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Abstract. In this paper we present some new tearing techniques to systematically formulate the state 
equations in symbolic normal-form for linear and/or nonlinear time-invariant large-scale analog 
circuits. The excess elements of the first and of the second kind are unitarily treated in order to allow 
a symbolic representation of the circuit with a minimum number of state variables. It is also presented 
a procedure to reduce, for each subcircuit, the state equation number. The reduced-order is based on 
the using of an implicit integrated algorithm and on the successive elimination of the imposed state 
variables. Some examples are given to illustrate the decomposition procedure, the assignment of the 
connection sources and the reduce-order techniques. 

I. INTRODUCTION 

The growth in complexity of IC chips has generated the need for more efficient simulation 
techniques, which radically differ from the standard simulation techniques [1,2,3,4]. 

There are two fundamental approaches for coping with increasing sizes of electronic 
circuits: 
1. Circuit decomposition, i.e., partitioning the given circuit into smaller component circuits 

which can be handled easily; 
2. Macromodelling and macroanalysis, which imply simplification of the transistor models 

and/or writing of some global equations describing the input/output behavior of a 
subcircuit. 

The earliest technique proposed to handle large-scale circuits by decomposition is called 
diakoptics or tearing. 

A tearing method implies “tearing apart” or decomposing a large-scale network into a 
number of smaller circuits – called subcircuits, which are processed independently. Each 
subcircuit matrix is then operated upon, together with the appropriate topological matrices, to 
yield the overall solution. As a consequence, a reduction of the operation number and hence 
of the computing time is achieved. 

Advantages of the decomposition techniques are of two types: 
1. The development of parallel processing systems for solving several subcircuits 

simultaneously leads to a reduction in computation time; 
2. Solving only the non-latent subcircuits sequentially in the proper order using the latency 

principle yields savings in computation time and memory space. 
In the last years some new algorithms and computer programs have been developed in this 

area in order to be used in CAD of analog integrated circuits. Design problems as noise 
analysis, sensitivity computation, distortion analysis of weakly nonlinear circuits, symbolic 
pole/zero extraction, circuit sizing based on optimization of analytic models can be efficiently 
solved by means of symbolic methods [3,4]. The hierarchical analysis using graph 
decomposition [5,6], matrix decomposition [7], or splitting of the circuits containing nullors 
[8,9], leads to significant reduction of CPU time. 
 The decomposition of a large-scale analog circuit into a number of smaller subcircuits can 
be made by:  
• branch tearing [2,7-13], in which appropriate branches are removed;  
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• node tearing, in which the circuit is torn apart along appropriate nodes [2,7-18];  
• node and branch tearing, in which the circuit is torn apart along appropriate nodes and 

appropriate branches are removed [2,9-13,19,25];  
• splitting of some central nodes from the normal tree [13,14,19]. 

In this paper we present three tearing techniques from the last category of decomposition 
methods, which can be applied both for linear and/or nonlinear large-scale analog circuits. 

Remark 1. In the case of the nonlinear circuits, because the numerical differentiation is a 
relatively inaccurate operation, we approximate the kk vq −  characteristic of each nonlinear 
capacitor and the kk i−ϕ  characteristic of each nonlinear inductor by piecewise-linear 
segments. In order to simplify the description of nonlinear resistors, their iv −  characteristics 
may be approximated by piecewise-linear continuous curves, or by new characteristics in 
which the nonlinearities are transferred to the sources, [12,13,14,17,19,20,22,26,28].  

Remark 2. Using the state equations in symbolic form, we obtain a significant efficiency 
in circuit design and an improvement of the accuracy in the numerical calculations by 
considering as symbols only the parameters corresponding to the nonlinear circuit elements. 
By symbolic analysis, the coefficients of the characteristic polynomial can be computed 
exactly, in order to evaluate the eigenvalues. In this way it is easy to estimate the time step as 
a fraction of the smallest time constant (the inverse of the largest real part of an eigenvalue). 
The total simulation time to reach the steady state may be estimated as few times the largest 
time constant (the inverse of the smallest nonzero real part of an eigenvalue) [28]. 

