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Abstract. To determine the extreme of the power functional in case of the linear and resistive circuits is a 
problem of utmost importance, with quite useful theoretical and practical applications. In the present work it is 
demonstrated that the energetic steady state of the circuit, realized at a certain moment, represents a state\ 
theorems. 
 

1. INTRODUCTION 
 
Tellegen’s theorems have a special theoretic importance due to their generality and 

their help to easily demonstrate other practical important conclusions. Thus, for given steady 
state of a circuit, marked respectively with prime and second superscript, the line matrix of 
the voltages elements (branches) ][u , and the column matrix of the currents of the elements 
(branches) ][i , proves the relations, [1], [2]: 

 
            0][ ][ ''' =iu                                                                                                                 (1) 
 
and 
 
             0][ ][][ ][ '''''' =− iuiu ,                                                                                                  (2) 
 
called respectively 1st and 2nd theorem of Tellegen.  
  From Tellegen’s 1st theorem, applied to the particular case when the two states are the 
same, we get the following relation between the voltage and current of a circuit element 
(branches) in a given steady state: 
 

 0][ ][ =iu ,                                                                                                                    (3) 
 
also called the power conservation theorem. If L is the number of elements (branches) of the 
circuit, while the voltage ku , and the current ki , of the each element are the same reference 
sense, we obtain the following relation, out of relation (3):  
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which means that the algebrical sum of instantaneous absorbed powers at the terminals of the 
elements in a circuit is nill at any moment. 
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The same as with other conservative systems, such as mechanical or thermical [3], the 
electric conservative system in a steady state regime also represents an extreme energetic state 
[1], [4]. 
 Because the theorem of the power conservation (4) does not show the energetic 
character of the electric circuit, the present work attempts a demonstration that the stationary 
and cvasistationary regime of the linear and resistive electric circuit represent a minimum 
state as for as the powers absorbed at the terminals elements of the circuit are concerned.  
  

2. DETERMINING THE EXTREM OF THE POWER FUNCTIONAL FOR      
LINEAR AND RESISTIVE CIRCUIT  

 
          We take the case of a linear and resistive circuit in a stationary regime (d.c.). After 
transformation all the independent current source with equivalent independent voltages 
source, for each k branch of the L branches of the circuit, Ohm’s theorem is a follows [5], 
(fig.1): 
 
 kkkk EIRU −= .                                                                                                          (5) 
 
 
 
 
 
 
 
 
 
         
 

If we mark the potentials of the nodes where the k branch is connected, kiV ,  and kjV , , 
the current of each branch can be described using the 2nd Kirchhoff’s theorem: 
  

)( ,, kkjkikk EVVGI +−= .                                                                                           (6)                        
  

The absorbed power at all the branches of the circuit is described as functional 
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where Nji ,...,2,1, = , N being the number of nodes of the circuit. 

The functional ),...,,( 21 NVVVPF ≡ is obviously a function of class 2C within NR  set 

and it is positively defined, that .,...,2,1,V ,0),...,,( i21 NiRVVVP N
N =∈∀〉 under this 

conditions, the extremes of the functional ),...,,( 21 NVVVPF ≡  are minimum points and they 
can be obtained by solving the system [6]: 
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By using the power expression (7), the partial derivates of system (8) lead to the 

following equations system: 
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identical with the system of Kirchhoff equation for currents (1st Kirchhoff’s theorem), 
expressed for all N nodes of circuit.  
 Consequently, we get the following theorem (1st Theorem of Minimum Power – 
TMP1): the minimum of the absorbed power by the branches of linear and resistive circuit in 
stationary regime (d.c.) is satisfied by the solutions in the currents and voltages of the circuit, 
and these are the currents and voltages which verify the 1st and 2nd  theorem of Kirchhoff.  

This theorem has a general character and we can demonstrate a  similar theorem for 
the cvasistationary regime (a.c.) of  linear and resistive electric circuit. 

By using the symbolical method, the voltage at every branch of the circuit is equal to:   
 
 kkkk EIRU −= ,                                                                                                       (10) 
 
and the current of branch k can be expressed applying Kirchhoff’s second theorem: 

 
).( ,, kkjkikk EVVGI +−=                                                                                        (11) 

 
The active power absorbed by all the L branches of the circuit is: 
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where: the real and imaginary parts of the complex potential kiV , and kjV , of the nodes i and j 
where the k branches is connected, is 
 
 ],Im[ ],Re[ ,,,, kikikiki VyVx ==                                                                                (13) 

]Im[ ],Re[ ,,,, kjkjkjkj VyVx == ,                                                                            (14) 
 
and respectively, the real and imaginary parts of the independent voltage source of the k 
branch, is 

 
]Im[ ],Re[ ,, kkEkkE EbEa == .                                                                                 (15) 

 
The active power has been defined as the functional: 
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and it is quite obviously a function class 2C  in NR2 , and is positively defined i.e. for all the 
pair ,,...,1 ),,( Niyx ii = then .0),...,,,,...,,( 2121 〉NN yyyxxxP  Consequently, the minimum 
points of the active power functional is the solutions of the system [7], [8]: 
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The partial derivates from the system (17) lead to the equations: 
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which are identical to the Kirchhoff’s equations for currents (1st Kirchhoff theorem), 
expressed for all the nodes N of the circuit. 
 Consequently, the following theorem can be issued (2nd  Theorem of Minimum Power 
–TMP 2): the minimum of the active power absorbed by the branches of a linear and resistive 
circuit in a cvasistationary regime (a.c.) is satisfied by the solutions in currents and voltages 
of the circuit, and these are the currents and voltages that verify the 1stand 2nd theorem of 
Kirchhoff [9], [10].    

 
3. EXAMPLES 

 
            4.1. We consider the d.c. circuit shown in figure 2. The power absorbed of the 
branches of the circuit is (7): 
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The minimum of the absorbed power are solutions of the system (8), which represent  
the 1st theorem of Kirchhoff expressed in node 1 and 2: 
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4.2. We consider the three-phase resistive circuit in star connection, shown in figure 3.  
 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
If we know the three-phase symmetrical voltages of the system 
 

),(),(, 302010 jbaUUjbaUUUU +−=−−==  
 
and if we consider that the neutral point displacement voltage is 

 
),( jyxUU NO +=  

 
then the active absorbed power can be expressed by relation: 
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The minimum of the active absorbed power are the solutions of the system: 
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Results: 
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which are similarly with the formula: 
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of Kirchhoff in node N. 
 

4. CONCLUSIONS 
 
            It has been established that the solutions of the linear and resistive electric circuit, in 
d.c. and a.c. regime, represent a minimum of the absorbed power in the circuit. 
            To find a satisfying answers to this problem, it is necessary to give an exact definitions 
of the power categories used in the a.c. periodic regime, written records of the specialists’ 
agreement upon these definitions don’t exist so far. 
             The energetic problem under debate in the present work has a wide range of practical 
applications and it aims at cutting down the wastes in the energetically systems.  
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