM formulation for  multiply connected domain 
Ω is given by: 
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where:  
V  is the scalar potential;  
∂Ω     is the boundary of the domain Ω;  
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α        is the solid angle under which a small neighbourhood of  Ω  is seen from the     
observation point;  

r, r’    are the position vectors of the observation and source points, respectively;  
R = r - r’;  
n’      is the outward normal unit vector;  

ji       is the “hall” current (Fig.1); 

0V      is given by external sources; 

jσ
β  is the solid angle under which the cut jσ is seen from the observation point: 
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Fig. 1.  Cut for a multiply connected domain 

 
3.  NUMERICAL SOLUTION OF THE INTEGRAL EQUATION 

 
The boundary ∂Ω is approximated by a polyhedral surface with triangular facets. 

Assuming an arbitrary origin in the local coordinates of the facet the scalar potential can be 
interpolated linearly in the form (Fig.2): 
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S is the facet area, 1V , 2V , 3V  are the potentials of the facet nodes and V is the potential in the 
origin, 1S  is the area of the triangle defined by the origin and the edge 23R opposite to the 
node 1; it may have negative value, if the origin is placed outside the facet. If we take the 
origin is the projection of the observation point onto the facet (Fig.2.), then (2) may be 
written: 
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Supposing in addition that ')'( nr ∂∂V  is constant on each facet, equation (1) 
becomes: 
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where 

kω
β  is the solid angle under which the facet kω is seen from the observation point and 

F is the number of facets. Using  (3) and Stokes formula, equation (6) may be improved: 
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where kkd 'nR ⋅= . All integrals in (7) may be analytically evaluated.  

If the normal derivatives (∂V/∂n’)k are known, we place the observation point in all 
nodes of the surface. We thus obtain a linear system with potentials kV  as unknowns. 
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Fig.2. A facet 

Since (1) is a Fredholm integral equation of the second kind, the linear system is well-
conditioned. The nodes belonging to the cut are treated differently: when they are taken into 
account by the facets placed above the cut, their potentials are increased by 2/i  in 
comparison with the potentials of the same nodes as an observation point. For facets under the 
cut, their potentials are decreased with 2/i . 
 

4.  MAGNETIC FLUX COMPUTATION 
   
  For α=4π equation (1) gives the potential inside the domain Ω. The magnetic field is: 
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We have: 
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From (8), (9), and (10) we have: 
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Because: 
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equation (11) becomes: 
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In our numerical approach, the normal derivatives (∂V/∂n’) are constant and the 

potential V has a linear behaviour on each face (5). Using (12), equation (13) becomes: 
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where Sβ  is the solid angle under which the surface S is seen from the integration 

point of the facet kω : Sβ = ∫
⋅
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by Stokes formula so that equation (14) becomes: 
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The integrals on kω  and kω∂  may be analytically evaluated.   
In order to compute the inductances, the border ∂S of the surface S have to belong to 

∂Ω. In this case we can not overcome the singularities of the kernels of the first two integrals 
in (15). However, taking into account the continuity of the potential V or its jump near the 
border of the cut, it can be proved that the first term (with both additions) is convergent. 
Moreover, we ignore the contribution of a side of a facet or of a cut for the side itself if it 
belongs also to the border S∂ .  
 

5.  RESULTS 
 

 To illustrate the proposed method for a multiply connected region, we have considered 
the region on the outside of a perfectly conducting toroid of mean radius of  1 m  and  circular 
cross section of radius of 0.4 m. In this case normal component of magnetic flux density is 
zero: 'nV ∂∂ =0. 

The equipotential lines are shown in Fig.3. The number of nodes and facets were 350 
and 700, respectively.  

 
Fig.3. Equipotential lines 

Based on the solution of the integral equation we have computed the magnetic flux 
using (15).  

If the surface is just the cut, we obtain Sϕ =0.8349 for i= 1A. This is the normalized 
self-inductance L’ = L/µ0 of this toroid. 

In order to verify the convergence of the integrals we have defined a set of surfaces 
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approximating the cut. The radii of these surfaces were: ( )rr ε
ε

−= 1  where r is the cut radius 
(Fig. 4). In these cases we take the contributions of all facet sides in (15). 
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Fig.4. Normalized self-inductance L’ = L/µ0 for a set of surfaces approximating the cut 

Also we have determined the magnetic fluxes on a lot of surfaces being parallel with 
the cut and the borders on Ω∂ ,  containing the mesh nodes. These nodes belong to the cross 
circle (Fig. 5.) 

 
Fig.5. Positions of nodes that defines flux calculation surfaces 

The results were plotted in Fig. 6 where the node index belongs to the surface border. 
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Fig.6. Normalized self-inductance L’ = L/µ0 for a lot of surfaces having the border on the toroid 
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