Remark 3. If the circuits contain magnetic couplings, we can simulate them by inductors 
and current derivative-controlled voltage sources [12,17,27,28]. 

The tearing techniques developed in the Section II of the paper allow the systematic 
formulation of the state equations in symbolic normal-form, for linear and/or nonlinear time-
invariant large-scale analog circuits with excess elements. The degenerates of the first and of 
the second kind are unitarily treated in order to allow a symbolic representation of the circuit 
with a minimum number of state variables, and to identify the null eigenvalues. The 
decomposition algorithm was implemented in a computing program [19] that automatically 
generates the symbolic state equations.  

Using an implicit integrated algorithm to integrate numerically the state equations we can 
reduce the state equation number by elimination of the imposed state variables. Solving a 
reduced algebraic equation number yields savings in computation time and memory storage. 

The algorithm for writing the symbolic state equations using the circuit decomposition and 
the procedure to reduce, for each subcircuit, the state equation number are given in Section 
III. Section IV contains three illustrative examples, including diakoptic analysis of the opamp 
µA741 using a symbol set for which the analysis of the whole circuit is not possible. 

II. TEARING TECHNIQUES FOR STATE EQUATION FORMULATION 

In order to formulate the circuit state equations, a normal tree of the circuit is selected. This 
is a special tree which contains certain circuit elements in the following priority order: all 
independent and controlled voltage sources, all nonlinear voltage-controlled resistors, as 
many capacitors as possible, as many controlling branches of the current-controlled voltage 
sources and of the current-controlled current sources as possible (these branches are 
considered as resistive branches having null resistances), as many resistors as possible, and as 
few inductors as possible. It does not contain any independent and/or controlled current 
source, and any nonlinear current-controlled resistor. The capacitors that are not included in 
the normal tree are called excess capacitors, and the inductors that are included in the normal 
tree are called excess inductors. 
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The nodes of the normal tree in which at least two tree branches and as much as links are 

connected, are called central nodes, and those in which only one tree branch is connected are 
called external nodes.  

In the following we present a decomposition procedure of a large-scale circuit by splitting 
of some central nodes from its normal tree. All tearing methods require that the elements in a 
subcircuit must be strongly interconnected, whereas the different subcircuits must be weakly 
interconnected [2,15,16,30] each other. We have to choose p central nodes, which are 
considered as reference nodes. These p reference nodes are torn apart by p splitting cut-sets 
(SCS) into p + 1 subcircuits. As we shall show below, in respect to the reference node of each 
splitting cut-set, we define the connection sources. 

There are three possible ways to tear the large-scale circuit into subcircuits: 1) by nodes: 
the reference nodes and other nodes are torn apart as in Fig. 1; 2) by nodes and branches: the 
reference nodes are torn apart and several branches are sectioned; 3) hybrid: the reference 
nodes and other nodes are torn apart and several branches are sectioned. 

Remark 4. Through the same central node can pass one, more or all splitting cut-sets. 
Any splitting cut-set generates two subcircuits. In all tearing variants the p+1 subcircuits 

can be interconnected either by ideal independent voltage sources (econ) and ideal independent 
current sources (jcon) (independent connection sources) or by VCVS’s with unity voltage gain 
and CCCS’s with unity current gain (controlled connection sources). 

Since a subcircuit contains the same modeling primitives as the original circuit (that will be 
restored finally by reconnecting all the subcircuits), the accuracy of the simulation results is 
not affected. 

Remark 5. The assignment of the connection sources to the subcircuits has to keep, as 
much as possible, the structure of the state variable vector of the whole circuit. 

Remark 6. The independent or controlled connection voltage sources do not have to 
generate loops made up only of voltage sources. Also, the independent or controlled 
connection current sources do not have to determine cut-sets made up only of current sources.  

We call circuits with excess elements [2,12,13,16,22,25,28], (the circuits with degenerates 
of the first kind) the circuits containing: 
- Loops of capacitors and independent and/or controlled voltage sources (C-E loops); 
- Cut-sets of inductors and independent and/or controlled current sources (L-J cut-sets).  

The cut-sets of capacitors and independent and/or controlled current sources (C-J cut-sets) 
and the loops of inductors and independent and/or controlled voltage sources (L-E loops) 
determine dependencies among capacitor voltage derivatives and inductor current derivatives 
(the degenerates of the second kind). In this case, each C-J cut-set and/or each L-E loop 
introduces a null eigenvalue, [5,13,19]. 

When by the assignment of the connection sources C-E loops and/or L-J cut-sets appear, 
the currents of connection voltage sources and the voltages of the connection current sources 
depend also on the derivatives of the state variables of these subcircuits. In this case, in order 
to obtain the state equation in normal form for the whole circuit, we have to solve the system 
having as unknowns the derivatives of all state variables. 

To avoid this situation we can insert in series with each econ and/or each VCVS, belonging 
to a C-E loop, a small resistance (having a value of 103 smaller than the smallest circuit 
resistance). Similarly, a big resistance (having a value of 103 bigger than the biggest circuit 
resistance) can be connected in parallel with each jcon and/or each CCCS, belonging to an L-J 
cutset. These resistors simplify the computation of the currents (voltages) of the econ (jcon) in 
respect of the state variables and the input variables of the corresponding subcircuits. On the 
other hand they introduce new eigenvalues having the magnitudes much bigger than the 
biggest magnitude of the circuit eigenvalues. 
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When independent connection sources are used, the currents and the voltages of the ideal 

independent voltage sources and of the ideal independent current sources must satisfy, at each 
splitting cut-set Σk, p,k 1= , the following relations: 
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 If controlled connection sources are used, they must satisfy the controlling equations: 
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In this case, because the controlling variables of the controlled sources must belong to the 
state vector or to the variable vector associated to the resistors, we have to do some 
modifications in the circuit structure. We must insert a very small resistance (a very large 
resistance) in series (in parallel) with each connection VCVS (with each connection CCCS). 
Obviously, if there is another circuit element connected in parallel with each connection 
CCCS, we do not have to introduce a very large resistance in parallel with, any more. 

The two subcircuit interconnection variants imply different way to obtain the state 
equations of the entire circuit. 

So, when independent connection sources are used, the subcircuits are separately 
processed, and finally, by aggregation of the state equations of all subcircuits (that suppose 
the elimination of the connection sources) the whole circuit solution is obtained. For the 
large-scale integrated circuits’ analysis, the parallel processing can be used. 

In the second case, when controlled connection sources are used, we have to solve the 
complete state equation system from the beginning, but the equations are much better 
structured.  

III. SETTING UP THE SYMBOLIC STATE EQUATIONS 

 After the generation of a circuit normal tree, the essential incidence matrix (EIM) Dm, 
associated to the normal tree in the subcircuit Sm, is generated with the following partition 
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where, for example, Ei,m (Jc,m) is the set of independent (controlled) voltage (current) sources 
from the subcircuit Sm, and ( )mLLmCC ,,  DD  represents the incidence submatrix of the link 
capacitors (inductors) to the cut-sets associated to the tree branch capacitors (inductors) from 
the subcircuit Sm. The existence of the null matrices    ,,, 0  0,0, === mLRmLCmRC DDD is a 
consequence of the normal tree definition [2-6,9,13,15]. 

Using the second-level subscript t for the normal tree branches, and l for the links (cotree), 
the Kirchhoff’s laws have the form: 

KCL:                           (4) mlmmt ,, iDi −=

KVL:    ,                       (5) mtmml ,
t

, vDv =
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where, for example, ( )mlmt ,,  iv  represents the voltage (current) vector of the tree branches 
(links). 

To this equation system we must add the constitutive equations of the linear and/or 
nonlinear circuit elements, and the definition equations of the controlled sources. We assume 
that the voltages of the controlled voltage sources, , and the currents of the controlled 
current sources, , can be expressed in respect of the resistor voltages or the resistor 
currents, or the state variables. 

m,Ecv

m,Jci 

The number of state-variables associated with the circuit being equal to the number of 
dynamic elements minus the number of excess elements, [1,2,9,11-14,18-23], we choose as 
state variables the tree capacitor voltages and the link inductor currents . The 
complete equation system must be solved in respect of these variables. 

 m,Ctv mLl , i

According to the algorithm presented in [31], the symbolic state equations in normal form, 
for the subcircuit Sm, are:  

mm,mmmmm yByBxAx && 1++=                                 (6) 

where the matrices Am, Bm and B1,m have the elements in symbolic form, and  
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The vectors  and , 
m,conEv m,Jcon

i 11 += p,m , must be expressed in respect of all state 
variables, of the voltages of all independent voltage sources, and of the currents of all 
independent current sources. For that, we use the Kirchhoff’s current law corresponding to the 
cut-sets attached to the connection voltage sources, and the Kirchhoff’s voltage law 
corresponding to the loops attached to the connection current sources, obtaining for each 
subcircuit Sm, 11 += p,m . 

Because the two connection sources (econ,k, jcon,k) attached to a splitting cut-set Σk are 
assigned to different subcircuits (Sm-1 and Sm), they must satisfy the following relations: 

                             (8) m,Jm,E concon
ii =−1

    .                         (9) 1−= m,Em,J concon
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By the aggregation of the equations for all subcircuits we obtain the state equation in 
symbolic form for the whole circuit: 

                         (10) yBByAxx && 1++=

where the matrices A, B and B1 have the elements in symbolic form. 
In order to integrate the state equation (6) we use the backward-differentiation formula 

[22], which approximates to within prescribed accuracy the present value  of the 
time derivative of  in terms of  and p past values :  
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where:  are constants, pa,...,a,a 10 nn tth −= +1  is the present step size,  is the new 

value of x, and  is the “old” value of x. 
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 According to the relation (14) the state equation (6) becomes: 

     ( ) ( )o_mn_mm,n_mmn_mmo_mn_m hh
yyByBxAxx −++=−

11
1  .               (12) 

 5



"ATEE - 2004" 
 Solving the equation system corresponding to the eliminated state variables and 

introducing them in the remained state equations, we obtain the state equations in the normal 
form for the remained state variables. These state equations have the form similar to the 
equation (12) and have as symbols the old values of all state variables and time step size. The 
remained state equations can easy be integrated to obtain the circuit response. With this 
method we obtain important savings in computing time and memory. 
 The method we developed can be used to obtain the transfer function if the kept state 
variable is that of the output port. The approach is tested on some very important analog 
integrated circuits of practical interest. 

The algorithm for large-scale circuit decomposition, and the method to systematically 
formulate the state equations in symbolic normal-form for linear and/or nonlinear time-
invariant large-scale analog circuits with excess elements, was implemented in SYSEG – 
SYmbolic State Equation Generation- program. Starting from the circuit netlist, the program 
performs the decomposition of the large-scale analog circuit into p + 1 subcircuits, identifying 
the p splitting cut-sets, and formulates the state equations in symbolic form.  It follows the 
algorithm of the symbolic formulation of the state equation in normal form, but it avoids the 
matrices’ multiplication. Kirchhoff’s laws are simple written by successively generation of 
the cut-sets and of the loops respectively, that makes the program very efficient regarding the 
computing time and memory. The program SYSEG is written in C++ language and it is 
implemented on a compatible IBM Pentium PC. This is an interactive tool that combines 
symbolic and numeric computational techniques and which uses the facilities of symbolic 
simulator Maple to manipulate the symbolic expressions. 

IV. EXAMPLE 

The diakoptic approach leads to a significant reduction of CPU time and an important 
economy of memory, in contrast with the case when the analysis is made over the entire 
circuit. When the symbolic analysis of the whole large-scale circuit is not possible, the tearing 
method becomes the unique alternative and this is its main advantage. 

A good example is the µA 741 operational amplifier, shown in Fig.1, whose partially 
symbolic state equations in normal form we want to formulate, in order to extract the circuit 
state matrix. 

Applying our computing program [19] we can obtain the symbolic state equations in 
normal form for different number of symbols and for different locations of the corresponding 
circuit elements. 

In some situations, though, the symbolic expressions being too large, the symbolic 
manipulator fails [20]. This happens, for example, when we take as symbols the parameters of 
the transistors Q4, Q131, Q16, Q17, Q21, and R8, R9, R11, C1. If the transistors are modeled as in 
Fig. 2, the small-signal equivalent circuit of the amplifier in open-loop configuration contains 
26 nodes and 140 primitive elements. We have performed a diakoptic analysis tearing the 
circuit by Σ1, Σ2, and Σ3 cut-sets, in four subcircuits. 

These were independently analyzed, and the partially symbolic state equations of the entire 
circuit, with 36 symbols (including the six connection resistances, and the complex frequency 
s), were obtained by aggregation. The numerical values of the eigenvalues obtained by the 
numeric analysis of the whole circuit are in a good agreement with those obtained by 
symbolic diakoptic analysis (see Fig.3). The maximum error is 5.14% for a complex 
conjugate eigenvalue that can be seen in the figure. 

Eliminating the state variables: 
Elm_st_var:=[UCbe_Q17,UCbe_Q5,UCbe_Q12,UCbe_Q19,UCbc_Q1,UCbe_Q20,U

Cbe_Q15,UCbc_Q16, UCbe_Q10,UCbc_Q131]], 
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Fig.1. µA741 operational amplifier.

Fig. 3. Pole location for µA 741. Fig.2. AC model for bipolar transistors. 

 
The first two  remained state equations, for h = 1e-14, have the following numeric 

structure:  
 
Rem_st_eqs:={.1e15*UCbe_Q6_n-.1e15*UCbe_Q6_o = -.8750e9*UCbe_Q6_n+ 
+.3335e5*UCbc_Q4_n-.3335e5*UCbc_Q3_n+.6803e9*UCbc_Q5_n+. 
+6803e9*UCbc_Q7_n,  
.1e15*UCbe_Q18_n-.1e15*UCbe_Q18_o = -.1065e9*UCbc_Q3_n+ 
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+.1065e9*UCbc_Q4_n-.2250e9*UCbe_Q12_o+.6875e9*UCbe_Q15_o+ 
4282e9*Cbc_Q16_o-.5659e10*UCbe_Q19_o-.3442e9*UCbe_Q16_n-.3055e9* 
*UCbe_Q17_o-.4344e10*UCbe_Q18_n-.4109e10*UCbe_Q20_o- 
-.2658e6*UCbc_Q21_n+.1926e5*UCbc_Q10_n+ 
+.5963e9*UCbc_Q131_o-.1065e9*UCbc_Q7_n+.5017e10*UCbe_Q14_n- 
-.5678e9*UCbc_Q132_n}  

V. CONCLUSION 

Based on the topological method of the normal tree we have developed a very efficient 
algorithm to generate in symbolic form the state equations of the analog circuits with excess 
elements. In order to extend this very useful method to the large-scale integrated circuits 
design, we have developed several tearing techniques, based on splitting of some central 
nodes (called reference nodes) from the normal tree. These techniques are built on three 
variants of circuit decomposition: by nodes (reference nodes and other nodes), by nodes and 
branches (reference node and several branches), and hybrid (by reference nodes, other nodes 
and several branches). Because an optimal decomposition needs that the elements of a 
subcircuit must be strongly interconnected, while the subcircuits must be weakly 
interconnected each other, and also the subcircuits must have equal sizes, the choice of one 
tearing method or another one depends on the circuit structure and on these requirements. 

The choice of the values of these resitances depends on the circuit structure and on the 
values of the resitances contained in the initial circuit. The connection resistors introduce new 
eigenvalues that have the magnitudes much bigger than the biggest magnitude of the circuit 
eigenvalues, and that do not affect the dynamic behavior of the circuit. 

The main advantage of the diakoptic approach is that it can be used in the cases when the 
symbolic analysis of the whole circuit is not possible.  

 The reduced-order of the number of the state variables, based on the using of an implicit 
integrated algorithm and on the successive elimination of the imposed state variables, is an 
efficient procedure for the simulation of the large-scale integrated circuits. 

REFERENCES 

[1] G. D. Hachtel. A. L. Sangiovanni-Vincentelli, “A survey of third-generation simulation techniques”, Proc. 
IEEE, 69, Oct. 1981, pp. 1264-1280. 

[2] A. E. Schwarz, Computer-aided design of microelectronic circuits and systems, Academic Press, London, 
1987. 

[3] G. Gielen, P. Wamback, W. Sansen, “Symbolic analysis methods and applications for analog circuits a 
tutorial overview”, Proc. IEEE 82, 1994, pp. 287-304. 

[4] R. Sommer, E. Hennig, M. Thole, T. Halfmann, T. Wichmann, “Symbolic modeling analysis of analog 
Integrated Circuits”, ECCTD'99, European Conference on Circuit Theory and Design, Stresa, Italy, 27 
August– 02 September1999, Proceedings Vol. II, pp. 66-69. 

[5] Fl. Constantinescu, Miruna Niţescu, M. Iordache, Lucia Dumitriu, R. Muntean, R. Botinanţ, “Selection of the 
best hierarchical structure in symbolic analysis problems”, Proceedings of the Fifth International Workshop 
on Symbolic Methods and Applications in Circuit Design, SMACD’98, Kaiserslautern, October 8-9, 1998, 
pp. 187-190. 

[6] J. P. Le Baron, E. Cadran, “Symbolic state equations of linear electronic circuits with degenerates”, 
Proceedings of the Fifth International Workshop on Symbolic Methods and Applications in Circuit Design, 
SMACD’98, Kaiserslautern, October 8-9, 1998, pp. 80-86. 

[7] M. Hassoun, P.Lin, “A new network approach to symbolic simulation of large-scale networks”, Proc. 
ISCAS’89. Pp. 806-809. 

[8] J. Starzyk, A. Konczykowska, “Flowgraph analysis of large electronic networks”, IEEE Trans. On CAS 33, 
1986, pp. 302-316. 

[9] S. M. Chang, G. M. Wierzba, “Circuit level decomposition of networks with nullors for symbolic analysis”, 
IEEE Trans, on CAS 41, 1994, pp. 699-711. 

 8



"ATEE - 2004" 
[10] L. O. Chua, L. K. Chen, “Nonlinear diakoptics”, Proc. of the IEEE Int. Symp. on Circuits and Systems, Apr. 

1975, pp. 324-328. 
[11] L. O. Chua, L. K. Chen, “Diakoptic and generalized hybrid analysis”, IEEE Trans. On Circuits and 

Systems, CAS-23, 12, Dec. 1976, pp. 694-705.  
[12] M. Iordache, R. Iordache, “Diakoptic analysis for large-scale piecewise-linear nonlinear electrical circuits”, 

Rev., Roum., Sci., Techn., Électrotechn. et Énerg., 41, no. 3, Bucarest , 1996, p. 297 - 315 
[13] M. Iordache, Lucia Dumitriu, “Computer Formulation of Symbolic State Equations for Analog Nonlinear 

Circuits with Excess Elements”, Proceedings of 2000 International Symposium on Nonlinear Theory and its 
Applications, NOLTA2000, Volume 1, TU Dresden Conference Center, Dresden, Germany, September 17-
21, 2000, pp. 355-358. 

[14] M. Iordache,  “A hybrid tearing method for nonlinear large-scale circuit analysis”, Rev., Roum., Sci., 
Techn., Électrotechn. et Énerg., 36, no. 4, Bucarest , 1992, pp. 431-442. 

[15] . A. L. Sangiovanni-Vincentelli, L. K. Chen, L. O. Chua, “An efficient heuristic cluster algorithms for 
tearing large-scale networks”, IEE Trans. on Circuits and Systems, CAS-4, No. 12, Dec. 1977, pp. 709-717. 

[16] A. G. Exposito, L. G. Franquelo, “A new contribution to the cluster problem”, IEE Trans. on Circuits and 
Systems, CAS-34, No. 5 , May 1987, pp. 546-552. 

[17] M. Iordache, "An analysis method for nonlinear networks  with controlled sources, magnetic couplings and 
excess elements in transient behaviour", Rev. Roum. Sci. Techn. - Électrotechn. et Énerg., nr. 3, 1981, p. 
401-413. 

[18] P. R. Bryant, “The order of complexity of electrical networks”, Proc. IEE (GB), Part C, 1959, pp. 174-188. 
[19] M. Iordache, Lucia Dumitriu, D. Delion, “Automatic Formulation of Symbolic State Equations for Analog 

Circuits with Degeneracies”, Proceedings of 6th International Workshop on Symbolic Methods and 
Applications in Circuit Design, SMACD 2000, Instituto Superior Técnico, Lisbon, Portugal, October 12-
13, 2000, pp. 65-72. 

[20] M. Iordache, Lucia Dumitriu, “A decomposition technique for setting up the symbolic state equations of 
large-scale analog circuits”, Proceedings o the 15th European Conference on Circuit Theory and Design 
ECCTD’01, Finland 28-31 August 2001, pp.201 – 204. 

[21] R. A. Rohrer,  Circuit Theory: An Introduction to the State Variable Approach, McGraw-Hill, New York, 
1970. 

[22] L., O., Chua, and P., M., Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms and 
Computational Techniques, Englewood cliffs, NJ:Prentice-Hall, 1975. 

[23] L. O. Chua, and R. A. Rohrer, “On the Dynamic Equations of a Class of Nonlinear RLC Networks”, IEEE 
Trans. Circuit Theory, Vol. CT-12, N0. 4, Dec. 1965, pp. 475-489. 

[24] T. E. Stern, “On the Equations of Nonlinear Networks”, ”, IEEE Trans. Circuit Theory, Vol. CT-13, No. 1, 
Mar. 1961, pp. 74-81. 

[25] W. J. McCalla, Fundamentals of computer-aided circuit simulation, Kluwer Academic Publishers, Boston, 
1988. 

[26] Fl. Hantila, “A Method for Solving Nonlinear Resistive Networks”, Rev. Roum. Sci. Techn. Électrotechn. 
et Énerg., 24, 2, 1979, p. 217-226.  

[27] M. Iordache, Lucia Dumitriu, “Generalized Hybrid Analysis for Nonlinear and Nonreciprocal Circuits”, 
Proceedings of 1998 International Symposium Nonlinear Theory ant its Applications, NOLTA’98, Le 
Régent, Crans-Montana, Switzerland September 14-17, 1998, pp.121-124.  

[28] M. Iordache, Lucia Dumitriu, Modern theory of electrical circuits – Fundamentals, Applications, 
Algorithms, and Computing Programs, - Vol. II (in Romanian), All Educational Publishing, Bucharest 
2000. 

[29] F. Constantinescu, Miruna Nitescu, “Finding Simplified Symbolic Expressions of Circuit Functions Using 
Reduced State-Like Matrices”, Proceedings of the Fifth International Workshop on Symbolic Methods and 
Applications in Circuit Design, SMACD’98, Kaiserslautern, October 8-9, 1998, pp. 39-42. 

[30] O. Guerra, J.D. Rodriguez-Garcia, F. Fernandez, A.Rodriguez-Vazquez, “True Hierarhical Symbolic 
Analysis of Large-Scale Analog Integrated Circuits”, Proceedings of the Fifth International Workshop on 
Symbolic Methods and Applications in Circuit Design, SMACD’98, Kaiserslautern, October 8-9, 1998, pp. 
164-168. 

[31] M. Iordache, Lucia Dumitriu, “Efficient Decomposition Techniques for Symbolic Analysis of Large – Scale 
Analog Circuits by State Variable Method”, Analog Circuits and Signal Processing, Kluwer, Sep.  2004, 
pp. 234-256. 

  

 9


	III. SETTING UP THE SYMBOLIC STATE EQUATIONS
	REFERENCES

